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Abstract

• General mathematical description of a physical system: C∗-algebras,
spectra and states

• Mathematical description of quantum systems: states and representa-
tions and the GNS construction.

• Single particle quantum mechanics: Weyl algebra, Stone-von Neumann
theorem, Schrödinger wave functions, minimum uncertainty states.

• Quantum dynamics: Schrödinger equation, Hamiltonian, self-adjointness,
examples.

• Mathematical description of infinitely extended systems: Haag’s theo-
rem.

• Symmetries in quantum mechanics: Wigner’s theorem

• Symmetry breaking: Goldstone’s theorem, Higgs mechanism, super-
conductivity.
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—1—
Introduction

1.1 Literature

Lecture 01: Tue, 13. 10. 2015

1.1.1 Close to the lecture

• Franco Strocchi, An Introduction to the Mathematical Structure of Quan-
tum Mechanics, World Scientific, 2nd ed., 2008.

• Franco Strocchi, Symmetry Breaking, Springer, 2nd ed., 2007. Avail-
able online: http://www.springerlink.com/content/978-3-540-73592-2/

1.1.2 Quantum Field Theory

• Rudolf Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer,
2nd ed., 1996.

1.1.3 C∗-Algebras

• Ola Bratteli, Derek Robinson, Operator Algebras and Quantum Sta-
tistical Mechanics, Vols. I, II, Springer, 2nd ed., 2002 (these used
to be available free of charge as PDFs on Ola Bratteli’s homepage
http://folk.uio.no/bratteli/, but the page has dissappeared).

• Jacques Dixmier, C∗-Algebras, North-Holland Mathematical Library,
Vol. 15, 1977.

• Masamichi Takesaki, Theory of Operator Algebra, Vol. 1, Springer,
2001

http://www.springerlink.com/content/978-3-540-73592-2/
http://folk.uio.no/bratteli/
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1.1.4 Functional Analysis

• Michael Reed, Barry Simon, Methods of modern mathematical physics,
Volume 1: Functional analysis, Academic Press, 2nd ed., 1981.

1.1.5 Historical

• John von Neumann, Mathematical Foundations of Quantum Mechan-
ics, Princeton University Press 1932.

1.2 Naive Formulation of Quantum Mechanics

Schrödinger wave functions are usually the first formulation introduced in
Quantum Mechanics (QM) lectures. Its ingredients are

• The state of a physical system is described by a wave function, which is
assumed to be square integrable and normalized. For a single particle
it is a function of the space points and time

ψ : R3 ×R→ C

(~x, t) 7→ ψ(~x, t)
(1.1)

and the probability of finding the particle in a domain D ∈ R3 is given
by

pD(t) =

∫
D

d3x |ψ(~x, t)|2 . (1.2)

where ψ has been normalized
∫
R3d

3x |ψ(~x, t)|2 = 1. In other words,
|ψ(~x, t)|2 is interpreted as a probability density.

• Superposition principle: if ψ1,2 are states, ψ = c1ψ1 + c2ψ2 with |c1|2 +
|c2|2 = 1 is also a state.

• Other observables are constructed by a correspondence principle from
a classical dynamical system

position: ~x(t)⇔ ~̂x (1.3)

momentum: ~p(t)⇔ ~̂p (1.4)

where

(~̂xψ)(x, t) = ~xψ(x, t) (1.5)

(~̂pψ)(x, t) = −i~∇ψ(x, t) . (1.6)

Note:
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– The choice of ~̂x is intuitively clear, because it yields the correct
expectation values.

– The choice of ~̂p can be motivated by the de Broglie relation ~p = ~~k
for plain waves. Also, the resulting Canonical Communation Re-
lations (CCR) [x̂i, p̂j] = iδij reproduce the Heisenberg uncertainty
relation ∆x∆p ≥ 1/2.

• the dynamics of the system is described by the Schrödinger equation

i
∂

∂t
ψ(~x, t) = Hψ(~x, t) (1.7)

with a Hamiltonian H that is motivated by the correspondence princi-
ple

H =
1

2m
~p2 + V (~x) = − 1

2m
∆ + V (~x) . (1.8)

• physical interpretation:

– possible results of measuring an observable O: the spectrum of
the corresponding operator

– expectation value for multiple measurements of an observable O:

〈O〉 =

∫
d3x ψ̄(~x, t)Oψ(~x, t) (1.9)

and the probability of finding the particle in a domain D can be
interpreted as the expectation value for the characteristic func-
tion χD of D

p(D) =

∫
D

d3x |ψ(~x, t)|2 =

∫
d3x ψ̄(~x, t)χD(~x)ψ(~x, t) = 〈χD〉 ,

(1.10)
where ψ has been normalized

∫
R3d

3x |ψ(~x, t)|2 = 1.

1.3 Problems

The spectral theorem is required to make the interpretation consistent and
to define functions of operators like

f(A) =

∫
da f(a) a〉 〈a , (1.11)

but
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1. The CCR [x, p] = i can not be realized with bounded operators (→ ex-
ercise).

2. Hellinger-Toeplitz theorem: an everywhere defined symmetric operator,
i. e.

∀ψ, φ ∈ H : (ψ,Aφ) = (Aψ, φ) (1.12)

on a Hilbert H space is bounded (see, e. g. [RS80], p. 84, corollary to
the closed graph theorem III.12).

Therefore, we have to be careful about the domain of our operators:

1. there are square integrable ψ : R→ C for which (xψ) : R→ C is not
square integrable

2. the operators x, p and [x, p] all have different domains.

In fact, the development of a mathematically rigorous spectral theory for un-
bounded operators was, to a large extent, driven by these technical difficulties
of quantum mechanics.

Instead of retracing these historical steps starting from Schrödinger’s and
Heisenberg’s heuristics, we shall go back and ask ourselves what is the most
general framework for a mathematical description of physical systems.

1.4 Mathematical Description of Physical Systems

We will start with the intuitive example of classical mechanics and later
relax some assumptions to obtain a framework that encompasses quantum
mechanics.

1.4.1 Classical Mechanics

Canonical Phase Space

kinematics: the kinematical structure is determined by the state of the
system and the observables that can be measured:

state: in an idealized classical mechanical system with n degrees of
freedom (d.o.f.), the state is given by a point x in phase space Γ,
i. e. in a chart

x = (q, p) = (q1, . . . , qn, p1, . . . , pn) ∈ Γ (1.13)

where Γ is often a cotangent bundle T ∗Q over the configuration
space Q 3 q.



ohl: Fri Feb 5 13:21:28 CET 2016 subject to change! 5

observables: we can measure all polynomials of the phase space vari-
ables q and p and this should extend to the closure of the poly-
nomials in the ‖·‖ = supΓ | · |-norm, i. e. the continuous functions
on phase space: C(Γ). Sometimes it is useful to allow complex
coefficients for the polynomials and complex valued continuous
functions.

dynamics: the time evolution of the state x = (q, p) of a classical mechanical
system is described by a flow Φ on phase space

Φ : R× Γ→ Γ

(t, q, p) 7→ Φt(q, p) = (q(t), p(t))
(1.14)

(see section 5.4.2 on page 156 of [Ohl14] for further discussions). This
induces the time evolution of the observables by

Φ∗ : R× C(Γ)→ C(Γ)

(t, f) 7→ Φ∗t (f) = f ◦ Φt

(1.15)

i. e.
Φ∗t (f)(q, p) = f(q(t), p(t)) . (1.16)

This flow is a solution of the canonical equations of motion

dqi
dt

=
∂H

∂pi
(1.17a)

dpi
dt

= −∂H
∂qi

(1.17b)

with a suitable Hamiltonian H : Γ → R. Using the antisymmetric
Poisson brackets

{qi, pj} = δij (1.18a)

{qi, qj} = {pi, pj} = 0 (1.18b)

we may also write more uniformly

d

dt
qi = {qi, H} (1.19a)

d

dt
pi = {pi, H} (1.19b)

and find with the chain rule

d

dt
Φ∗t (f) = {Φ∗t (f), H} (1.20)

for all observables f : Γ→ R.
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Algebras of Observables

The space C(Γ) of all observables carries a natural abelian ∗-algebra structure

∀α, β ∈ C : (αf + βg)(x) = αf(x) + βg(x) (1.21a)

(fg)(x) = f(x)g(x) = (gf)(x) (1.21b)

(f ∗)(x) = f(x) (1.21c)

with f : x 7→ 1 as identity. In general we have

Definition 1.1 (algebra). An algebra A over a field K is a vector space
over K together with a bilinear internal binary operation

· : A×A → A
(x, y) 7→ xy ,

(1.22)

i. e. ∀x, y, z ∈ A, α, β ∈ K

z(αx+ βy) = α(zx) + β(zy) (1.23a)

(αx+ βy)z = α(xz) + β(yz) (1.23b)

(αx)(βy) = (αβ)(xy) . (1.23c)

The algebra A is called

• associative, if and only if (iff) ∀x, y, z ∈ A : (xy)z = x(yz),

• commutative or abelian, iff ∀x, y ∈ A : xy = yx and

• unital or with identity, iff ∃1e ∈ A : ∀x ∈ A : ex = xe = x.

Note that some authors reserve the term algebra for associative algebras.

In the following, we will only use algebras over C. Most of the algebras
will be associative and many unital, The more interesting cases will not be
commutative, however.

Definition 1.2 (∗-algebra / involutive algebra). A ∗-algebra or involutive
algebra (A, ∗) is an associative algebra A over C with an antiautomorphism
or involution

∗ : A → A
x 7→ x∗

(1.24)

i. e. ∀x, y ∈ A, α ∈ C

(x∗)∗ = x (1.25a)
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(x+ y)∗ = x∗ + y∗ (1.25b)

(αx)∗ = ᾱx∗ (1.25c)

(xy)∗ = y∗x∗ (1.25d)

where ᾱ is the usual complex conjugate of α.

Note that it is in principle possible to use associative algebras over fields
other than C, but this is outside of our scope.

Lecture 02: Fri, 16. 10. 2015

Definition 1.3 (normal, self-adjoint, positive, unitary). An element x of a
∗-algebra is called

• normal, iff x∗x = xx∗,

• self-adjoint, iff x∗ = x,

• positive, iff ∃y ∈ A : x = y∗y,

• an isometry, iff x∗x = e,

• unitary, iff x∗x = xx∗ = e.

The last two only apply to unital algebras, of course.

Lemma 1.4. A positive element x of a ∗-algebra is self-adjoint. Further-
more, self-adjoint and unitary elements are normal.

Proof. The first statement follows from x∗ = (y∗y)∗ = y∗(y∗)∗ = y∗y = x and
the second and third statements are trivial.

In C(Γ), there is a natural norm

‖f‖ = sup
x∈Γ
|f(x)| (1.26)

and C(Γ) is by construction complete w. r. t. to this norm, i. e. a Banach
space. Since

∀f, g ∈ C(Γ) : ‖fg‖ ≤ ‖f‖ ‖g‖ (1.27)

the product is continuous w. r. t. to the norm topology in both factors and
thus we have a Banach ∗-algebra.
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Definition 1.5 (normed algebra). A normed algebra (A, ‖ · ‖) is an associa-
tive algebra A together with a norm ‖ · ‖ that satisfies

∀x, y ∈ A : ‖xy‖ ≤ ‖x‖‖y‖. (1.28)

Therefore the multiplication is continuous w. r. t. to the norm topology in
both factors.

Definition 1.6 (Banach algebra). A Banach algebra is a normed algebra (A, ‖·
‖) that is complete w. r. t. to the norm ‖ · ‖.

Definition 1.7 (normed ∗-algebra). A normed ∗-algebra (A, ∗, ‖ · ‖) is a
∗-algebra (A, ∗) together with a norm ‖ · ‖ that satisfies

∀x ∈ A : ‖x∗‖ = ‖x‖ . (1.29)

Definition 1.8 (Banach ∗-algebra). A Banach ∗-algebra is a normed ∗-
algebra (A, ∗, ‖ · ‖) that is complete w. r. t. to the norm ‖ · ‖.

Finally we find that

∀f ∈ C(Γ) : ‖f ∗f‖ = ‖f ∗‖ ‖f‖ (1.30)

and C(Γ) turns out to be a unital C∗-algebra:

Definition 1.9 (C∗-algebra). A C∗-algebra is a Banach ∗-algebra (A, ∗, ‖·‖)
that satisfies the C∗-condition

∀x ∈ A : ‖x∗x‖ = ‖x‖2 . (1.31)

Remark 1.10. The C∗-condition (1.31) implies (1.29), i. e. ∀x ∈ A : ‖x∗‖ =
‖x‖.

Proof. On one hand

‖x‖2 (1.31)
= ‖x∗x‖ ≤ ‖x∗‖‖x‖ (1.32)

i. e.
‖x‖ ≤ ‖x∗‖ (1.33)

and on the other

‖x∗‖2 (1.31)
= ‖(x∗)∗x∗‖ = ‖xx∗‖ ≤ ‖x‖‖x∗‖ (1.34)

i. e.
‖x∗‖ ≤ ‖x‖ . (1.35)
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Corollary 1.11. The C∗-condition (1.31) is equivalent to ‖x∗x‖ = ‖x‖‖x∗‖.

We will later see that the C∗-condition (1.31) is very strong and has
important consequences. Therefore we should look at the example motivating
the definition.

Theorem 1.12 (C∗-algebra of bounded operators). The set L(H) of bounded
operators on a Hilbert space H is a C∗-algebra

Proof. L(H) is naturally a linear space and we can define a norm via

‖A‖ = sup
ψ∈H,‖ψ‖=1

{‖Aψ‖} . (1.36)

For every A ∈ L(H), we can define the adjoint operator A∗, thus turn-
ing L(H) into a Banach ∗-algebra. Finally, using the Cauchy-Schwarz In-
equality (CSI)

|(ψ, φ)| ≤ ‖ψ‖ ‖φ‖ , (1.37)

we can show that the C∗-condition (1.31) holds for L(H):

‖A‖2 = sup
ψ∈H,‖ψ‖=1

{(Aψ,Aψ)} = sup
ψ∈H,‖ψ‖=1

{(ψ,A∗Aψ)}

CSI
≤ sup

ψ∈H,‖ψ‖=1

{‖A∗Aψ‖} = ‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2 . (1.38)

In fact, the converse is also true

Theorem 1.13. Every C∗-algebra is isomorphic to a norm-closed self-adjoint
algebra1 of bounded operators on a suitable Hilbert space.

The proof of this theorem will not be given at this point (see section 2.3.4
of [BR02]).

A very important special case is the following characterization of abelian
C∗-algebras. It shows that our example C(Γ) is already the general case:

Theorem 1.14. Every abelian C∗-algebra is isomorphic to the algebra C0(X)
of continuous functions on a locally compact Hausdorff space X, vanishing
at infinity.

1Note that “self-adjoint algebra” does not mean a algebra of self-adjoint operators, but
a algebra which includes the adjoint of every element.
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This theorem has the profound consequence that geometry and commuta-
tive algebra are two sides of the same coin. The maximal ideals of an algebra
of functions on a space X are the functions vanishing at a point x ∈ X.
Therefore the points of a space can be identified with the maximal ideals
of an abelian C∗-algebra. Indeed, some aspects of the study of non-abelian
C∗-algebras are called “noncommutative geometry”. Again, the proof of this
theorem will not be given at this point (see section 2.3.5 of [BR02]).

States as Linear Functionals

In the real world, it is impossible to determine the state of a system as a
single point x in phase space. One rather makes measurements with finite
errors and repeated measurements may or may not be correlated, depending
on the experimental situation.

Given a set
{µn(f, ω)}n=1,...,N (1.39)

of N measurements of an observable f of a system in the state ω, we can
define an estimator

〈f〉ω,N =
1

N

N∑
n=1

µn(f, ω) (1.40)

for the expectation
ω(f) = lim

N→∞
〈f〉ω,N (1.41)

of f in the state ω. We can also determine higher moments, e. g.

(∆ωf)2 = ω
(
(f − ω(f))2) , (1.42)

to measure experimental uncertainties, but we can in principle never do
better.

From the definition of the expectation ω(f), we immediately see that they
are linear

∀α, β ∈ C, f, g ∈ A : ω(αf + βg) = αω(f) + βω(g) (1.43a)

and (ignoring systematic errors) positive

∀f ∈ A : ω(f ∗f) ≥ 0 . (1.43b)

Using linearity and positivity

∀α, β ∈ C : 0 ≤ ω ((αf + βg)∗(αf + βg))
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= |α|2ω (f ∗f) + β̄αω (g∗f) + ᾱβω (f ∗g) + |β|2ω (g∗g)

=
(
ᾱ β̄

)(ω (f ∗f) ω (f ∗g)
ω (g∗f) ω (g∗g)

)(
α
β

)
(1.44)

we see that the matrix

M =

(
ω (f ∗f) ω (f ∗g)
ω (g∗f) ω (g∗g)

)
(1.45)

must be positive, i. e. have only real and non-negative eigenvalues

λ1,2 =
1

2
trM ± 1

2

√
tr2M − 4 detM . (1.46)

Therefore

0 ≤ detM = ω (f ∗f)ω (g∗g)− ω (g∗f)ω (f ∗g) ∈ R (1.47)

and we have established the CSI

ω (g∗f) = ω (f ∗g) (1.48a)

|ω (f ∗g)| ≤
√
ω (f ∗f)

√
ω (g∗g) . (1.48b)

From the CSI
|ω(f)| ≤

√
ω(1)

√
ω(f ∗f) . (1.49)

we infer that
∃f ∈ A : ω(f) 6= 0 =⇒

√
ω(1) > 0 (1.50)

Therefore all nontrivial states can be normalized

ωnorm(f) =
ω(f)

ω(1)
(1.51)

with ωnorm(1) = 1. Below, in section 4, when we have developed more
tools, we will be able to prove that that every positive linear functional is
continuous. This is an example, where a physical requirement (positivity)
induces a functional analytic property (continuity).

