2. Problemset "Quantum Algebra & Dynamics" October 26, 2018

Adjoined Units, Ideals and Factor Algebras

2.1 Adjoining a Unit

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

Just like in Theorem 2.1, let \mathcal{A} be a C^* -algebra without identity and $\overline{\mathcal{A}}$ denote the set of pairs

$$\bar{\mathcal{A}} = \{ (\alpha, A) : \alpha \in \mathbf{C}, A \in \mathcal{A} \} .$$
(1)

Fakultät für Physik und Astronomie

Prof. Dr. Thorsten Ohl

The *-algebra operations are again

$$\mu(\alpha, A) + \lambda(\beta, B) = (\mu\alpha + \lambda\beta, \mu A + \lambda B)$$
(2a)

$$(\alpha, A)(\beta, B) = (\alpha\beta, \alpha B + \beta A + AB)$$
(2b)

$$(\alpha, A)^* = (\bar{\alpha}, A^*) \tag{2c}$$

We can define a norm via

$$\|(\alpha, A)\|_{\bar{\mathcal{A}}} = \sup_{B \in \mathcal{A}, \|B\|=1} \|\alpha B + AB\|_{\mathcal{A}}.$$
 (3)

1. Show that (3) satisfies the triangle inequality

$$\|(\alpha, A) + (\beta, B)\|_{\bar{\mathcal{A}}} \le \|(\alpha, A)\|_{\bar{\mathcal{A}}} + \|(\beta, B)\|_{\bar{\mathcal{A}}}.$$
(4)

2. Show that (3) satisfies the product inequality

$$\|(\alpha, A)(\beta, B)\|_{\bar{\mathcal{A}}} \le \|(\alpha, A)\|_{\bar{\mathcal{A}}} \|(\beta, B)\|_{\bar{\mathcal{A}}} \,. \tag{5}$$

2.2 Ideals

A subspace $\mathcal{B} \subseteq \mathcal{A}$ is called a left ideal, if $\forall A \in \mathcal{A}, B \in \mathcal{B} : AB \in \mathcal{B}$. A subspace $\mathcal{B} \subseteq \mathcal{A}$ is called a right ideal, if $\forall A \in \mathcal{A}, B \in \mathcal{B} : BA \in \mathcal{B}$. If \mathcal{B} is both a left and a right ideal it is called a two sided ideal.

- 1. Show that every ideal is a (sub-)algebra.
- 2. Show that if \mathcal{B} is self adjoint and a left or right ideal, it is necessarily two sided.

2.3 Factor Algebras

Let \mathcal{I} be a two sided ideal of an algebra \mathcal{A} .

1. Show that the factor space \mathcal{A}/\mathcal{I} is also an algebra, i.e. that the algebra operations are well defined for the equivalence classes

$$[A] = \{A + I : I \in \mathcal{I}\}.$$
(6)

- 2. Show that this is also true for \mathcal{A}/\mathcal{I} if \mathcal{A} is a
 - (a) *-algebra and $\mathcal{I} = \mathcal{I}^*$
 - (b) Banach algebras and \mathcal{I} is complete.