Lecture 03: Wed, 21. 10. 2015

Just as the flow Φ : R×Γ→ Γ on phase space induces a flow Φ∗ : R×C(Γ)→
C(Γ) on the space of observables, we can also induce a flow on the states
in Ω

Φ∗ : R× Ω→ Ω

(t, ω) 7→ ωt
(1.52a)
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with
ωt(f) = ω(Φ∗t (f)) = ω(f ◦ Φt) . (1.52b)

Note that the idealized unphysical case of an exactly determined point in
phase space can be included in this framework by considering states ωq,p
that correspond to Dirac measures

ωq,p : C(Γ)→ C

f 7→ f(q, p) .
(1.53)

For these,(
∆ωq,pf

)2
= ωq,p

(
(f − ωq,p(f))2)

= ωq,p
(
(f − f(q, p))2) =

(
(f − f(q, p))2) (q, p) = 0 . (1.54)

Algebraic Dynamics

Thus we have abstracted the kinematical structure as

• the observables A of a classical system form an abelian C∗-algebra A
and

• the states ω of a classical system are the normalized positive linear
functionals ω : A → C, i. e. a subset of the dual space A∗.

On this level of abstraction, the flows Φ are replaced by an abelian one-
parameter group {αt}t∈R of C∗-automorphisms

α : R×A → A
(t, x) 7→ αt(x)

(1.55a)

with
αt(αt′(x)) = (αt ◦ αt′)(x) = αt+t′(x) = αt′(αt(x)) . (1.55b)

Definition 1.15 (C∗-homomorphism). A C∗-homomorphism h : A → B
is a map between two C∗-algebras A and B that preserves the C∗-algebra
structure. It is of course linear and ∀x, y ∈ A

(h(x))∗ = h(x∗) (1.56a)

h(xy) = h(x)h(y) . (1.56b)

This in turn induces an abelian one-parameter group of transformations
on the states:

α∗ : R× Ω→ Ω

(t, ω) 7→ α∗t (ω)
(1.57a)

with
α∗t (ω)(A) = ω(αt(A)) . (1.57b)



ohl: Fri Feb 5 13:21:28 CET 2016 subject to change! 13

1.4.2 General Physical Systems

Using as inspiration the algebraic structure we have just uncovered behind
the description of classical systems, we will now generalize it without assum-
ing the smooth phase space structure characteristic for classical systems.

Observables

For All Practical Purposes (FAPP), a physical system is nothing but a set O0

of observables A ∈ O0, which can be measured by appropriate experimental
devices. This set O0 is not unstructured, there will relations among the
observables.

Given any device measuring A ∈ O0 and any λ ∈ R, one can construct a
device measuring λA by rescaling the device. One does not even worry about
finite resources, because the actual device need not be physically rescaled,
just the measured value. Therefore we find

∀A ∈ O0, λ ∈ R : λA ∈ O0 . (1.58)

One can define the square A2 of an observable A by squaring the measured
value. This extends to positive powers An and A0 can consistently be de-
fined as the observable 1 that always has the value 1. Also, linear combi-
nations λAn + µAm can be defined and therefore arbitrary polynomials in
one observable. Note that we can not yet define functions of observables by
infinite series or other limits of sequences of observables, because we have no
topology and no notion of convergence.

If an observable A ∈ O0 only takes positive values, we can find another
observable B ∈ O0 with A = B2, by taking the square root of the measured
values.

Note that we do not assume that we can measure multivariate poly-
nomials in different observables, since this would require the simultaneous
measurement of observables, which would lead us back to classical physics
immediately.

States

Different states ω of a physical system correspond to different measured val-
ues for the observables. However, we can not say that an observable “has”
a particular value, we can only estimate an expectation for the result of a
measurement by averaging the values of repeated measurements. The expec-
tation value for the observable A ∈ O0 when the system is in the state ω will
be called ω(A).
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Assuming that the set O0 of the observables of the system is complete, a
state ω is completely determined by the expectations of all observables

{ω(A)}A∈O0
, (1.59)

i. e. ω is a well defined map from O0 to the real numbers

ω : O0 → R . (1.60)

Since ω is defined as an average of measurements, it is clear that the expec-
tation of a scaled observable is the scaled expectation

∀A ∈ O0, λ ∈ R : ω(λA) = λω(A) (1.61)

and we also have linearity in powers

∀A ∈ O0, λ, µ ∈ R, n,m ∈ N : ω(λAn + µAm) = λω(An) + µω(Am) . (1.62)

Above, we have said that a state is uniquely determined by measuring ω(A)
all observables A ∈ O0.

The converse is also true: if two observables have the same expectation in
all the states, they are indistinguishable, FAPP. This creates an equivalence
relation among observables

A ∼ B ⇔ ∀ω ∈ Ω : ω(A) = ω(B) (1.63)

and we will in the following replace O0 by the equivalence classes w. r. t. this
relation O1 = O0/ ∼. This has the immediate consequence that there is at
most one observable 1 ∈ O1 with

∀ω ∈ Ω : ω(1) = 1 . (1.64)

And we see that all ω are normalized functionals on O1. Furthermore, we
can identify

∀A ∈ O1 : A0 = 1 (1.65)

and we necessarily have

∀A ∈ O1 : 1A = A0A = A0A1 = A1 = A = A1 , (1.66)

i. e. 1 is the unique identity element in O1.
For all positive observables A = B2 ∈ O1, the expectation of its values

must also be positive, i. e.

∀ω ∈ Ω : ω(A) = ω(B2) ≥ 0 (1.67)

and since the states characterize the observables completely

∀ω ∈ Ω : ω(A) ≥ 0⇔ A ≥ 0 . (1.68)
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C∗-Algebra Structure

For any physically realizable apparatus, the possible measurement values are
bounded. This allows to define a natural norm for any observable A ∈ O1

‖A‖ = sup
ω∈Ω
|ω(A)| <∞ . (1.69)

From this definition and (1.61), we have

‖λA‖ = |λ|‖A‖ . (1.70)

Since the states characterize the observables completely, we also have

‖A‖ = 0⇔ A = 0 . (1.71)

Lecture 04: Fri, 23. 10. 2015

The first non-obvious property is

Lemma 1.16.
∀A ∈ O1 : ‖A2‖ = ‖A‖2. (1.72)

Proof. By definition

∀ω ∈ Ω : ω(‖A‖1± A) = ‖A‖ ± ω(A) ≥ 0 (1.73)

i. e.
‖A‖1± A ≥ 0 . (1.74)

Therefore
‖A‖21− A2 = (‖A‖1 + A)(‖A‖1− A) ≥ 0 , (1.75)

i. e.
∀ω ∈ Ω : ‖A‖2 − ω(A2) ≥ 0 (1.76)

and
‖A‖2 ≥ ‖A2‖ . (1.77)

Also, from
0 ≤ (‖A‖1± A)2 = ‖A‖21 + A2 ± 2‖A‖A (1.78)

we have

∀ω ∈ Ω : 2‖A‖|ω(A)| ≤ ‖A‖2 + ω(A2) ≤ ‖A‖2 + ‖A2‖ , (1.79)

and
2‖A‖‖A‖ ≤ ‖A‖2 + ‖A2‖ , (1.80)

i. e.
‖A‖2 ≤ ‖A2‖ . (1.81)
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Since the states characterize the observables completely, we can use them
to attempt to define sums of observables

∀A,B ∈ O1 : ∃1A+B : ω(A+B) = ω(A) + ω(B) ,

but A + B might not be an element of the original O1. If this is the case,
however, we will extend O1 to include the newly defined A + B, it’s powers
and their sums

∀A,B ∈ O+ : ∃1A+B ∈ O+ : ∀ω ∈ Ω : ω(A+B) = ω(A) + ω(B) . (1.82)

Note that it is not necessary to measure A and B simultaneously for (1.82)
to be well defined. The estimators for the expectationa ω(A) are obtained
from repeated measurements of identical copies of the system prepared in
the state ω. This can be done for different observables as well and the sum
defined from the sum of the measurements. This is not possible for products
or other non-linear combinations.

So far, we have constructed from a set of observablesO0 a vector spaceO+

with a linear structure defined by the set of all states ω. By the definition
of the norm (1.69) on the original O0, we can directly extend it to the sums,
satisfying the triangle inequality

∀A,B ∈ O+ : ‖A+B‖ ≤ ‖A‖+ ‖B‖ . (1.83)

Therefore O+ is a normed vector space and by completing it in the norm ‖·‖,
we can turn it into a Banach space O. However, while the states are, by
construction (1.82), well defined on the sums of observables, we must still
verify that the states are well defined on the completion.

Fortunately, we have, by definition (1.69),

∀ω ∈ Ω : ∀A ∈ O+ : |ω(A)| ≤ ‖A‖ , (1.84)

i. e. all ω are continuous w. r. t. to the norm ‖ · ‖ and can be extended to the
corresponding norm completion O.

In order to obtain an algebra structure, we still need to define a multi-
plication. Note that in the case of operators on a Hilbert space, a straight-
forward multiplication will not work, because the set self-adjoint operators
is not closed under multiplication, unless these operators commute

(AB)∗ = B∗A∗ = BA 6= AB .

Nevertheless, we can construct a symmetrical product from the sums of ob-
servables and their powers,

A ◦B =
1

2

(
(A+B)2 − A2 −B2

)
∈ O , (1.85)
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which is unfortunately neither guarateed to be distributive or associative. To
proceed, we shall now make the mild technical assumption that the product
is homogeneous, i. e.

∀A,B ∈ O, λ ∈ R : A ◦ (λB) = λ(A ◦B) = (λA) ◦B . (1.86)

The motivation for this assumption is that if O was an associative algebra,
we would have

A ◦B =
1

2
(AB +BA)

which satisfies (1.86), of course.

Lemma 1.17. The homogeneity (1.86) implies that (1.85) is distributive.

Proof. From

(A+B)2 = A2 +B2 + 2A ◦B (1.87a)

(A−B)2 = A2 +B2 + 2A ◦ (−B) = A2 +B2 − 2A ◦B (1.87b)

we find

A ◦B =
1

4

(
(A+B)2 − (A−B)2

)
(1.88a)

A2 +B2 =
1

2

(
(A+B)2 + (A−B)2

)
. (1.88b)

Then

2(A+B) ◦ C − 2A ◦ C − 2B ◦ C (1.85)
=

(A+B +C)2 − (A+B)2 −C2 − (A+C)2 +A2 +C2 − (B +C)2 +B2 +C2

=
(
(A+B + C)2 + A2

)
+
(
B2 + C2

)
−
(
(A+B)2 + (A+ C)2

)
− (B + C)2

(1.88b)
=

1

2

(
(2A+B + C)2 + (B + C)2 + (B + C)2 + (B − C)2

− (2A+B + C)2 − (B − C)2
)
− (B + C)2 = 0 (1.89)

i. e.
(A+B) ◦ C = A ◦ C +B ◦ C (1.90a)

and by symmetry

C ◦ (A+B) = C ◦ A+ C ◦B . (1.90b)
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From the distributivity, symmetry and homogeneity of ◦ and the linearity
and positivity of ω follows

∀ω ∈ Ω : ∀λ ∈ R : 0 ≤ ω((A+ λB)2)

= ω((A+ λB) ◦ (A+ λB)) = ω(A2) + λ2ω(B2) + 2λω(A ◦B) (1.91)

and using the same argument as in the proof of the CSI (1.48b), we find

|ω(A ◦B)| ≤
√
ω(A2)

√
ω(B2) (1.92)

and therefore
‖A ◦B‖ ≤

√
‖A2‖

√
‖B2‖ = ‖A‖‖B‖ . (1.93)

From the estimate2

‖A2 −B2‖ = ‖(A−B) ◦ (A+B)‖ ≤ ‖A+B‖‖A−B‖
≤ (‖A−B‖+ 2‖B‖) ‖A−B‖ (1.94)

we see that the square A 7→ A2 is continuous in the norm topology

lim
A→B

A2 = B2 . (1.95a)

Furthermore
‖A2 −B2‖ ≤ max

{
‖A‖2, ‖B‖2

}
(1.95b)

and we see that O forms a so-called Segal system [Seg47]. It was been shown
by Segal [Seg47], that Segal systems have enough structure to recover most
of quantum mechanics.

However, since the mathematical structure can become quite involved,
we shall make another technical assumption, namely that there is a com-
plex3 algebra extension (A, ∗) of O with an associative, but not necessarily
commutative, product, such that ∀A,B ∈ O and λ, µ ∈ C

A ◦B =
1

2
(AB +BA) (1.96a)

(λA+ µB)∗ = λ̄A∗ + µ̄B∗ (1.96b)

(AB)∗ = B∗A∗ (1.96c)

2NB: 4(A−B) ◦ (A+B) = (2A)2 − (2B)2.
3Note that it is not possible to have a non-abelian associative algebra of only self-adjoint

elements, because
(AB)∗ = B∗A∗ = BA 6= AB .
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ω(A∗A) ≥ 0 (1.96d)

‖AB‖ = sup
ω∈Ω
|ω(AB)| ≤ ‖A‖‖B‖ (1.96e)

‖A∗A‖ = ‖A∗‖‖A‖ (1.96f)

where the states ω have been extended by linearity from O to A and A∗A is
positive for all A ∈ A.

As before on page 10, we can then infer from positivity

∀λ ∈ C : ω ((λA+ 1)∗(λA+ 1)) ≥ 0 (1.97)

that

ω(A∗) = ω(A) (1.98a)

‖A∗‖ = ‖A‖ . (1.98b)

Altogether, A is a C∗-algebra with identity 1, which is generated by the
subset of self-adjoint elements O ⊂ A.

Definition 1.18 (Physical System (von Neumann)).

1. A physical system is defined by the unital C∗-Algebra A generated by
its observables.

2. The states of of a system are normalized, positive linear functionals ω :
A → C on the observables. We assume the set S ⊆ Ω of physical states
to be full, i. e. to separate the observables. Vice versa, the observables
are assumed to separate the states.

Note that we allow the set S of physical states to be smaller than the
set Ω of all normalized, positive linear functionals on A.
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—2—
C∗-Algebras

Lecture 05: Wed, 28. 10. 2015

2.1 Adjoining a Unit

In the following we will study the spectrum of elements of C∗-algebras. In
order to define it, we need an identity element. We start be showing that
such an element can alway be added without loss of generality.

Theorem 2.1. Let A be a C∗-algebra without identity and Ā denote the set
of pairs

Ā = {(α,A) : α ∈ C, A ∈ A} . (2.1)

The operations

µ(α,A) + λ(β,B) = (µα + λβ, µA+ λB) (2.2a)

(α,A)(β,B) = (αβ, αB + βA+ AB) (2.2b)

(α,A)∗ = (ᾱ, A∗) (2.2c)

turn Ā into a ∗-algebra with identity (1, 0). Then

‖(α,A)‖Ā = sup
B∈A,‖B‖=1

‖αB + AB‖A (2.3)

defines a norm that turns Ā into a C∗-algebra. A can be identified with the
subalgebra {(0, A) : A ∈ A} of Ā.

Proof. The unital ∗-algebra properties are obvious. The triangle and product
inequalities

‖(α,A) + (β,B)‖ ≤ ‖(α,A)‖+ ‖(β,B)‖ (2.4a)

‖(α,A)(β,B)‖ ≤ ‖(α,A)‖‖(β,B)‖ (2.4b)
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are left as exercise. To show that ‖(α,A)‖ = 0 implies (α,A) = (0, 0), we
start with observing that

‖(0, A)‖ = sup
B∈A,‖B‖=1

‖AB‖ . (2.5)

On one hand, we have

sup
B∈A,‖B‖=1

‖AB‖ ≤ sup
B∈A,‖B‖=1

‖A‖‖B‖ = ‖A‖ . (2.6)

from ‖AB‖ ≤ ‖A‖‖B‖, while on the other

sup
B∈A,‖B‖=1

‖AB‖ ≥
∥∥∥∥A A∗

‖A‖

∥∥∥∥ =
‖AA∗‖
‖A‖

= ‖A‖ (2.7)

from the C∗-condition (1.31). Therefore

‖(0, A)‖Ā = ‖A‖A (2.8)

and
‖(0, A)‖ = 0⇒ ‖A‖ = 0⇒ A = 0 . (2.9)

Thus we only have to study the case α 6= 0. By linearity, we can choose Without
Loss Of Generality (WLOG) α = 1. From

‖B − AB‖ = ‖(0, B)(1,−A)‖ ≤ ‖(0, B)‖‖(1,−A)‖ (2.10)

we can infer from ‖(1,−A)‖ = 0

∀B ∈ A : ‖B − AB‖ = 0 (2.11)

or
∀B ∈ A : B = AB (2.12)

and by involution
∀B ∈ A : B = BA∗ . (2.13)

In particular with B = A and B = A∗

A = AA∗ = A∗ (2.14)

and then
B = AB = BA = B . (2.15)

But this means that A is an identity in A which is a contradiction. Thus

∀0 6= A ∈ A : ‖(1,−A)‖ > 0 . (2.16)
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Finally to prove the C∗-property for Ā, we start from the one for A

‖αB + AB‖2 = ‖(αB + AB)∗(αB + AB)‖
= ‖B∗(ᾱαB + (αA∗ + ᾱA+ A∗A)B)‖

≤ ‖B∗‖‖ᾱαB + (αA∗ + ᾱA+ A∗A)B‖ (2.17)

to show that

‖(α,A)‖2 = sup
B∈A,‖B‖=1

‖αB + AB‖2

≤ sup
B∈A,‖B‖=1

‖ᾱαB + (αA∗ + ᾱA+ A∗A)B‖ = ‖(ᾱα, αA∗ + ᾱA+ A∗A)‖

= ‖(α,A)∗(α,A)‖ ≤ ‖(α,A)∗‖‖(α,A)‖ (2.18)

i. e.
‖(α,A)‖ ≤ ‖(α,A)∗‖ . (2.19)

The same argument for (α,A)∗ instead of (α,A) yields

‖(α,A)∗‖ ≤ ‖(α,A)‖ (2.20)

and we have shown
‖(α,A)∗‖ = ‖(α,A)‖ . (2.21)

Thus we find the desired C∗-property

‖(α,A)‖2 ≤ ‖(α,A)∗(α,A)‖ ≤ ‖(α,A)∗‖‖(α,A)‖ = ‖(α,A)‖2 (2.22)

i. e.
‖(α,A)∗(α,A)‖ = ‖(α,A)‖2 . (2.23)

Finally, the completeness of Ā = C × A is obvious, since both factors are
complete.

Definition 2.2 (adjoining an identity). The unital algebra Ā obtained from
an algebra A without identity as described in theorem 2.1 will be called
obtained by adjoining an identity 1 to A. We will also write

Ā = C1 +A (2.24)

and write α1 + A for the pairs (α,A).
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2.2 Ideals and Factors

Definition 2.3. A subspace B ⊆ A is called a left ideal, if ∀A ∈ A, B ∈ B :
AB ∈ B. A subspace B ⊆ A is called a right ideal, if ∀A ∈ A, B ∈ B : BA ∈
B. If B is both a left and a right ideal it is called a two sided ideal.

Remark 2.4. Every ideal is a (sub-)algebra

Proof. (→ exercise).

Remark 2.5. If B is self adjoint and a left or right ideal it is two sided.

Proof. (→ exercise).

Remark 2.6. If I is a two sided ideal of an algebra A, the factor space A/I
is also an algebra. This ist also true for ∗-algebras iff I is self adjoint and
Banach algebras iff I is complete.

Proof. (→ exercise).

Caveat: a two sided ideal in a ∗-algebra is not necessarily self adjoint.
This can be seen from Stefan Waldmann’s “universal counterexample” of
A = C(S2) with (fg)(x) = f(x)g(x) and f ∗(x) = f̄(−x). Then I = {f ∈
A : f(north pole) = 0} is obviously a two sided ideal, but I∗ = {f ∈ A :
f(south pole) = 0} 6= I.

2.3 Spectral Analysis

Definition 2.7 (resolvent, spectrum). Let A be a unital algebra. The resol-
vent set rA(A) ⊂ C is the set of λ ∈ C such that λ1−A is invertible, i. e. has
a two-sided inverse. The spectrum σA(A) = C \ rA(A) is the complement of
the resolvent set. The map

R : rA(A)→ A
λ 7→ R(λ) = (λ1− A)−1 (2.25)

is called the resolvent of A.

Definition 2.8. If Ā is the algebra obtained from an algebra A without
identity by adjoining an identity. We define for all A ∈ A ⊂ Ā

rA(A) = rĀ(A) (2.26a)

σA(A) = σĀ(A) . (2.26b)
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The most straightforward approach to spectral analysis uses series ex-
pansion and analytic continuation. Formally, we can construct the resolvent
for λ 6= 0 using the geometric series

1

λ1− A
=

1

λ

1

1− A/λ
=

1

λ

∞∑
m=0

(
A

λ

)m
. (2.27)

Indeed, since ‖An‖ ≤ ‖A‖n, the series converges absolutely in the norm
topology in a Banach algebra if λ > ‖A‖ and we may reorder the series (2.27)

(λ1− A)
1

λ

∞∑
m=0

(
A

λ

)m
=

∞∑
m=0

(
A

λ

)m
−
∞∑
m=0

(
A

λ

)m+1

=

(
A

λ

)0

= 1 . (2.28)

Therefore the spectrum is bounded

σA(A) ⊆ {λ ∈ C : |λ| ≤ ‖A‖} . (2.29)

Analogously, we can write formally for all λ0 ∈ rA(A)

1

λ1− A
=

1

λ01− A− (λ0 − λ)1
=

1

λ01− A
1

1−
(

λ0−λ
λ01−A

)
=

1

λ01− A

∞∑
m=0

(
λ0 − λ
λ01− A

)m
=

∞∑
m=0

(λ0 − λ)m (λ01− A)−m−1 (2.30)

which converges absolutely for |λ− λ0| < ‖(λ01−A)−1‖−1. This establishes
that for every λ0 ∈ rA(A), there is an open neighborhood of λ0 that is
contained in rA(A). Thus rA(A) is open and consequently σA(A) is closed
and therefore compact, because it is bounded. These considerations suggest
the

Definition 2.9 (spectral radius). The spectral radius of an element A of a
unital Banach algebra A is defined as

ρ(A) = sup
λ∈σA(A)

|λ| . (2.31)

As seen above, the spectral radius ρ(A) is the radius of convergence of
the series (2.27) for the resolvent λ 7→ (λ1− A)−1.

In order to be able to make more detailed statements, we can prove a
variation of the Cauchy-Hadamard theorem from complex analysis for power
series with coefficients from a Banach algebra
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Theorem 2.10. Given a series {An}n∈N of elements of a Banach space, the
radius of convergence of the power series

f(z) =
∞∑
n=0

An(z − a)n (2.32)

is

r =
1

lim sup
n→∞

‖An‖1/n
. (2.33)

Proof. WLOG let a = 0 and define t = lim supn→∞ ‖An‖1/n.

1. |z| < r: For any ε > 0, there are only a finite number of n such
that ‖An‖1/n ≥ t+ ε. Thus ‖An‖ ≤ (t+ ε)n for all but a finite number
of n and the series

∑
nAnz

n converges if |z| < 1/(t+ ε) < r

2. |z| > r: For any ε > 0, there are an infinite number of n such
that ‖An‖ ≥ (t−ε)n and the series can not converge for |z| ≥ 1/(t−ε) >
r, because Anz

n 6→ 0.

Lecture 06: Fri, 30. 10. 2015

Theorem 2.11 (spectral radius). If A is a unital Banach algebra, then the
spectral radius of A ∈ A is

ρ(A) = inf
n∈N
‖An‖1/n = lim

n→∞
‖An‖1/n ≤ ‖A‖ . (2.34)

The limit exists and σA(A) is a non-empty compact subset of C.

Proof. Defining
r = inf

n∈N
‖An‖1/n , (2.35)

we have obviously
∀n ∈ N : r ≤ ‖An‖1/n ≤ ‖A‖ (2.36)

and therefore
r ≤ lim inf

n→∞
‖An‖1/n . (2.37)

For all ε > 0, from (2.35) there must be an m such that ‖Am‖1/m < r + ε.
Using

∀n ∈ N : ∃kn, ln ∈ N : n = mkn + ln ∧ 0 ≤ ln < m (2.38)
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with1

lim
n→∞

mkn
n

= 1 (2.39a)

lim
n→∞

ln
n

= 0 , (2.39b)

we have

‖An‖1/n = ‖AknmAln‖1/n ≤ ‖Am‖kn/n‖A‖ln/n ≤ (r+ ε)mkn/n‖A‖ln/n . (2.40)

Therefore
∀ε > 0 : lim sup

n→∞
‖An‖1/n ≤ r + ε (2.41)

and since ε can be arbitrarly small, the limit exists

lim sup
n→∞

‖An‖1/n = lim inf
n→∞

‖An‖1/n = lim
n→∞

‖An‖1/n = r . (2.42)

On The Other Hand (OTOH), using theorem 2.10, we see that r is the radius
of convergence of the series (2.27) in 1/λ for the resolvent. Thus ρ(A) = r.

We have already seen above that σA(A) is compact. Finally, if σA(A) was
empty, then λ 7→ (λ1−A)−1 would be a holomorphic on the whole complex
plane vanishing for |λ| → ∞. Such a function vanishes everywhere and can
not be the inverse of λ1− A.

Lemma 2.12. Let A,B ∈ A, then (AB)−1 ∈ A exists iff both A−1 ∈ A and
B−1 ∈ A exist. Furthermore

(AB)−1 = A−1B−1 = B−1A−1 . (2.43)

Proof. By explicit contstruction:

• Assume that both A−1 and B−1 exist. Then

(AB)
(
A−1B−1

)
= BAA−1B−1 = BB−1 = 1 (2.44a)

(AB)
(
B−1A−1

)
= AA−1 = 1 (2.44b)(

A−1B−1
)

(AB) = A−1B−1BA = A−1A = 1 (2.44c)(
B−1A−1

)
(AB) = B−1A−1AB = B−1B = 1 (2.44d)

• Assume that (AB)−1 exists. Then

B−1 = (AB)−1A = A(AB)−1 (2.45a)

1Think kn ≈ n/m . . .
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A−1 = (AB)−1B = B(AB)−1 , (2.45b)

because

B(AB)−1 = (AB)−1ABB(AB)−1 = (AB)−1BAB(AB)−1 = (AB)−1B
(2.46)

(analogously A(AB)−1 = (AB)−1A) and therefore

B
(
(AB)−1A

)
= BA(AB)−1 = AB(AB)−1 = 1 (2.47a)(

(AB)−1A
)
B = 1 (2.47b)

A
(
(AB)−1B

)
= AB(AB)−1 = 1 (2.47c)(

(AB)−1B
)
A = (AB)−1AB = 1 . (2.47d)

Remark 2.13. Let A be a unital algebra. Then

∀A ∈ A : (σA(A))n ⊆ σA(An) . (2.48)

Proof. From

λn1− An = (λ1− A)
(
λn−11 + λn−2A+ . . .+ An−1

)
(2.49)

and lemma 2.12, we see that if λn1 − An is invertible, then λ1 − A must
be invertible as well. In other words, if λn ∈ rA(An), then λ ∈ rA(A)
or (rA(A))n ⊇ rA(An).

Remark 2.14. Let A be a unital ∗-algebra. Then for all A,B ∈ A

∀µ ∈ C : σA(A+ µ1) = σA(A) + µ (2.50a)

σA(A∗) = σA(A) (2.50b)

σA(AB) ∪ {0} = σA(BA) ∪ {0} . (2.50c)

If A is invertible

σA(A−1) = (σA(A))−1 . (2.50d)

Proof. The first statement is obvious from

(λ+ µ)1− (A+ µ1) = λ1− A . (2.51)

The second statement follows from

λ1− A∗ = (λ̄1− A)∗ (2.52)



ohl: Fri Feb 5 13:21:28 CET 2016 subject to change! 28

and
∀B ∈ A : (B∗)−1 =

(
B−1

)∗
(2.53)

since 1 = AB = BA⇔ 1 = A∗B∗ = B∗A∗. If λ ∈ rA(BA), then

(λ1− AB)A
1

λ1−BA
= A

from (λ1− AB)A = A(λ1−BA). Multiplying from the right by B

(λ1− AB)A
1

λ1−BA
B = AB

and adding λ1− AB gives

(λ1− AB) + (λ1− AB)A
1

λ1−BA
B = λ1 .

i. e.

(λ1− AB)

(
1 + A

1

λ1−BA
B

)
= λ1 (2.54)

and therefore λ ∈ rA(AB), as long as λ 6= 0, since we have explicitely
computed an inverse for λ1 − AB. Including the case λ = 0, we obtain the
third statement. Finally, if A is invertible, we know that 0 6∈ σA(A). Thus,
WLOG λ 6= 0 and

λ1− A = λA
(
A−1 − λ−11

)
(2.55a)

λ−11− A−1 = λ−1A−1 (A− λ1) . (2.55b)

From the first equation λ ∈ σA(A) ⇒ λ−1 ∈ σA(A−1) and from the second
the reverse direction, i. e. the fourth statement.

Theorem 2.15. Let A be a unital C∗-algebra.

1. If A is normal then
ρ(A) = ‖A‖ . (2.56)

2. If A is an isometry, i. e. A∗A = 1, but not necessarily AA∗ = 1, then

ρ(A) = 1 . (2.57)

3. If A is unitary then

σA(A) ⊆ {λ ∈ C : |λ| = 1} . (2.58)
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4. If A is self-adjoint then

σA(A) ⊆ [−‖A‖, ‖A‖] ⊂ R (2.59a)

σA(A2) ⊆
[
0, ‖A2‖

]
⊂ R . (2.59b)

5. For all A ∈ A and general polynomials P

σA(P (A)) = P (σA(A)) . (2.60)

Proof. 1. From

‖A2n‖2 C∗-prop.
= ‖(A∗)2nA2n‖ A

∗A=AA∗
= ‖(A∗A)2n‖

C∗-prop.
= ‖(A∗A)2n−1‖2 = . . . = ‖A∗A‖2n C∗-prop.

= ‖A‖2n+1

(2.61)

we find
ρ(A) = lim

n→∞
‖A2n‖2−n = ‖A‖ . (2.62)

2. From

‖An‖2 C∗-prop.
= ‖(A∗)nAn‖ = ‖(A∗)n−1An−1‖ = . . . = ‖1‖ = 1 (2.63)

we find
ρ(A) = lim

n→∞
‖An‖−n = 1 . (2.64)

3. Every unitary A is isometric. Therefore σA(A) is contained in the unit
disc. Moreover

σA(A) = σA(A∗) = σA(A−1) =
(
σA(A)

)−1

(2.65)

and the spectrum must lie on the boundary of the unit disk, i. e. on the
unit circle.

4. Every self-adjoint A is normal and therefore ρ(A) = ‖A‖. If |1/λ| >
‖A‖, then 1/λ ∈ rA(A) and 1 + i|λ|A is invertible. Thus

U = (1− i|λ|A)
1

1 + i|λ|A
(2.66)

exists and is unitary

U∗U =
1

1− i|λ|A
(1 + i|λ|A) (1− i|λ|A)

1

1 + i|λ|A
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=
1

1− i|λ|A
(1− i|λ|A) (1 + i|λ|A)

1

1 + i|λ|A
= 1 (2.67)

(the proof of UU∗ = 1 is identical). From∣∣∣∣1− i|λ|α
1 + i|λ|α

∣∣∣∣2 =
1 + i|λ|ᾱ
1 + i|λ|α

· 1− i|λ|α
1− i|λ|ᾱ

= 1⇔

1 + |λ|2|α|2 − i|λ|(α− ᾱ) = 1 + |λ|2|α|2 + i|λ|(α− ᾱ)⇔ α = ᾱ
(2.68)

for λ 6= 0 and the previous statement, we infer that

∀α 6= ᾱ :
1− i|λ|α
1 + i|λ|α

∈ rA(U) . (2.69)

OTOH

1− i|λ|α
1 + i|λ|α

1− U =
1− i|λ|α
1 + i|λ|α

1− (1− i|λ|A)
1

1 + i|λ|A
=

1

1 + i|λ|α
((1 + i|λ|A)(1− i|λ|α)− (1− i|λ|A)(1 + i|λ|α))

1

1 + i|λ|A

=
2i|λ|

1 + i|λ|α
(A− α1)

1

1 + i|λ|A
(2.70)

and A− α1 must be invertible for all α 6= ᾱ. Thus

σA(A) ⊆ {λ ∈ C : |λ| ≤ ‖A‖ ∧ λ = λ̄} . (2.71)

The positivity of the spectrum of a positive element will follow from
the following statement.

5. For commuting {Ai}i∈I⊂N, the invertibility of a product A1A2 · · ·An
is equivalent to the invertibility of all Ai by lemma 2.12. By the fun-
damental theorem of algebra, we can now find α, αi ∈ C such that

P (x)− λ = α

n∏
i=1

(x− αi) (2.72)

and equivalently

P (A)− λ1 = α

n∏
i=1

(A− αi1) (2.73)
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<z

=z

σA(A)

σA(A)

σA(A)

Γ

Figure 2.1: Integration path avoiding the components of σA(A) in (2.76).

since all powers of A commute. Thus the Left Hand Side (LHS) is
invertible iff all factors of the Right Hand Side (RHS) are invertible

λ ∈ σA(P (A))⇔ ∃i : αi ∈ σA(A) . (2.74)

However, ∀i : P (αi) = λ by (2.72) and therefore σA(P (A)) = P (σA(A)).

Remark 2.16. The spectral mapping theorem for polynomials σA(P (A)) =
P (σA(A)) holds for all A ∈ A. For normal elements one can prove a stronger
statement

σA(f(A)) = f(σA(A)) (2.75)

that holds for continuous functions f . We don’t have the tools yet to prove
it, but the crucial ingredient ist that the ∗-algebra generated by a A ∈ A is
abelian iff AA∗ = A∗A. In this case we can use theorem 1.14.

2.4 Projections

The resolvent rA(A) 3 z 7→ (z1 − A)−1 ∈ A is a very powerful object that
contains more information than just the location of the spectrum.

Given A ∈ A and a closed path Γ ⊂ rA(A) ⊂ C, we can define an element
of A as

A 3 PA
Γ =

∫
Γ

dz

2πi
R(z) =

∫
Γ

dz

2πi

1

z1− A
. (2.76)

Note that the integral in (2.76) is well defined, because the resolvent z 7→
(z1−A)−1 is holomorphic on rA(A). Such integrals can be costructed without
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measure theory not only for functions C→ C but also for C→ B, where B
is an arbitrary banach space, cf., e. g., section 9.6 of [Die68]2

If Γ does not encircle any part of the spectrum, the integrand z 7→ R(z)
is holomorphic everywhere inside of Γ and PA

Γ = 0 by Cauchy’s theorem.
In the following we will need the resolvent identity

Remark 2.17 (Hilbert’s identity).

∀z1, z2 ∈ rA(A) : R(z1)−R(z2) = (z2 − z1)R(z1)R(z2) . (2.77)

Proof. It follows from multiplying

(R(z2))−1 − (R(z1))−1 = (z21− A)− (z11− A) = (z2 − z1)1 (2.78)

by R(z1) from the left and R(z2) from the right.

Lecture 07: Wed, 04. 11. 2015

For every pair of paths Γ1,2, we can compute the product

PA
Γ1
PA

Γ2
=

∫
Γ1

dz1

2πi

∫
Γ2

dz2

2πi

1

z11− A
1

z21− A
(2.77)
=

∫
Γ1

dz1

2πi

∫
Γ2

dz2

2πi

1

z2 − z1

(
1

z11− A
− 1

z21− A

)
=

∫
Γ1

dz1

2πi

1

z11− A

∫
Γ2

dz2

2πi

1

z2 − z1

−
∫

Γ2

dz2

2πi

1

z21− A

∫
Γ1

dz1

2πi

1

z2 − z1

=

∫
Γ1

dz1

2πi

1

z11− A
wΓ2(z1) +

∫
Γ2

dz2

2πi

1

z21− A
wΓ1(z2) , (2.79)

where the winding number of a curve Γ ⊂ C relative to a point z ∈ C

wΓ(z) =

∫
Γ

dζ

2πi

1

ζ − z
(2.80)

vanishes if z is outside of Γ. Thus, if we use only paths with winding
number 1 and choose Γ1 to lie completely inside Γ2, or vice versa, we have
either wΓ1(z2) = 1 ∧ wΓ2(z1) = 0 or wΓ2(z1) = 1 ∧ wΓ1(z2) = 0 and find

PA
Γ1
PA

Γ2
= PA

Γ1,2
.

Since we are free to choose Γ2 as a small deformation of Γ1, we have derived

PA
Γ P

A
Γ = PA

Γ ,

2Or the french [Die69] and German [Die85] translations.
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<z

=z

σA(A)

σA(A)

σA(A)

Γ1

Γ2

Figure 2.2: Integration paths avoiding the components of σA(A) in (2.4).

<z

=z

σA(A)

σA(A)

σA(A)

Γ1

Γ2

Figure 2.3: Integration paths avoiding the components of σA(A) in (2.4).

i. e. that PA
Γ is a projection.

OTOH, if they have relative winding number 0, then wΓ1(z2) = wΓ2(z1) =
0, i. e.

PA
Γ1
PA

Γ2
= 0

and the projections are orthogonal. This includes the trivial cases when PA
Γi

=
0, because Γ does not encircle a part of the spectrum.

Furthermore, if all of σA(A) is enclosed by Γ, we can deform the contour
and send it to infinity

PA
Γ =

∫
Γ

dz

2πi
R(z) =

∫
|z|=r>ρ(A)

dz

2πi
R(z) = lim

r→∞

∫
|z|=r

dz

2πi
R(z)
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=
∞∑
n=1

lim
r→∞

∫
|z|=r

dz

2πi

An−1

zn
=
∞∑
n=1

δn,1A
n−1 = 1 . (2.81)

These considerations show that for every path Γ with winding number 1
the element

PA
Γ =

∫
Γ

dz

2πi

1

z1− A
(2.82)

can be interpreted as a projection on the part of the spectrum enclosed by Γ.
Indeed, if z0 is an isolated point in the spectrum and Γ encircles only z0,

one can show that
(z01− A)PA

Γ = 0 ,

because z01−A “cancels the pole” of the resolvent at z0. However, instead of
proving this special case, we will consider a more general functional calculus
now.

2.5 Holomorphic Functional Calculus

For holomorphic f : C→ C, we can define a corresponding f̂ : A → A via

f̂(A) =

∫
Γ

dz

2πi

f(z)

z1− A
(2.83)

where Γ encircles all of σA(A) with winding number one. We can compute
the product of two functions, choosing Γ′ on the outside of Γ:

f̂1(A)f̂2(A) =

∫
Γ

dz

2πi

∫
Γ′

dz′

2πi

f1(z)

z1− A
f2(z′)

z′1− A

=

∫
Γ

dz

2πi

∫
Γ′

dz′

2πi

f1(z)f2(z′)

z′ − z

(
1

z1− A
− 1

z′1− A

)
=

∫
Γ

dz

2πi

f1(z)

z1− A

∫
Γ′

dz′

2πi

f2(z′)

z′ − z︸ ︷︷ ︸
=f2(z)

−
∫

Γ′

dz′

2πi

f2(z′)

z′1− A

∫
Γ

dz

2πi

f1(z)

z′ − z︸ ︷︷ ︸
=0

=

∫
Γ

dz

2πi

f1(z)

z1− A
f2(z) =

∫
Γ

dz

2πi

(f1 · f2)(z)

z1− A
= ̂(f1 · f2)(A) . (2.84)

i. e. f 7→ f̂ is an homomorphism

f̂1(A)f̂2(A) = ̂(f1 · f2)(A) . (2.85)
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In physicist’s notation, an analogous functional calculus for self-adjoint op-
erators on a Hilbert space is written

f̂(A) =

∫
dµ(a) f(a) a〉 〈a (2.86)

with

f̂1(A)f̂2(A) =

∫
dµ(a)

∫
dµ(a′) f1(a)f2(a′) a〉 〈a|a′〉 〈a′

=

∫
dµ(a) (f1 · f2)(a) a〉 〈a = ̂(f1 · f2)(A) . (2.87)

2.5.1 Examples

1. For consistency, we should have f̂(λ1) = f(λ)1. Indeed

f̂(λ1) =

∫
Γ

dz

2πi

f(z)

z1− λ1
=

∫
Γ

dz

2πi

f(z)

z − λ
1 = f(λ) 1 . (2.88)

2. Also îd : A→ A for id : z → z

îd(A) =

∫
Γ

dz

2πi

z

z1− A︸ ︷︷ ︸
1 + A

1

z1− A

= 1

∫
Γ

dz

2πi︸ ︷︷ ︸
= 0

+A

∫
Γ

dz

2πi

1

z1− A︸ ︷︷ ︸
= 1

= A , (2.89)

and ŝq : A→ A2 for sq : z → z2

ŝq(A) =

∫
Γ

dz

2πi

z2

z1− A︸ ︷︷ ︸
(z1− A) + 2A+ A2 1

z1− A

=

∫
Γ

dz

2πi
(z1− A)︸ ︷︷ ︸

= 0

+2A

∫
Γ

dz

2πi︸ ︷︷ ︸
= 0

+A2

∫
Γ

dz

2πi

1

z1− A︸ ︷︷ ︸
= 1

= A2 . (2.90)

Obviously, this holds analogously for higher powers and all polynomials.
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2.6 Holomorphic Spectral Mapping Theorem

Theorem 2.18. If f : C → C is holomorphic on a neighborhood of σA(A),
then f(σA(A)) = σA(f̂(A)), with f̂ from (2.83).

Proof. For all λ ∈ C, fλ : z 7→ λ − f(z) is holomorphic on a neighborhood
of σA(A).

• If λ 6∈ f(σA(A)), then h1 : z 7→ (fλ(z))−1 = (λ − f(z))−1 is also
holomorphic on a neighborhood of σA(A). Using (2.85) and the func-
tion 1 : z 7→ 1, we find(

λ1− f̂(A)
)
ĥ1(A) = f̂λ(A)ĥ1(A) = ̂(fλ · h1)(A) = 1̂(A) = 1

= ̂(h1 · fλ)(A) = ĥ1(A)f̂λ(A) = ĥ1(A)
(
λ1− f̂(A)

)
(2.91)

that an inverse of λ1− f̂(A) exists, i. e. λ 6∈ σA(f̂(A)) and f(σA(A)) ⊇
σA(f̂(A)).

• If λ ∈ f(σA(A)), then ∃z0 ∈ σA(A) with λ = f(z0) and there is a
function h2 holomorphic on a neighborhood of σA(A) with

λ− f(z) = f(z0)− f(z) = (z0 − z)h2(z) . (2.92)

Using (2.85) again, we can compute

λ1− f̂(A) = (z01− A)ĥ2(A) = ĥ2(A)(z01− A) . (2.93)

Since z01− A is by assymption not invertible, λ1− f̂(A) can also not
be invertible, i. e. λ ∈ σA(f̂(A)) and f(σA(A)) ⊆ σA(f̂(A)).

The two inclusions are complementary, therefore f(σA(A)) = σA(f̂(A)).

Lecture 08: Fri, 06. 11. 2015

Having established that f maps the resolvent set of A into the resolvent set
of f̂(A), we can use the holomorphic functional calculus to compose maps:

Corollary 2.19.

f̂ ◦ ĝ = f̂ ◦ g (2.94)
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Proof. With Γ1 and Γ2 chosen such that Γ2 encircles g(Γ1) once, we have

(̂f ◦ g)(A) =

∫
Γ1

dz1

2πi

(f ◦ g)(z1)

z11− A
=

∫
Γ1

dz1

2πi

f(g(z1))︷ ︸︸ ︷∫
Γ2

dz2

2πi

f(z2)

z2 − g(z1)

1

z11− A

=

∫
Γ2

dz2

2πi
f(z2)

∫
Γ1

dz1

2πi

1

z2 − g(z1)

1

z11− A

=

∫
Γ2

dz2

2πi
f(z2)

1

z21− ĝ(A)
= f̂(ĝ(A)) = (f̂ ◦ ĝ)(A) , (2.95)

where we have used the holomorphic functional calculus for the family of
functions

hλ : z 7→ 1

λ− z
(2.96)

that involve only addition and pointwise inverse for which we already know
from (2.85) that the holomorphic functional calculus is valid.

2.7 Uniqueness and Independence

As already alluded to above, it turns out that the C∗-property is very re-
strictive. In fact, a C∗-norm is unique and the spectrum of an element is
independent of the (sub-)algebra it belongs to.

Lemma 2.20. If a ∗-algebra A has a norm with the C∗-property, this norm
is unique.

Proof. For normal and in particular for self-adjoint elements A, we know
from theorem 2.15, that the C∗-property entails

‖A‖ = ρ(A) (2.97)

and the latter is already determined by the algebraic structure. For gen-
eral A ∈ A, the C∗-property yields

‖A‖ =
√
‖A∗A‖ =

√
ρ(A∗A) . (2.98)

Given a unital subalgebra B of a unital algebra A, the spectrum of A ∈ B
is in general a superset of the spectrum of A ∈ B. Indeed,

rA(A) ⊇ rB(A) (2.99)

because the inverse of λ1− A might be a element of A \ B. This is not the
case in a C∗-algebra, however:
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Theorem 2.21. If B is a unital C∗-subalgebra of a unital C∗-algebra A and
the unit elements of A and B coincide, then σA(A) = σB(A).

Proof. We will show that if λ1−A is invertible in A, then it is invertible in
the C∗-subalgebra C generated by 1, A and A∗, i. e. σC(A) = σA(A). Then

σA(A) = σC(A) = σB(A) . (2.100)

Thus it suffices to show that if A is invertible in A, then A−1 ∈ C.
Starting with self-adjoint A = A∗, we know that A− λ1 is invertible for

all λ with a non-vanishing imaginary part. For λ0 = 2i‖A‖, we know that
the power series

1

A− λ01
= − 1

λ0

∞∑
n=0

(
A

λ0

)n
(2.101)

converges absolutely and (A − λ01)−1 ∈ C. Since A = A∗, the resol-
vent R(λ) = (λ1− A)−1 with (R(λ))∗ = R(λ̄) is normal. Furthermore
σA((A− λ1)−1) = (σA(A)− λ)−1 and therefore

‖(A− λ1)−1‖ = ρ((A− λ1)−1)

= sup
z∈σA(A)

|(z − λ)−1| =
(

inf
z∈σA(A)

|z − λ|
)−1

=
1

d(λ)
, (2.102)

where d(λ) designates the closest distance from λ to σA(A). For purely
imaginary λ, we have d(λ) > |λ|, because 0 6∈ σA(A) for invertible A and the
compactness of the spectrum. Using this result, we see that

1

A− λ1
=

1

A− λ01− (λ− λ0)1
=

1

A− λ01

1

1− λ−λ0
A−λ01

=
1

A− λ01

∞∑
n=0

(
λ− λ0

A− λ01

)n
(2.103)

converges for |λ− λ0| < d(λ0) = ‖(A− λ01)−1‖−1. For purely imaginary λ0,
the series (2.103) will therefore converge for λ = 0 and

A−1 =
1

A− λ01

∞∑
n=0

(
−λ0

A− λ01

)n
∈ C . (2.104)

If A is invertible, but A 6= A∗, then A∗A is invertible nevertheless

(A∗A)−1 = A−1 (A∗)−1 = A−1
(
A−1

)∗
(2.105)
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Re z

Im z

Γ

Figure 2.4: Integration contour Γ used in (2.108) to define the square root.

and (A∗A)−1 lies in the C∗-algebra generated by 1 and A∗A. For

X = (A∗A)−1A∗ ∈ C (2.106)

we find XA = 1, i. e. X = A−1, i. e. A−1 ∈ C (cf. lemma 2.12).

Therefore, we will henceforth write σ(A) for σA(A).

2.8 Positive Elements

Earlier, we have defined the positive elements A of an algebra as those that
can be written A = B2. One can equivalently characterize them by their
spectrum:

Definition 2.22. The set A+ of all positive elements of a ∗-algebra A is
the set of all self-adjoint elements with the spectrum σ(A) contained in the
positive real axis.

For a positive element A ∈ A+, we can construct a square root with

B =
√
A =

∫ ∞
0

dλ

π

A√
λ

1

λ1 + A
. (2.107)

For invertible A, this construction is compatible with the holomorphic func-
tional calculus. In order to avoid a contribution from the circle at infinity,
we construct the inverse and define B =

√
A = A

√
A−1 later. This works

indeed using the contour Γ from figure 2.4 which avoids the cut of z →
√
z

and encircles σ(A).
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√
A−1 =

∫
Γ

dz

2πi

1√
z

1

z1− A

= lim
ε→0+

∫ −∞
0

dx

2πi

1√
x− iε

1

(x− iε)1− A
+ lim
ε→0+

∫ 0

−∞

dx

2πi

1√
x+ iε

1

(x+ iε)1− A

= lim
ε→0+

∫ −∞
0

dx

2πi

(
1√
x− iε

1

(x− iε)1− A
− 1√

x+ iε

1

(x+ iε)1− A

)
(2.110)

=

∫ −∞
0

dx

π

1√
|x|

1

x1− A
=

∫ ∞
0

dx

π

1√
x

1

x1 + A
, (2.108)

where we have used

lim
ε→0+

√
−|x| ± iε = ±i

√
|x| (2.109)

and

1√
x− iε

1

(x− iε)1− A
− 1√

x+ iε

1

(x+ iε)1− A

=
i√
|x|

1

x1− A− iε1
+

i√
|x|

1

x1− A+ iε1

=
2i√
|x|

x1− A
(x1− A)2 + ε21

ε→0+−→ 2i√
|x|

1

x1− A
. (2.110)

Additional material (not discussed during the lectures):
Note that (2.107) can also be constructed as a Riemannian integral. For positive A we

have, from the fact that the function

f : [0,∞)→ [0, 1)

z 7→ z

λ+ z

(2.111)

is a bijection for λ > 0,

σ

(
A

1

λ1 +A

)
= f(σ(A)) ⊆ f([0, ‖A‖]) =

[
0,
‖A‖

λ+ ‖A‖

]
. (2.112)

Therefore ∥∥∥∥A 1

λ1 +A

∥∥∥∥ = ρ

(
A

1

λ1 +A

)
≤ ‖A‖
λ+ ‖A‖

(2.113)

and

‖B‖ =

∥∥∥∥∫ ∞
0

dx

π

A√
x

1

x1 +A

∥∥∥∥ ≤ ∫ ∞
0

dx

π

∥∥∥∥ A√x 1

x1 +A

∥∥∥∥
(2.113)

≤
∫ ∞
0

dx

π

1√
x

‖A‖
x+ ‖A‖

=
√
‖A‖

∫ ∞
0

dy

π

1
√
y

1

y + 1︸ ︷︷ ︸
=1

=
√
‖A‖ (2.114)

converges.
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Lecture 09: Wed, 11. 11. 2015

One can show

Theorem 2.23. A self-adjoint element A of a C∗-algebra A is positive
iff ∃B ∈ A : A = B2 ∧ B = B∗. If A is positive, there exists a unique
positive B with A = B2 and it lies in the subalgebra of A generated by A.

We will not give the proof here (see, e. g., [BR02], theorem 2.2.10), but it
should be intuitively clear, that the integrand in (2.107) is positive and the
corresponding Riemann sums are positive as well.

The square root plays a special role, because we can use it to define the
modulus of an arbitrary self-adjoint A ∈ A via

|A| =
√
A2 ∈ A . (2.115)

Note that ‖A‖ ∈ R, but |A| ∈ A. One can use the modulus to write every
self-adjoint A ∈ A as the difference of two positive elements:

Theorem 2.24. The set A+ of all positive elements of a ∗-algebra A is a
convex cone that is closed in the norm topology, with

A+ ∩ (−A+) = {0} . (2.116)

If A = A∗ ∈ A, then

A± =
1

2
(|A| ± A) , (2.117)

are the unique elements of A with

A± ∈ A+ (2.118a)

A = A+ − A− (2.118b)

A+A− = 0 . (2.118c)

Most of the proof will be skipped (see, e. g., [BR02], theorem 2.2.11).
However the positivity of A±, i. e. (2.118a), is intuitively clear, while (2.118b)
is trivial and (2.118c) follows from

4A+A− = (|A|+ A) (|A| − A) = |A|2 + A|A| − |A|A− A2 = [A, |A|] = 0
(2.119)

because |A| is an element of the abelian Algebra generated by A.
Finally, one can also show the reverse direction of theorem 2.23 (see,

e. g., [BR02], theorem 2.2.12)
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Theorem 2.25. If A is a C∗-algebra, then

∀A ∈ A : (A ∈ A+)⇔ (∃B ∈ A : A = B∗B) . (2.120)

We can use the existence of positive elements to introduce a partial order
on an algebra

Definition 2.26.

A ≥ B ⇔ A−B ≥ 0⇔ A−B ∈ A+ (2.121a)

A > B ⇔ A ≥ B ∧ A 6= B . (2.121b)

Obviously

A ≥ 0 ∧ A ≤ 0⇒ A = 0 (2.122a)

A ≥ B ∧B ≥ C ⇒ A ≥ C , (2.122b)

but also

Theorem 2.27. ∀A,B,C ∈ A, a C∗-algebra:

A ≥ B ≥ 0⇒ ‖A‖ ≥ ‖B‖ (2.123a)

A ≥ 0⇒ A‖A‖ ≥ A2 (2.123b)

A ≥ B ≥ 0⇒ ∀C ∈ A : C∗AC ≥ C∗BC ≥ 0 (2.123c)

A ≥ B ≥ 0 ∧ λ > 0⇒ 1

B + λ1
≥ 1

A+ λ1
(2.123d)

Proof. Again, we will skip most of the proof (see, e. g., [BR02], theorem 2.2.13).
But it is instructive to deduce (2.123c) as follows

A ≥ B ⇒ ∃D ∈ A : A−B = D∗D ⇒
C∗AC − C∗BC = C∗(A−B)C = C∗D∗DC = (DC)∗(DC) ≥ 0 . (2.124)

From this

A ≥ B ≥ 0⇒ ∀λ : A+ λ1 ≥ B + λ1 ≥ λ1⇒

∀λ > 0 :
1√

B + λ1
(A+ λ1)

1√
B + λ1

≥ 1

⇒ ∀λ > 0 :
√
B + λ1

1

A+ λ1

√
B + λ1 ≤ 1

⇒ ∀λ > 0 :
1

A+ λ1
≤ 1

B + λ1
(2.125)

where we have used

X = X∗ ≥ 1⇒ σ(X) = σ(X − 1) + 1 ⊆ [0,∞) + 1 = [1,∞)

⇒ σ(X−1) ⊆ [1,∞)−1 = (0, 1]⇒ X−1 ≤ 1 (2.126)

in the next to final implication.
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—3—
Representations

In order to make contact with the Hilbert space formulation of QM, we need
to realize the algebraic formulation as operators on Hilbert space. In partic-
ular, we have to find out iff there is more than one inequivalent realization.
Otherwise, the algebraic formulation will not have given us a lot of new
insights.

3.1 Homomorphisms

Definition 3.1 (homomorphism of ∗-algebras). A ∗-homomorphism π is a
map

π : A → B
A 7→ π(A)

(3.1)

that preserves the ∗-algebra structure, i. e. for all α, β ∈ C and A,B ∈ A

π(αA+ βB) = απ(A) + βπ(B) (3.2a)

π(AB) = π(A)π(B) (3.2b)

π(A∗) = (π(A))∗ . (3.2c)

Remark 3.2. A ∗-homomorphism π preserves positivity, i. e.

∀A ≥ 0 : π(A) ≥ 0 . (3.3)

Proof. This is almost obvious:

A 3 A ≥ 0⇒ ∃B ∈ A : A = B∗B

⇒ π(A) = π(B∗)π(B) = (π(B))∗ π(B) ≥ 0 . (3.4)
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Definition 3.3. The kernel of a ∗-morphism π : A → B is defined as

kerπ = {A ∈ A : π(A) = 0} (3.5)

Remark 3.4. kerπ is a two-sided ∗-ideal.

Proof. ∀A ∈ A, B ∈ kerπ:

π(AB) = π(A)π(B) = π(A) 0 = 0 (3.6a)

π(BA) = π(B)π(A) = 0 π(A) = 0 (3.6b)

π(B∗) = (π(B))∗ = 0∗ = 0 (3.6c)

Therefore, A/ kerπ is a ∗-algebra and the map

Definition 3.5.
π̂ : Aπ = A/ kerπ → Bπ = π(A)

Â 7→ π(A ∈ Â)
(3.7)

is well defined

A Bπ ⊆ B

Aπ

π

ˆ
π̂

(3.8)

because

π(Â) = π(A+ I) = π(A) + π(I) = π(A) + 0 = π(A) , (3.9)

and an isomorphism, because ker π̂ = 0̂, by construction.

3.2 Approximate Identities and Factor Algebras

While we have shown in theorem 2.1 that one can always adjoin an iden-
tity, it is sometimes relevant that the original algebra does not contain one.
However, we want to show that certain factor algebras that appear natu-
rally, i. e. A/ kerπ, carry a C∗-algebra structure. In order to prove this, we
need to introduce approximate identities of the ideal ker π. In some way, ap-
proximate identities resemble the representations of Dirac δ-distributions as a
limit of functions from a given function space, while the Dirac δ-distributions
themselves are not in this function space.
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Definition 3.6. If I is a right ideal of a C∗-algebra, an approximate identity
of I is a family1 {Eα}α∈U of positive elements Eα ∈ I, indexed by a directed
set U with the properties

‖Eα‖ ≤ 1 (3.10a)

∀α ≤ β ∈ U : Eα ≤ Eβ (3.10b)

∀I ∈ I : ‖EαI − I‖ → 0 . (3.10c)

An approximate identity of a left ideal is defined analogously with ‖IEα −
I‖ → 0.

This definition is useful because we can show

Theorem 3.7. Every right ideal I of a C∗-algebra A possesses an approxi-
mate identity.

Proof. We can order the set U of all finite families α = {A1, A2, . . . , A|α|}
by inclusion, i. e. α ≥ β iff β is a subfamily of α. We can define for every
family α the positive algebra elements

I 3 Fα =

|α|∑
i=1

AiA
∗
i ≥ 0 (3.11)

and

I 3 Eα = |α|Fα
1

1 + |α|Fα
= 1− 1

1 + |α|Fα
≤ 1 . (3.12)

NB: If A is not unital, we can adjoin an identity as in definition 2.2 for the
purpose of the proof and use (2.8), i. e. ‖(0, A)‖Ā = ‖A‖A where needed.
Obviously ‖Eα‖ ≤ 1, but also

∀Ai ∈ α : (EαAi − Ai)(EαAi − Ai)∗

= (Eα − 1)AiA
∗
i (Eα − 1) = (1− Eα)AiA

∗
i (1− Eα)

≤
|α|∑
i=1

(1− Eα)AiA
∗
i (1− Eα) =

1

1 + |α|Fα
Fα

1

1 + |α|Fα

=
√
Fα

(
1

1 + |α|Fα

)2√
Fα

(2.123c)

≤
√
Fα

1

1 + |α|Fα

√
Fα

=
1

|α|

(
1− 1

1 + |α|Fα

)
≤ 1

|α|
1 , (3.13)

1Such a family {Eα}α∈U is called a net.
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i. e.

‖EαAi − Ai‖2 ≤ 1

|α|
(3.14)

and since every A ∈ I belongs to some family

∀A ∈ I : ‖EαA− A‖ → 0 . (3.15)

Finally

Eα − Eβ =
1

1 + |β|Fβ
− 1

1 + |α|Fα
(3.16)

and α ≥ β implies |α|Fα ≥ |β|Fβ and Eα ≥ Eβ.

Lecture 10: Fri, 13. 11. 2015

Theorem 3.8. Every closed two sided ideal I of a C∗-algebra A is self-
adjoint and the factor algebra A/I with the norm

‖Â‖A/I = inf
I∈I
‖A+ I‖A (3.17)

is a C∗-algebra.

Proof. If {Eα}α∈U is an approximate identity of I, then

∀A ∈ I : ‖A∗Eα − A∗‖A = ‖EαA− A‖A → 0 . (3.18)

Since A∗Eα ∈ I and I is closed, we have A∗ ∈ I. Again, if A is not unital,
we can adjoin an identity as in definition 2.2 to be able to write

A− EαA+ I − EαI = (1− Eα)(A+ I) (3.19)

and find

lim sup
α
‖A− EαA‖A = lim sup

α
‖A− EαA‖Ā

= lim sup
α
‖A− EαA+ I − EαI‖Ā = lim sup

α
‖(1− Eα)(A+ I)‖Ā

≤ lim sup
α
‖1− Eα‖Ā‖A+ I‖Ā ≤ ‖A+ I‖Ā = ‖A+ I‖A , (3.20)

because 0 ≤ Eα ≤ 1, or σ(1− Eα) ⊆ [0, 1]. Therefore

‖Â‖A/I = inf
I∈I
‖A+ I‖A ≥ lim sup

α
‖A− EαA‖A
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≥ lim inf
α
‖A− EαA︸︷︷︸

∈I

‖A ≥ inf
I∈I
‖A+ I‖A = ‖Â‖A/I , (3.21)

i. e.
‖Â‖A/I = lim

α
‖A− EαA‖A (3.22)

and we get the C∗-property on A/I from the C∗-property on A

‖Â‖2
A/I = lim

α
‖A− EαA‖2

A = lim
α
‖A− EαA‖2

Ā

= lim
α
‖(A− EαA)(A− EαA)∗‖Ā = lim

α
‖(1− Eα)AA∗(1− Eα)‖Ā

= lim
α
‖(1− Eα)AA∗(1− Eα) + (1− Eα)I(1− Eα)‖Ā

= lim
α
‖(1− Eα)(AA∗ + I)(1− Eα)‖Ā

≤ ‖AA∗ + I‖Ā = ‖AA∗ + I‖A (3.23)

for arbitrary I ∈ I. Thus

‖Â‖2
A/I ≤ inf

I∈I
‖AA∗ + I‖A = ‖ÂÂ∗‖A/I ≤ ‖Â‖A/I‖Â∗‖A/I (3.24)

i. e.
‖Â‖A/I ≤ ‖Â∗‖A/I (3.25)

and
‖Â∗‖A/I ≤ ‖Â‖A/I (3.26)

from replacing Â by Â∗ in the above argument. This implies the C∗-property

‖Â‖2
A/I = ‖ÂÂ∗‖A/I . (3.27)

3.3 Continuity

Using this theorem, we can prove a non-obvious result, with profound con-
sequences:

Theorem 3.9. Let A be a unital Banach ∗-algebra and B a C∗-algebra
and π : A → B a ∗-morphism. Then π is continuous and even

∀A ∈ A : ‖π(A)‖ ≤ ‖A‖ . (3.28)

In addition, if A is a C∗-algebra, then Bπ = π(A) ⊆ B is a C∗-subalgebra
of B.
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Proof. For self-adjoint A, we know that

‖π(A)‖ = ρ(π(A)) = sup
λ∈σ(π(A))

|λ| . (3.29)

Now P = π(1A) is a projection

P 2 = π(1A)π(1A) = π(12
A) = π(1A) = P . (3.30)

and can be used to define the C∗-algebra (→ exercise)

B′ = PBP = {PBP : B ∈ B} ⊆ B (3.31)

with identity 1B′ = P . Since

π(A) = π(1AA1A) = π(1A)π(A)π(1A) = Pπ(A)P ∈ B′ , (3.32)

we know that π(A) ⊆ B′ and we can compare the respective spectra: if (λ1A−
A)−1 ∈ A, then (λP−π(A))−1 = π((λ1A−A)−1) ∈ B′, i. e. rB′(π(A)) ⊇ rA(A)
or

σ(π(A)) = σB(π(A)) = σB′(π(A)) ⊆ σA(A) = σ(A) . (3.33)

Note that we have indicated the respective algebras, because B′ and A are
not subsets of each other and theorem 2.21 does not apply. Thus

‖π(A)‖ = sup
λ∈σ(π(A))

|λ| ≤ sup
λ∈σ(A)

|λ| ≤ ‖A‖ . (3.34)

and for non self-adjoint A we can use

‖π(A)‖2 = ‖π(A∗A)‖ ≤ ‖A∗A‖ ≤ ‖A‖2 (3.35)

to prove ‖π(A)‖ ≤ ‖A‖.
Having shown that π is continuous, we infer that its kernel kerπ is a

closed two-sided ideal. By theorem 3.8, Aπ = A/ kerπ is then a C∗-algebra.
Therefore π̂ : Aπ → Bπ = π(A) with π̂(Â) = π(A ∈ Â) is an isomorphism
and π̂−1 : Bπ → Aπ with

π̂−1(π̂(Â)) = Â (3.36)

is well defined. Then from (3.28) applied to π̂−1 and π̂, we have

‖Â‖ = ‖π̂−1(π̂(Â))‖ ≤ ‖π̂(Â)‖ ≤ ‖Â‖ (3.37)

and find that the norms agree

‖Â‖A/ kerπ = ‖π̂(Â)‖B = ‖π(A ∈ Â)‖B . (3.38)

Therefore, whenever a series {π(An)}n∈N converges to a B ∈ B, the se-
ries {Ân}n∈N must converge to a Â ∈ Aπ, because Aπ is complete. By
continuity of π and π̂, B = π̂(Â) = π(A ∈ Â) and B ∈ Bπ = π(A), which is
therefore closed.
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Definition 3.10 (isomorphism of C∗-algebras). A C∗-isomorphism π : A →
B is a C∗-homomorphism that is one-to-one and onto, i. e. π(A) = B and
the inverse map π−1 : B → A exists.

From linear algebra, we know

Remark 3.11. A C∗-homomorphism π : A → B is a C∗-isomorphism, iff its
kernel is trivial ker π = {0} and π(A) = B.

3.4 Representations

Lecture 11: Wed, 18. 11. 2015

Theorem 1.13 stated that every C∗-algebra is isomorphic to an algebra of
operators on a suitable Hilbert space. Thus C∗-homomorphisms that map
into the C∗-algebra L(H) of bounded linear operators on a Hilbert space H
are particularly interesting:

Definition 3.12 (representation of a C∗-algebra). A representation of a C∗-
algebra A is a pair (H, π) consisting of a complex Hilbert space H and a C∗-
homomorphism π : A → L(H). The representation (H, π) is called faithful
iff π : A → π(A) is a C∗-isomorphism.

Theorem 3.13. Let (H, π) be a representation of the C∗-algebra A. It is
faithful, iff it satisfies the following equivalent conditions

kerπ = {0} (3.39a)

∀A ∈ A : ‖π(A)‖ = ‖A‖ (3.39b)

∀A > 0 : π(A) > 0 . (3.39c)

Proof. We already know (3.39a) from linear algebra. OTOH, if (3.39a) holds,
there is a well defined map π−1 : π(A) → A with π−1(π(A)) = A for all A.
Using theorem 3.9 twice, i. e.

‖A‖ = ‖π−1(π(A))‖ ≤ ‖π(A)‖ ≤ ‖A‖ , (3.40)

we obtain (3.39b). Since A > 0 implies ‖A‖ > 0, this yields

A > 0⇒ 0 < ‖A‖ = ‖π(A)‖ ⇒ π(A) 6= 0 . (3.41)

Using remark 3.2, we obtain π(A) ≥ 0, i. e. (3.39c). Finally, if kerπ 6= {0},
then ∃B ∈ kerπ ⊆ A : B 6= 0 ∧ π(B∗B) = π(B∗)π(B) = 0. OTOH,
0 < ‖B‖2 = ‖B∗B‖, i. e. B∗B > 0 and (3.39c) is false.
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Definition 3.14 (automorphism of a C∗-algebra). A C∗-isomorphism π :
A → A is called a C∗-automorphism.

Corollary 3.15. If π is a C∗-isomorphism of A, it is norm preserving

∀A ∈ A : ‖π(A)‖ = ‖A‖ . (3.42)

Proof. This is a direct consequence of theorem 3.13, in particular the equiv-
alence of (3.39a) and (3.39b).

Definition 3.16. A subspace H1 ⊆ H is called an invariant subspace, also
known as (a.k.a.) a stable subspace, of a representation (H, π) of a C∗-algebra,
iff

∀A ∈ A : π(A)H1 ⊆ H1 . (3.43)

If H1 is a closed subspace of H and P1 = P ∗1 is the corresponding orthog-
onal projector with P1H = H1, then

∀A ∈ A : P1π(A)P1 = π(A)P1 . (3.44)

As a consequence

π(A)P1 = P1π(A)P1 = (P ∗1 π(A)∗P ∗1 )∗ = (P1π(A)∗P1)∗

= (π(A)∗P1)∗ = P ∗1 π(A) = P1π(A) , (3.45)

i. e.
π(A)P1 = P1π(A) . (3.46)

And indeed this is the necessary and sufficient condition for H1 to be stable
under π.

Remark 3.17. If H1 is stable under π and P1 is the corresponding orthogonal
projection, then (H1, π1) with

π1(A) = P1π(A)P1 (3.47)

is also a representation. It is called a subrepresentation.

Proof.

π1(A)π1(B) = P1π(A)P1P1π(B)P1

= P1π(A)π(B)P1 = P1π(AB)P1 = π1(AB) . (3.48)
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If P1 is an orthogonal projection, then 1 − P1 = P2 is one as well and
projects on the orthogonal subspace H2. Since

P2π(A) = (1− P1)π(A) = π(A)(1− P1) = π(A)P2 , (3.49)

H2 is also stable under π and (H2, π2) with

π2(A) = P2π(A)P2 (3.50)

is again a subrepresentation. In this way, we obtain a decomposition of a
representation into a direct sum

(H, π) = (H1, π1)⊕ (H2, π2) = (H1 ⊕H2, π1 ⊕ π2) (3.51)

where

∀A ∈ A, ψ1,2 ∈ H1,2 : π(A)(ψ1 ⊕ ψ2) = π1(A)ψ1 ⊕ ψ2(A)ψ2 . (3.52)

As always, the definition of a representation allows for trivial representa-
tions with

π : A → {0} ⊆ L(H) (3.53)

that are not particularly interesting. Moreover, there are nontrivial repre-
sentations with parts that are not interesting either. The set

H0 =
⋂
A∈A

ker(π(A)) = {ψ ∈ H : π(A)ψ = 0,∀A ∈ A} (3.54)

is obviously a linear subspace and invariant under π(A). The corresponding
subrepresentation (H0, π0) has

π0(A) = P0π(A)P0 = 0 . (3.55)

Representation with a trivial subrepresentation are called degenerate. OTOH,
the interesting cases are covered by

Definition 3.18 (nondegenerate representation). A representation (H, π) is
called nondegenerate, iff the subspace annihilated by π(A) is trivial: H0 =
{0}.

Particularly interesting is the case when there is

Definition 3.19 (cyclic vector). A vector Ω ∈ H is called cyclic in H for a
set B ⊆ L(H), if the linear span of {BΩ : B ∈ B} is dense in H.

Then we have
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Definition 3.20. A cyclic representation of a C∗-algebraA is a triple (H, π,Ω)
with (H, π) a representation of A and Ω a cyclic vector for π(A) in H.

It is obvious that every cyclic representation is nondegenerate. Indeed, if
this were not the case, then

∃B ∈ A : π(B)Ω 6= 0 ∧ ∀A ∈ A : 0 = π(A)π(B)Ω = π(AB)Ω , (3.56)

which implies π(B)Ω = 0 for A = 1 in a unital algebra or A an approximate
identity, which exists by theorem 3.7. It is less obvious that

Theorem 3.21. If (H, π) is a nondegenerate representation of a C∗-algebra,
it is a direct sum of a family of cyclic subrepresentations.

Lecture 12: Fri, 20. 11. 2015

Before we can prove the theorem, we need a precise

Definition 3.22 (direct sum of representations). Let {(Hi, πi)}i∈I be a fam-
ily2 of representations of a C∗-algebra A. Then the direct sum of represen-
tation spaces

H =
⊕
i∈I

Hi (3.57)

is well defined3 and the action of the direct sum of representations

π =
⊕
i∈I

πi (3.58)

is defined as a bounded operator

π(A)

(⊕
i∈I

ψi

)
=
⊕
i∈I

(πi(A)ψi) (3.59)

since all πi(A) are bounded operators with ‖πi(A)‖ ≤ ‖A‖.
2The index set I is not necessarily countable.
3As above in the proof of theorem 3.7, we can order the finite subsets of I by inclusion

to build a directed set. The elements of H are then families {ψi}i∈α such that

lim
|α|→∞

∑
i∈α
‖ψi‖2i <∞ .

This way we obtain a norm and corresponding inner product and can complete the direct
sum with respect to (wrt) the topology induced by this norm.
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Proof. Choose4 a maximal family {Ωi}i∈I of non-zero Ωi ∈ Hi with

∀A,B ∈ A,∀i 6= j ∈ I : (π(A)Ωi, π(B)Ωj) = 0 . (3.60)

We can then define
∀i ∈ I : Hi = π(A)Ωi , (3.61)

which are, by construction, invariant subspaces and we obtain subrepresen-
tations

πi(A) = Piπ(A)Pi , (3.62)

and a family {(Hi, πi,Ωi)}i∈I of cyclic representations. Since (H, π) is non-
degenerate and the family {Ωi}i∈I is maximal, there is no non-zero ψ ∈ H
with (ψ, φ) = 0,∀φ ∈ ⊕i∈IHi.

This theorem shows that we esentially know all representations, when
we know all cyclic representations. This is important, because we will soon
learn that the cyclic representations are intimately related the the physical
states, i. e. the normalized postive linear functionals on the C∗-algebra of
(complexified) observables.

Close relatives of the cyclic representations are

Definition 3.23 (irreducible representation). A self-adjoint set B of bounded
operators on a Hilbert spaceH is called irreducible onH, if there are no closed
subspaces of H invariant under B other than the trivial {0} and H itself.
Analogously, a representation (H, π) of a C∗-algebra A is called irreducible iff
π(A) is irreducible on H.

Theorem 3.24. Let B be a self-adjoint set of bounded operators on a Hilbert
space H. The following are equivalent:

1. B is irreducible.

2. only multiples of 1 ∈ L(B) commute with all B ∈ B, i. e. the commu-
tant B′ = {λ1 : λ ∈ C}.

3. every nonzero ψ ∈ H is cyclic for B in H, unless B = {0} or H = C.

Proof. We prove the cyclic dependence:

1. (1)→(3): If there is a nonzero ψ ∈ H that is not cyclic, then the
orthogonal complement of Bψ is a non-empty invariant subspace and B
is reducible on H (unless B = {0} or H = C).

4For the existence of such a family, in the case of a not countable I, we have to assume
the axiom of choice or, equivalently, Zorn’s lemma.



ohl: Fri Feb 5 13:21:28 CET 2016 subject to change! 54

2. (3)→(2): If B ∈ B′, then B∗ ∈ B′, since B is self-adjoint. Also B+B∗ ∈
B′ and (B − B∗)/i ∈ B′ and if B′ 6= λ1, there are C = C∗ ∈ B′
with C 6= λ1, ∀λ ∈ C. The corresponding spectral projections P of C
are then also in B′ and a ψ ∈ H with (1− P )ψ = 0 cannot be cyclic.

3. (2)→(1): If B is not irreducible on H, then there is a closed sub-
space K ⊆ H that is stable under B and the corresponding non-trivial
projector PK ∈ B′.

Note that not all cyclic representations are irreducible: we have just
proven that all non-zero vectors of an irreducible representation are cyclic.
But there are cyclic representations where not all non-zero vectors are cyclic.

Definition 3.25 (unitary equivalence). Two representations (H1, π1) and
(H2, π2) are called unitarily equivalent, iff there is a unitary operator U :
H1 → H2 such that

∀A ∈ A : π2(A) = Uπ1(A)U∗ . (3.63)

i. e. the diagram

H1 H1

H2 H2

π1(A)

U U

π2(A)
(3.64)

commutes for all A ∈ A.

Remark 3.26. Obviously, given a representation (H1, π1) and a unitary op-
erator U : H1 → H2, we obtain another representation (H2, π2) from (3.63).
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—4—
States

As before, the positive linear functionals on a C∗-algebra of observables will
play the role of physical states.

Definition 4.1 (dual space). The space of continuous linear functionals ω :
A → C on the C∗-algebra A is denoted A∗.

We can define a natural norm on A∗ by

‖ω‖ = sup
A∈A,‖A‖=1

|ω(A)| . (4.1)

Definition 4.2 (positive linear functional, state). A linear functional ω :
A → C on the C∗-algebra A is called positive, iff

∀A ∈ A : ω(A∗A) ≥ 0 . (4.2)

A positive ω : A → C with ‖ω‖ = 1 is called a state.

Typical examples that should be familiar from the QM lecture

• pure states, a.k.a. vector states :

ω(A) = (Ω, π(A)Ω) (4.3)

with Ω ∈ H normalized, i. e. (Ω,Ω) = 1. Positivity is obvious

ω(A∗A) = (Ω, π(A∗A)Ω) = (Ω, π(A∗)π(A)Ω)

= (Ω, π(A)∗π(A)Ω) = (π(A)Ω, π(A)Ω) ≥ 0 (4.4)

and the normalization ‖ω‖ = 1 will be a consequence of theorem 4.4
below.
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• statistical mixtures
ω(A) =

∑
i

piωi(A) (4.5)

with pi ≥ 0 and
∑

i pi = 1.

• density matrices
ω(A) = tr (ρπ(A)) (4.6)

with ρ > 0 and tr ρ = 1.

These will be discussed in more detail below.
In the following we will frequently use the CSI (1.48b), which we have

already derived on page 10 when we discussed algebras of observables, before
introducing C∗-algebras. The identical arguments will also establish

Lemma 4.3 (Cauchy-Schwarz Inequality). For every postive linear func-
tional ω on a C∗-algebra A, we have ∀A,B ∈ A

ω (B∗A) = ω (A∗B) (4.7a)

|ω (A∗B)| ≤
√
ω (A∗A)

√
ω (B∗B) . (4.7b)

We will now see that every positive ω : A → C is continuous.

Lecture 13: Wed, 25. 11. 2015

,

Theorem 4.4 (continuity of postive functionals). For all ω ∈ A∗, the fol-
lowing are equivalent

1. ω is positive

2. ω is continuous and
‖ω‖ = lim

α
ω(E2

α) (4.8)

for some approximate identity {Eα} of A.

Furthermore if ω is positive, then ∀A,B ∈ A

ω(A∗) = ω(A) (4.9a)

|ω(A)|2 ≤ ω(A∗A)‖ω‖ (4.9b)

|ω(A∗BA)| ≤ ω(A∗A)‖B‖ (4.9c)

‖ω‖ = sup
A∈A,‖A‖=1

ω(A∗A) (4.9d)

and
‖ω‖ = lim

α
ω(Eα) (4.10)

for any approximate identity {Eα} of A.
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Proof. First, assume that ω is positive, i. e. (1), and let {An}n∈N be a se-
quence with An ≥ 0 and ‖An‖ ≤ 1. Then for all sequences {λn}n∈N
with λn ≥ 0 and

∑
n∈N λn <∞

N∑
n=1

λnAn
N→∞→ A ≥ 0 (4.11)

converges monotonically from below. Thus, by positivity and linearity of ω

N∑
n=1

λnω(An) ≤ ω(A) <∞ . (4.12)

This can only be true for all such sequences {λn}n∈N independently of {An}n∈N,
if the {ω(An)}n∈N are uniformly bounded

M+ = sup
A≥0,‖A‖=1

ω(A) <∞ . (4.13)

We can decompose each A ∈ A with ‖A‖ = 1 into two self-adjoint and four
positive {Ak} with ‖Ak‖ ≤ 1

A =
4∑

k=1

ikAk (4.14)

and therefore
‖ω‖ = sup

‖A‖=1

|ω(A)| ≤ 4M+ . (4.15)

Since this entails
|ω(A)| ≤ 4M+‖A‖ , (4.16)

we have established that ω : A → C is continuous. For any Eα ∈ A we can
use the CSI

|ω(AEα)|2
(1.48b)

≤ ω(A∗A)ω(E∗αEα) ≤M+‖A‖2ω(E2
α) (4.17)

and if {Eα} is an approximate identity, we can take the limit |α| → ∞

|ω(A)|2 ≤M+M‖A‖2 (4.18)

where
M = sup

α
ω(E2

α) . (4.19)
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Taking the supremum over ‖A‖ = 1, we obtain

‖ω‖2 ≤M+M . (4.20)

However, ‖Eα‖ ≤ 1 and Eα ≥ 0 by definition and therefore

M = sup
α
ω(E2

α) ≤M+ = sup
A≥0,‖A‖=1

ω(A) ≤ sup
‖A‖=1

ω(A) = ‖ω‖ . (4.21)

This entails

‖ω‖2 ≤M+M ≤M+‖ω‖ (4.22a)

‖ω‖2 ≤M+M ≤M‖ω‖ (4.22b)

and the inequalities must be equalities

‖ω‖ = M+ = M = lim
α
ω(E2

α) , (4.23)

i. e. we have established (2). While we’re at it, we observe that since E2
α ≤ Eα

‖ω‖ = lim
α
ω(E2

α) ≤ lim
α
ω(Eα) ≤ ‖ω‖ (4.24)

i. e. (4.10).
Conversely, assume that (2) holds and WLOG ‖ω‖ = 1. If A is unital,

then

‖1− E2
α‖ ≤ ‖1− Eα‖+ ‖Eα − E2

α‖
≤ ‖1− Eα‖+ ‖1− Eα‖‖Eα‖ = ‖1− Eα‖ (1 + ‖Eα‖) (4.25)

therefore
lim
α
E2
α = 1 (4.26)

and
ω(1) = lim

α
ω(E2

α) = ‖ω‖ = 1 (4.27)

from (2). OTOH, if A is not unital, we can adjoin a unit and extend ω :
A → C to

ω̃ : C1 +A → C

(λ,A) 7→ λ+ ω(A) .
(4.28)

Then
A− AE2

α = (A− AEα) + (A− AEα)Eα , (4.29)

i. e.
lim
α
AE2

α = A . (4.30)
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Furthermore
|ω(A)| ≤ ‖ω‖‖A‖ (4.31)

i. e.
|ω(A)| ≤ ‖A‖ . (4.32)

Thus

|ω̃(λ1 + A)| = |λ+ ω(A)| = lim
α
|λω(E2

α) + ω(AE2
α)|

(4.32)

≤ lim sup
α
‖λE2

α + AE2
α‖A ≤ sup

‖B‖=1

‖λB + AB‖A = ‖λ1 + A‖Ā , (4.33)

i. e. we have in any case

|ω(1)| = ‖1‖ = 1 = ‖ω‖ . (4.34)

With
ω(A) = α + iβ (α, β ∈ R) (4.35)

we have
ω(A+ iγ1) = α + i(β + γ) . (4.36)

For any self-adjoint A, the spectrum satisfies

σ(A) + iγ ⊆ [−‖A‖, ‖A‖] + iγ (4.37)

and since A+ iγ1 is normal, we have

‖A+ iγ1‖ = ρ(A+ iγ1) =
√
‖A‖2 + γ2 . (4.38)

OTOH

|ω(A+ iγ1)| = |α + i(β + γ)| =
√
α2 + (β + γ)2 ≥ |β + γ| (4.39)

and therefore
∀γ ∈ R : |β + γ| ≤

√
‖A‖2 + γ2 . (4.40)

Choosing γ = δ ‖A‖2β/|β|, we find

∀δ ∈ R : β2 + 2δ|β|‖A‖2 ≤ ‖A‖2 , (4.41)

which can hold for δ → ∞ only if β = 0, i. e. ω(A) must be real if A = A∗.
However, since A∗A ≥ 0∥∥∥∥1− A∗A

‖A∗A‖

∥∥∥∥ =

∥∥∥∥1− A∗A

‖A‖2

∥∥∥∥ ≤ 1 (4.42)
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and therefore, using (4.31),∣∣∣∣ω(1)− ω(A∗A)

‖A‖2

∣∣∣∣ ≤ 1 . (4.43)

With ω(1) = 1 and ω(A∗A) ∈ R this entails the positivity

ω(A∗A) ≥ 0 . (4.44)

The remaining results are straightforward: (4.9a) follows from (4.7a) with
B = Eα in the limit α → ∞ and (4.9b) from (4.7b) in a similar way. Also
(4.9c) follows from using (4.7b), this time in the form

|ω(A∗BA)|2 ≤ ω(A∗A)ω(A∗B∗BA) (4.45)

and noting that
A∗B∗BA ≤ A∗‖B‖2A . (4.46)

Finally, the estimate (4.9b) implies (4.9d).

It is obvious that the sum of two positive linear functionals is again pos-
itive and the foregoing theorem tells us that the norm is additive.

Corollary 4.5. Given two positive linear functionals ω1, ω2 ∈ A∗ on a C∗-
algebra A, their sum is positive and

‖ω1 + ω2‖ = ‖ω1‖+ ‖ω2‖ (4.47)

and the states form a convex subset of A∗.
Proof. Using

‖ω1 + ω2‖ = lim
α

(
ω1(E2

α) + ω2(E2
α)
)

= lim
α
ω1(E2

α) + lim
α
ω2(E2

α) = ‖ω1‖+ ‖ω2‖ (4.48)

for a suitable approximate identity {Eα} we obtain the additivity and with
a similar argument

‖ω‖ = ‖λω1 + (1− λ)ω2‖ = λ‖ω1‖+ (1− λ)‖ω2‖ = 1 (4.49)

the correct normalization of the conical sum.

We have seen in theorem 2.1 that given a C∗-algebra A without identity,
we can always adjoin an identity to obtain a unital C∗-algebra Ã = C1 +A.
We can extend every ω ∈ A∗ to ω̃ ∈ Ã∗

ω̃ (λ1 + A) = λ‖ω‖+ ω(A) . (4.50)

It can be shown easily that ω̃ inherits the positivity, normalization and ad-
ditivity from ω.
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4.1 Pure and Impure States

Just as we used positivity of algebra elements to define an order on the
algebra by A ≤ B ⇔ B − A ≥ 0, we can order the dual space by

∀ω1, ω2 ∈ A∗ : ω1 ≤ ω2 ⇔ ω2 − ω1 ≥ 0 . (4.51)

We say that ω2 majorizes ω1, iff ω2 ≥ ω1. If a state ω is a conical sum of the
states ω1 and ω2, i. e.

ω = λω1 + (1− λ)ω2 (4.52)

with 0 < λ < 1, then

ω − λω1 = (1− λ)ω2 ≥ 0 (4.53a)

ω − (1− λ)ω2 = λω1 ≥ 0 (4.53b)

i. e. ω majorizes both λω1 and (1 − λ)ω2. The normalization of the states
means that there must be smallest states wrt to the ordering just defined.
Therefore one cannot write all of them as conical sums of majorized states.
Thus one can distinguish states ω that can be written as a conical sum of
two other states from those that can not.

Definition 4.6 (pure states). A state ω ∈ A∗ over a C∗-algebra A is called
pure, if all 0 ≤ ω′ ∈ A∗ majorized by ω are of the form ω′ = λω with 0 ≤
λ ≤ 1.

We will denote the convex cone of all states by ΩA ⊂ A∗ and the subset
of all pure states by ΠA ⊂ ΩA.

4.2 The GNS Construction

Lecture 14: Fri, 27. 11. 2015

We have seen that for any representation (H, π) of a C∗-algebra A and
for all Ω ∈ H with ‖Ω‖ = 1, we obtain a vector state ωΩ : A 7→ (Ω, π(A)Ω).
In this section, we will show by construction that every state ω on A is a
vector state for a suitable cyclic representation (Hω, πω,Ωω) and that this
representation will be irreducible, iff ω is pure.

Since every C∗-algebra A is, by definition, a Banach space, we can recycle
its vector space structure to construct a Hilbert space, iff we can find a
suitable nondegenerate sesquilinear form

〈 · , · 〉 : A×A → C

(A,B) 7→ 〈A,B〉
(4.54)
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with ∀A,B,C ∈ A and ∀β, γ ∈ C

〈A,B〉 = 〈B,A〉 (4.55a)

〈A, βB + γC〉 = β〈A,B〉+ γ〈A,C〉 (4.55b)

〈A,A〉 ≥ 0 (4.55c)

〈A,A〉 = 0⇔ A = 0 . (4.55d)

In fact, we can construct a sesquilinear form from any positive linear func-
tional ω on an algebra

〈A,B〉ω = ω(A∗B) . (4.56)

Indeed, all properties (4.55) except (4.55d) can be verified trivially, where
(4.55a) follows from the positivity of ω via (4.7a). However, there will in
general be 0 6= A ∈ A with ω(A∗A) = 0.

Fortunately, these elements form a left ideal

Iω = {A ∈ A : ω(A∗A) = 0} , (4.57)

because

∀I ∈ Iω, A ∈ A : 0 ≤ ω((AI)∗AI) = ω(I∗A∗AI)

≤ ω(I∗I)‖A∗A‖ = ω(I∗I)‖A‖2 = 0 , (4.58)

by result (4.9c) of theorem 4.4. Thus we have shown ∀I ∈ Iω, A ∈ A : AI ∈
Iω. Having identified this left ideal, we can form the factor space H0

ω = A/Iω
consisting of the equivalence classes

ψAω = {Â : Â = A+ I, I ∈ Iω} ∈ H0
ω . (4.59)

By construction, H0
ω is a linear space and we get again a sesquilinear form

〈 · , · 〉 : H0
ω ×H0

ω → C

(ψAω , ψ
B
ω ) 7→ 〈ψAω , ψBω 〉 = ω(A∗B) ,

(4.60)

since we can use the CSI to show that it does not depend on which represen-
tative of each equivalence class is used

∀I ∈ Iω, A ∈ A : |ω(A∗I)| ≤
√
ω(A∗A)

√
ω(I∗I) = 0 , (4.61)

i. e.

∀I ∈ Iω, A ∈ A : ω(A∗(B + I)) = ω(A∗B) + ω(A∗I) = ω(A∗B) . (4.62)
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Conversely

∀I ∈ Iω,A 3 A 6∈ Iω : ω((A+ I)∗(A+ I)) = ω(A∗A) > 0 (4.63)

by the definition of Iω. Thus 〈 · , · 〉 turns H0
ψ into a proper pre-Hilbert

space that can be completed to a Hilbert space Hψ = H0
ψ and 〈 · , · 〉 can be

extended to ( · , · ) on Hψ by the continuity of ω.
Having constructed a Hilbert space is not yet enough for a representation,

we still need to find a homomorphism πω : A → B(Hω). Fortunately, the
algebra structure of A suffices to allow a canonical construction

πω(A) : Hω → Hω

ψBω 7→ πω(A)ψBω = ψABω .
(4.64)

This definition has all the required properties:

• it is well defined, because it’s independent of the representative

∀I ∈ Iω : A(B + I) = AB + AI︸︷︷︸
∈Iω

(4.65)

• it’s linear due to the linear structure of the factor space

πω(α1A1 + α2A2)ψBω = ψ(α1A1+α2A2)B
ω = α1ψ

A1B
ω + α2ψ

A2B
ω

= α1πω(A1)ψBω + α2πω(A2)ψBω (4.66)

• it’s an algebra homomorphism due to the associativity of the algebra

πω(A1)πω(A2)ψBω = πω(A1)ψA2B
ω

= ψA1(A2B)
ω = ψ(A1A2)B

ω = πω(A1A2)ψBω (4.67)

• πω(A) is bounded

‖πω(A)ψBω ‖2 = ‖ψABω ‖2 =
(
ψABω , ψABω

)
= ω ((AB)∗AB)

= ω (B∗A∗AB) ≤ ‖A∗A‖ω (B∗B) = ‖A‖2ω (B∗B)

= ‖A‖2‖ψBω ‖2 (4.68)

i. e.
‖πω(A)‖ ≤ ‖A‖ . (4.69)
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If A is unital, the cyclic vector Ωω is given simply by

Ωω = ψ1
ω (4.70)

because
(Ωω, πω(A)Ωω) =

(
ψ1
ω, ψ

A
ω

)
= ω(1∗A) = ω(A) , (4.71)

since
πω(A)Ωω = πω(A)ψ1

ω = ψAω . (4.72)

We verify that

{πω(A)Ωω : A ∈ A} =
{
ψAω : A ∈ A

}
= Hψ (4.73)

i. e. that Ωω is cyclic for (Hω, πω). OTOH, if A is not unital, we can again
adjoin an identity 1 to get Ã and proceed as above1 This time, however,
while it is again obvious that Ωω = ψ1

ω is cyclic for πω(Ã), it we must also
show that it is cyclic for πω(A). Since only πω(1) is missing from πω(A), it
suffices to show that Ωω = πω(1)Ωω itself is already in Hω = πω(A)Ωω.

Again, the existence of approximate identities, as ensured by theorem 3.7,
comes to the rescue. Let {Eα} be an approximate identity for A, then

‖πω(Eα)Ωω − Ωω‖2 = ‖Ωω‖2︸ ︷︷ ︸
ω(11)

+ ‖πω(Eα)Ωω‖2︸ ︷︷ ︸
ω(EαEα)

−2 (Ωω, πω(Eα)Ωω)︸ ︷︷ ︸
ω(1Eα)

= 1 + ω(E2
α)− 2ω(Eα)

α→ 1 + 1− 2 = 0 (4.75)

i. e.
lim
α
‖πω(Eα)Ωω − Ωω‖ = 0 (4.76)

and Ωω lies in the closure of
⋃
α πω(Eα)Ωω ⊂ πω(A)Ωω.

With this construction, we have already almost proved the

Theorem 4.7 (GNS representation). If ω is a state over the C∗-algebra A,
then there exists a cyclic representation (Hω, πω,Ωω) of A with

∀A ∈ A : ω(A) = (Ωω, πω(A)Ωω) (4.77)

1Note that one can not circumvent Ã by directly using a right approximate identity to
construct Ωω as limα ψ

Eα
ω , because, in general, only the limit limαEαA = A ∈ A exists

and not the limit limαEα ∈ A. Nevertheless, the limit limα ψ
Eα
ω ∈ Hω exists because Hω

is complete and then one can argue

πω(A) lim
α
ψEαω = lim

α
ψAEαω = ψAω (4.74)

iff {Eα}α is a left approximate identity. However, we have only proven the existence of
right approximate identities above.
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and
‖Ωω‖2 = (Ωω,Ωω) = ω(1) = ‖ω‖ . (4.78)

This representation is unique up to unitary equivalence and called the GNS
representation associated to ω.

Proof. After the explicit description of the construction above, it only re-
mains to prove the uniqueness up to unitary equivalence, i. e. that if there is
a second cyclic representation (H′ω, π′ω,Ω′ω), there is a unitary map U : Hω →
H′ω such that

Hω Hω

H′ω H′ω

πω(A)

U U
π′ω(A)

(4.79a)

commutes for all A ∈ A and that

UΩω = Ω′ω . (4.79b)

Due to the cyclicity of the representations, we can construct such a U easily
by demanding (4.79b) and defining

∀A ∈ A : UψAω = Uπω(A)Ωω = π′ω(A)UΩω = π′ω(A)Ω′ω = ψ′ Aω (4.80)

and extending it to all of Hω. This map respects the inner products

(UψAω , Uψ
B
ω ) = (Uπω(A)Ωω, Uπω(B)Ωω) = (π′ω(A)Ω′ω, π

′
ω(B)Ω′ω)

= ω(A∗B) = (πω(A)Ωω, πω(B)Ωω) = (ψAω , ψ
B
ω ) (4.81)

and the existence of the inverse map U−1 : H′ω → Hω can be verified by
explicit construction with U−1Ω′ω = Ωω and

∀A ∈ A : U−1ψ′ Aω = U−1π′ω(A)Ω′ω = πω(A)U−1Ω′ω = πω(A)Ωω = ψAω .
(4.82)

The unitary equivalence of all representations constructed from a state ω
means that the result of the GNS construction is essentially unique. Fur-
thermore, it implies that symmetries, i. e. automorphisms, of a C∗-algebra
are realized in the GNS representations by unitary operators.
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Corollary 4.8. If φ : A → B is a homomorphism of C∗-algebras, then
we have for the GNS representations derived from the states ω : B → C
and ω ◦ φ : A → C

πω◦φ = πω ◦ φ , (4.83)

upto unitary equivalence.

Proof. The situation is clarified by the commutative diagram

A L(Hω◦φ)

C

B L(Hω)

πω◦φ
ω ◦ φ

φ

πωω

∼=

(4.84)

Given the representations (Hω, πω,Ωω) and (Hω◦φ, πω◦φ,Ωω◦φ), we can com-
pute

(Ωω◦φ, πω◦φ(A)Ωω◦φ) = (ω ◦ φ)(A) = ω(φ(A)) = (Ωω, πω(φ(A))Ωω) (4.85)

and by theorem 4.7 we infer that, up to unitary equivalence,

πω◦φ = πω ◦ φ . (4.86)

Corollary 4.9 (unitary realization of automorphisms). If τ : A → A is
an automorphism of a C∗-algebra that leaves a state ω : A → C invariant,
i. e. ω ◦ τ = ω or

∀A ∈ A : ω(τ(A)) = ω(A) , (4.87)

then there exists a unique unitary U τ
ω : Hω → Hω with

U τ
ωπω(A) (U τ

ω)−1 = πω(τ(A)) (4.88a)

U τ
ωΩω = Ωω . (4.88b)

Proof. This is simple consequence of corollary 4.8 and

ω ◦ τ = ω . (4.89)
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Lecture 15: Wed, 02. 12. 2015

An important result concerns the relation of the purity of states and irre-
ducibility of the corresponding GNS representations:

Theorem 4.10 (purity vs. irreducibility). If ω is a state over a C∗-algebra A
and (Hω, πω,Ωω) the associated GNS representations of A, then the following
statements are equivalent

1. the representation (Hω, πω) is irreducible

2. ω is pure .

In addition, there is a one-to-one correspondence between the positive func-
tionals ωT ≤ ω and positive operators T with ‖T‖ ≤ 1Hω and commuting
with all operators in πω(A). This correspondence is given by

ωT (A) = (TΩω, πω(A)Ωω) . (4.90)

Proof. In order to prove that 2) follows from 1), assume that ω is not pure.
Then there is a positive ρ 6= λω,∀λ ∈ R+ majorized by ω, i. e. ∀A ∈ A : 0 ≤
ρ(A∗A) ≤ ω(A∗A). Using once more the CSI

|ρ(B∗A)|2 ≤ ρ(B∗B)ρ(A∗A) ≤ ω(B∗B)ω(A∗A)

= ‖πω(B)Ωω‖2‖πω(A)Ωω‖2 = ‖ψBω ‖2‖ψAω ‖2 , (4.91)

we see that
ρ̂ : Hω ×Hω → C

(ψBω , ψ
A
ω ) 7→ ρ(B∗A)

(4.92)

is a densly defined, bounded sesquilinear functional. By the Riesz represen-
tation theorem, there is a bounded operator T ∈ L(Hω), such that

ρ(B∗A) =
(
ψBω , Tψ

A
ω

)
= (πω(B)Ωω, Tπω(A)Ωω) . (4.93)

Since ρ is not a multiple of ω, this T must not be a multiple of 1Hω . From

0 ≤ (πω(A)Ωω, Tπω(A)Ωω) = ρ(A∗A)

≤ ω(A∗A) = (πω(A)Ωω, πω(A)Ωω) (4.94)

we conclude
0 < T < 1Hω . (4.95)

Futhermore
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∀C ∈ A : (πω(B)Ωω, Tπω(C)πω(A)Ωω) = ρ(B∗CA) = ρ((C∗B)∗A)

= (πω(C)∗πω(B)Ωω, Tπω(A)Ωω) = (πω(B)Ωω, πω(C)Tπω(A)Ωω) (4.96)

i. e.
∀C ∈ A : Tπω(C) = πω(C)T (4.97)

or T ∈ πω(A)′ and (Hω, πω) is reducible.
OTOH, assume that (Hω, πω) is reducible. Then there is a T ∈ πω(A)′

with T 6 λ1Hω . Since (πω(A))∗ = πω(A), also T ∗, T + T ∗ and (T − T ∗)/i lie
in the commutant πω(A)′. Consequently, there is a self-adjoint S ∈ πω(A)′

with S 6= λ1Hω and a corresponding spectral projection P ∈ πω(A)′ with 0 <
P < 1Hω . This allows to define a ρ : A → C via

ρ(A) = (PΩω, πω(A)Ωω) . (4.98)

This ρ is positive, because

ρ(A∗A) = (PΩω, πω(A∗A)Ωω)

= (πω(A)PΩω, πω(A)Ωω) = (Pπω(A)Ωω, Pπω(A)Ωω) ≥ 0 . (4.99)

Also

ω(A∗A)− ρ(A∗A) = (πω(A)Ωω, (1− P )πω(A)Ωω) ≥ 0 (4.100)

and ω majorizes ρ. But ρ can not be a multiple of ω, because P is not a
multiple of 1 and therefore ω is not pure. This shows that 1) follows from 2).

The correspondence between postive functionals and postive operators
has been shown by construction en passant.

Note that this relation of purity and irreducibility applies only to the
GNS representation. One can realize an impure state with a density matrix
in an irreducible state, but this is not the GNS representation associated
with this state.
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—5—
Quantum Mechanics

5.1 Weyl Systems

Definition 5.1. A symplectic vector space (V,Θ) is a vector space with V
a real vector space and Θ : V × V → R a non-degenerate antisymmetric
bilinear map, i. e. ∀v, u, w ∈ V, α, β ∈ R

Θ(v, u) = −Θ(u, v) (5.1a)

Θ(v, αu+ βw) = αΘ(v, u) + βΘ(v, w) (5.1b)

(∀v ∈ V : Θ(v, u) = 0)⇒ u = 0 . (5.1c)

If the dimension of V is finite, it is necessarily even.

Example 5.2 (canonical phase space). Consider a flat n-dimensional configu-
ration space q ∈ Rn and the corresponding phase space

z = (z1, . . . , z2n) = (q, p) = (q1, . . . , qn, p1, . . . , pn) ∈ R2n = V . (5.2)

The Poisson brackets (i, j = 1, . . . , n)

{qi, pj} = δij (5.3a)

{qi, qj} = 0 (5.3b)

{pi, pj} = 0 (5.3c)

define a symplectic structure (α, β = 1, . . . , 2n)

{zα, zβ} = θαβ (5.4)

with the antisymmetric 2n× 2n-matrix

θ =

(
0 1
−1 0

)
. (5.5)
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This corresponds to a symplectic form

Θ : R2n ×R2n → R

((q, p)︸ ︷︷ ︸
z

, (q′, p′)︸ ︷︷ ︸
z′

) 7→
2n∑

α,β=1

zαθ
αβz′β =

n∑
i=1

(qip
′
i − piq′i) .

(5.6)

Example 5.3 (complex vector space). Using the canonical identification

Cn 3 (x1 + iy1, . . . , xn + iyn) = (x1, . . . , xn, y1, . . . , yn) ∈ R2n (5.7)

the preceding example is equivalent to

Θ : Cn ×Cn → R

(z, z′) 7→
n∑
i=1

Im z̄iz
′
i .

(5.8)

Example 5.4 (Peierls brackets). Consider the vector space Sm(Rn+1) of (smooth)
solutions φ : R×Rn → R of the Klein-Gordon equation with mass m(

∂2

∂x2
0

−
n∑
i=1

∂2

∂x2
i

+m2

)
φ(x) =

(
� +m2

)
φ(x) = 0 . (5.9)

that fall off “suffiently fast” at “spatial infinity”, i. e. |x1,...,n| → ∞. The
Peierls bracket

〈 · , · 〉 : Sm(Rn+1)× Sm(Rn+1)→ R

(φ, ψ) 7→ 〈φ, ψ〉 = 〈φ, ψ〉t
(5.10)

with

〈φ, ψ〉t =

∫
x0=t

dnx

(
φ(x)

∂ψ

∂x0

(x)− ∂φ

∂x0

(x)ψ(x)

)
(5.11)

is, due to the Klein-Gordon equation and falloff at spatial infinity, inde-
pendent of t and can be used to turn Sm(Rn+1) into the symplectic vector
space (Sm(Rn+1), 〈 · , · 〉). The nondegeneracy can shown by considering the
initial conditions for the Klein-Gordon equation (→ exercise).

Definition 5.5. A Weyl system (A,W ) of a symplectic vector space (V,Θ)
is a C∗-algebra A together with a map W : V → A, such that ∀φ, ψ ∈ V

W (0) = 1 (5.12a)

(W (φ))∗ = W (−φ) (5.12b)

W (φ)W (ψ) = e−
i
2

Θ(φ,ψ)W (φ+ ψ) . (5.12c)

Note that we don’t require W to be continuous. In fact, we don’t even
assume V to have a topology.



ohl: Fri Feb 5 13:21:28 CET 2016 subject to change! 71

Example 5.6 (one particle quantum mechanics in one dimension). Consider
V = R2 with

Θ : V × V → R

((ξ1, η1), (ξ2, η2)) 7→ η1ξ2 − ξ1η2 .
(5.13)

Then the composition law in the corresponding Weyl system is

W (ξ1, η1)W (ξ2, η2) = e
i
2

(ξ1η2−η1ξ2)W (ξ1 + ξ2, η1 + η2) . (5.14)

The connection with quantum mechanics is to formally write

W (ξ, η) = eiξp+iηx (5.15)

with the unbounded hermitian operators

x = x∗ (5.16a)

p = p∗ (5.16b)

[x, p] = i (5.16c)

[x, x] = [p, p] = 0 (5.16d)

and to use
eAeB = eA+B+ 1

2
[A,B] = eA+Be

1
2

[A,B] (5.17)

for [A, [A,B]] = [[A,B], B] = 0. Then we obtain

W (ξ1, η1)W (ξ2, η2) = eiξ1p+iη1xeiξ2p+iη2x

= eiξ1p+iη1x+iξ2p+iη2xe−
1
2

[ξ1p+η1x,ξ2p+η2x] = ei(ξ1+ξ2)p+i(η1+η2)xe
i
2

(ξ1η2−η1ξ2)

= e
i
2

(ξ1η2−η1ξ2)W (ξ1 + ξ2, η1 + η2) (5.18)

i. e., up to domain issues for unbounded operators, the canonical commutation
relations (5.16) are equivalent to the Weyl form of the canonical commutation
relations (5.14).

Definition 5.7. The algebra AW generated by the W (ξ, η), i. e. the comple-
tion of the linear span of the W (ξ, η) is called the Weyl algebra.

Example 5.8 (n particle quantum mechanics). Consider V = R2n with

Θ : V × V → R

((ξ1, η1), (ξ2, η2)) 7→
n∑
i=1

(η1,iξ2,i − ξ1,iη2,i) .
(5.19)
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Then the composition law in the corresponding Weyl system is

W (ξ1, η1)W (ξ2, η2) = e
i
2

∑n
i=1(ξ1,iη2,i−η1,iξ2,i)W (ξ1 + ξ2, η1 + η2) . (5.20)

The connection with quantum mechanics is again to formally write

W (ξ, η) = exp

(
i

n∑
i=1

(ξipi + ηixi)

)
. (5.21)

Example 5.9 (general Weyl system). Let H = L2(V,C) be the Hilbert space
of all functions f : V → C that are square integrable wrt the counting
measure1, i. e. f ∈ H, iff f vanishes everywhere except for countably many
points φ ∈ V and

‖f‖2
H =

∑
φ∈V

|f(φ)|2 <∞ . (5.22)

The inner product on H is then accordingly

〈f, g〉H =
∑
φ∈V

f(φ)g(φ) . (5.23)

Let A ⊂ L(H) be the C∗-algebra of bounded operators on H and define

W : V → A
φ 7→ W (φ)

(5.24a)

where the action of W (φ) : H → H is given by

(W (φ)f) (ψ) = e
i
2

Θ(φ,ψ)f(φ+ ψ) . (5.24b)

Lecture 16: Fri, 04. 12. 2015

It’s easy to check (5.12): each W (φ) is obviously bounded

∀φ ∈ V, f ∈ H : ‖W (φ)f‖ = ‖f‖ (5.25)

and (5.12a) is also obvious

∀f ∈ H : (W (0)f) (ψ) = f(ψ) . (5.26)

1Note that everything works for L2(V,C) with more general measures, including the
Lebesgue measuer, except for statement 4) of theorem 5.10, whose proof uses an induction
argument.
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Verifying (5.12b) requires a short calculation

∀φ ∈ V, f, g ∈ H : 〈f, (W (φ))∗ g〉H = 〈W (φ)f, g〉H
=
∑
ψ∈V

(W (φ)f) (ψ)g(ψ) =
∑
ψ∈V

e
i
2

Θ(φ,ψ)f(φ+ ψ)g(ψ)

χ=φ+ψ
=

∑
χ∈V

e
i
2

Θ(φ,χ−φ)f(χ)g(χ− φ) =
∑
χ∈V

f(χ)e
i
2

Θ(−φ,χ)g(χ− φ)

=
∑
χ∈V

f(χ) (W (−φ)g) (χ) = 〈f,W (−φ)g〉H (5.27)

similarly for (5.12c)

∀φ, ψ, χ ∈ V, f ∈ H : ((W (φ)W (ψ)) f) (χ) = (W (φ) (W (ψ)f)) (χ)

= e
i
2

Θ(φ,χ) (W (ψ)f) (φ+ χ) = e
i
2

Θ(φ,χ)e
i
2

Θ(ψ,φ+χ)f(ψ + φ+ χ)

= e
i
2

Θ(ψ,φ)e
i
2

Θ(φ+ψ,χ)f(ψ + φ+ χ) = e−
i
2

Θ(φ,ψ) (W (φ+ ψ)f) (χ)

=
(

e−
i
2

Θ(φ,ψ)W (φ+ ψ)f
)

(χ) . (5.28)

Theorem 5.10. Let (A,W ) be a Weyl system of a symplectic vector space (V,Θ),
then

1. W (φ) is unitary for all φ ∈ V ,

2. ‖W (φ)−W (ψ)‖ = 2 for all φ 6= ψ ∈ V ,

3. A is not separable, unless V = {0},

4. the family {W (φ)}φ∈V is linearly independent.

Proof.

1. Obviously

(W (φ))∗W (φ) = W (−φ)W (φ) = 1 (5.29a)

W (φ) (W (φ))∗ = W (φ)W (−φ) = 1 . (5.29b)

2. ∀φ, χ ∈ V :

W (χ)W (φ) (W (χ))−1 = W (χ)W (φ)W (−χ)

= e−
i
2

Θ(χ,φ)W (χ+ φ)W (−χ) = e−
i
2

Θ(χ,φ)e−
i
2

Θ(φ,−χ)W (φ)
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= e−iΘ(χ,φ)W (φ) . (5.30)

Note that z1 − A is invertible, iff U(z1 − A)U−1 = z1 − UAU−1 is
invertible for invertible U . Therefore the spectrum is invariant under
similarity transformations

σ(A) = σ
(
UAU−1

)
(5.31)

and (5.30) implies

σ (W (φ)) = σ
(
W (χ)W (φ) (W (χ))−1) = e−iΘ(χ,φ)σ (W (φ)) . (5.32)

If φ 6= 0 and Θ is non degenerate, there is a χ such that V 3 φ 7→
Θ(χ, φ) is onto R and V 3 φ 7→ e

i
2

Θ(χ,φ) is onto S1 = {z ∈ C : |z| = 1}.
Thus, for φ 6= 0, the spectrum of W (φ) is invariant under arbitrary
rotations z 7→ eiαz. Since σ (W (φ)) 6= ∅ by theorem 2.11 and, by
unitarity, σ (W (φ)) ⊆ S1 we conclude that

∀φ 6= 0 : σ (W (φ)) = S1 . (5.33)

Therefore

∀φ 6= ψ : σ
(

e
i
2

Θ(ψ,φ)W (φ− ψ)− 1
)

= S1 − 1 (5.34)

and since e
i
2

Θ(ψ,φ)W (φ − ψ) − 1 is normal, the norm is given by the
spectral radius

∀φ 6= ψ : ‖e
i
2

Θ(ψ,φ)W (φ− ψ)− 1‖ = ρ
(

e
i
2

Θ(ψ,φ)W (φ− ψ)− 1
)

= 2 .

(5.35)
Using

W (φ)−W (ψ) = W (ψ) (W (−ψ)W (φ)− 1)

= W (ψ)
(

e
i
2

Θ(ψ,φ)W (φ− ψ)− 1
)
, (5.36)

we obtain the desired result

‖W (φ)−W (ψ)‖2 = ‖(W (φ)−W (ψ))∗ (W (φ)−W (ψ))‖

=
∥∥∥(e

i
2

Θ(ψ,φ)W (φ− ψ)− 1
)∗

(W (ψ))∗W (ψ)
(

e
i
2

Θ(ψ,φ)W (φ− ψ)− 1
)∥∥∥

=
∥∥∥(e

i
2

Θ(ψ,φ)W (φ− ψ)− 1
)∗ (

e
i
2

Θ(ψ,φ)W (φ− ψ)− 1
)∥∥∥

=
∥∥∥e

i
2

Θ(ψ,φ)W (φ− ψ)− 1
∥∥∥2

= 4 . (5.37)
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3. Since ‖W (φ)−W (ψ)‖ = 2, the open balls of radius 1 that are centered
at φ ∈ V are a collection of disjoint open sets that is not countable.

4. Assume that there is a {φi}i=1,...,n such that φi 6= φj for i 6= j and

n∑
i=1

αiW (φi) = 0 . (5.38)

We will show by induction on n that αi = 0. The case n = 1 is trivial,
because all W (φ) are unitary and thus never null. For the induction
step, asumme WLOG that the {W (φi)}i=1,n−1 are linearly independent
and αn 6= 0. Then

W (φn) = −
n−1∑
i=1

αi
αn
W (φi) (5.39)

and

1 = W (−φn)W (φn) = −
n−1∑
i=1

αi
αn
W (−φi)W (φn)

(5.30)
=

n−1∑
i=1

βiW (φn − φi) , (5.40)

with
βi = − αi

αn
e

i
2

Θ(φi,φn) . (5.41)

For all ψ ∈ V

1 = W (ψ) 1W (−ψ) =
n−1∑
i=1

βiW (ψ)W (φn − φi)W (−ψ)

=
n−1∑
i=1

βie
i
2

Θ(ψ,φn−φi)W (ψ + φn − φi)W (−ψ)

=
n−1∑
i=1

βie
iΘ(ψ,φn−φi)W (φn − φi) , (5.42)

i. e.
n−1∑
i=1

βiW (φn − φi) =
n−1∑
i=1

βie
iΘ(ψ,φn−φi)W (φn − φi) (5.43)
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or, by the induction hypothesis,

∀i = 1, . . . , n− 1 : βi = βie
iΘ(ψ,φn−φi) . (5.44)

If βi 6= 0 for i < n, then

∀ψ ∈ V : Θ(ψ, φn − φi) = 0 mod 2π . (5.45)

By linearity
∀ψ ∈ V : Θ(ψ, φn − φi) = 0 (5.46)

and since Θ is non-degenerate we find the contradiction

φn = φi . (5.47)

Thus ∀i = 1, . . . , n : βi = 0 and also αi = 0.

5.2 The Stone-von Neumann Theorem

In the following, it will sometimes be convenient to use in place of W (ξ, η)
Weyl’s

U(η) = W (0, η) (5.48a)

V (ξ) = W (ξ, 0) , (5.48b)

which form two abelian one-parameter groups of unitary elements of AW

U(η)U(η′) = U(η + η′) (5.49a)

V (ξ)V (ξ′) = V (ξ + ξ′) . (5.49b)

The general W (ξ, η) can of course be expressed by U(η) and V (ξ) since

U(η)V (ξ) = W (0, η)W (ξ, 0) = W (ξ, η)e−
i
2
ηξ (5.50a)

V (ξ)U(η) = W (ξ, 0)W (0, η) = W (ξ, η)e
i
2
ξη , (5.50b)

i. e.
W (ξ, η) = e−

i
2
ηξV (ξ)U(η) = e

i
2
ηξU(η)V (ξ) . (5.51)

Definition 5.11 (regular representation). A representation π of the Weyl
algebra AW on a separable Hilbert space H is called regular, if R 3 ξ 7→
π(V (ξ)) = π(W (ξ, 0)) and R 3 η 7→ π(U(η)) = π(W (0, η)) are strongly
continuous in ξ and η, respectively.
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Theorem 5.12 (Stone-von Neumann). All regular irreducible representa-
tions of the Weyl algebra AW of a finite dimensional symplectic vector space
are unitarily equivalent.

Proof. Starting from the Fock state ωF : AW → C, defined by

ωF (W (ξ, η)) = exp

(
−ξ

2 + η2

4

)
(5.52)

and linearity, we construct the corresponding GNS representation (HF , πF ,ΩF )
with

(ΩF , πF (W (ξ, η))ΩF ) = ωF (W (ξ, η)) . (5.53)

Now consider another regular representation π and compute the integral

Pπ =

∫
dξdη

2π
e−

ξ2+η2

4 π(W (ξ, η)) . (5.54)

This integral exists as a limit of Riemann sums in the strong operator topol-

ogy, because (ξ, η) 7→ e−
ξ2+η2

4 ∈ L1(R2) and π(W (ξ, η)) is both bounded and
continuous in ξ and η. Pπ is obviously self-adjoint

P ∗π =

∫
dξdη

2π
e−

ξ2+η2

4 π(W (−ξ,−η)) = Pπ . (5.55)

It is not obvious that Pπ doesn’t vanish. However, if this was the case, then
using

W (−ξ′,−η′)W (ξ, η)W (ξ′, η′) = e−
i
2

(ξ′η−η′ξ)W (ξ − ξ′, η − η′)W (ξ′, η′)

= e−
i
2

(ξ′η−η′ξ)e
i
2

(ξη′−ηξ′)W (ξ, η) = eiξη′−iηξ′W (ξ, η) (5.56)

(that’s (5.30) again), we find

0 = π(W (−ξ′,−η′))Pππ(W (ξ′, η′))

=

∫
dξdη

2π
e−

ξ2+η2

4 π(W (−ξ′,−η′)W (ξ, η)W (ξ′, η′))

=

∫
dξdη

2π
e−

ξ2+η2

4 π(W (ξ, η))eiξη′−iηξ′ , (5.57)

i. e. that the Fourier transform of all matrix elements of

e−
ξ2+η2

4 π(W (ξ, η)) (5.58)

would vanish, which would imply π(W (ξ, η)) = 0. Also, using
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W (ξ1, η1)W (ξ, η)W (ξ2, η2) = e
i
2

(ξ1η−η1ξ)W (ξ + ξ1, η + η1)W (ξ2, η2)

= e
i
2

(ξ1η−η1ξ)e
i
2

((ξ+ξ1)η2−(η+η1)ξ2)W (ξ + ξ1 + ξ2, η + η1 + η2)

= e
i
2

(ξ1η+ξη2+ξ1η2−η1ξ−ηξ2−η1ξ2)W (ξ + ξ1 + ξ2, η + η1 + η2) (5.59)

we find by a straightforward computation of two Gaussian integrals (→ ex-
ercise)

Pππ(W (ξ, η))Pπ = e−
ξ2+η2

4 Pπ . (5.60)

In particular from
P 2
π = Pππ(W (0, 0))Pπ = Pπ , (5.61)

we see that Pπ 6= 0 is an orthogonal projection. Thus there must be a Ω0 ∈
Hπ with

PπΩ0 = Ω0 (5.62a)

‖Ω0‖ = 1 (5.62b)

and we can compute

(Ω0, π(W (ξ, η))Ω0) = (Ω0, Pππ(W (ξ, η))PπΩ0)

(5.60)
= e−

ξ2+η2

4 (Ω0, PπΩ0)︸ ︷︷ ︸
‖Ω0‖2

= e−
ξ2+η2

4 = ωF (W (ξ, η)) . (5.63)

This shows that Ω0 = Ωπ and we have already shown in theorem 4.7 that all
GNS representations corresponding to the same state are unitarily equivalent.

We have proven the theorem for one degree of freedom or V = R × R,
but the same argument works for any finite number of degrees of freedom.
However, it breaks down for an infinite number of degrees of freedom, because
then the integral in (5.54) doesn’t exist straightforwardly.

Lecture 17: Wed, 09. 12. 2015

Remark 5.13. Pπ projects on a one-dimensional subspace.

Proof. Assume

∃Ψ ∈ Hπ : (Ψ,Ω0) = 0 ∧ PπΨ = Ψ 6= 0, (5.64)

then
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∀ξ, η ∈ R : (Ψ, π(W (ξ, η))Ω0) = (PπΨ, π(W (ξ, η))PπΩ0)

= e−
ξ2+η2

4 (Ψ, PπΩ0) = e−
ξ2+η2

4 (Ψ,Ω0) = 0 (5.65)

and thus
∀A ∈ AW : (Ψ, π(A)Ω0) = 0 . (5.66)

Since every Ψ ∈ Hπ is cyclic in an irreducible representation, we conclude
that Ψ = 0.

Note that we needed the strong continuity of the representation only to
show that the integral (5.54) exists. We could have relaxed this condition to
measurability of

ξ 7→ (Ψ, π(V (ξ))Φ) (5.67a)

η 7→ (Ψ, π(U(η))Φ) (5.67b)

for all Ψ,Φ ∈ H. However there is a theorem by von Neumann (see, e. g.,
[RS80], theorem VIII.9, p. 268), that weak measurability implies strong con-
tinuity. Thus we may demand strong continuity, WLOG.

Using (5.50), we can compute the Fock state of a product of U(η) and V (ξ):

ωF (U(η)V (ξ)) = e−
i
2
ξηωF (W (ξ, η)) = e−

ξ2+η2

4
− i

2
ξη . (5.68)

Computing the partial derivatives from this explicit expression

∂

∂ξ
ωF (U(η)V (ξ)) = − iη + ξ

2
ωF (U(η)V (ξ)) (5.69a)

∂

∂η
ωF (U(η)V (ξ)) = − iξ + η

2
ωF (U(η)V (ξ)) , (5.69b)

we can derive the differental equation(
−i

∂

∂ξ
+

∂

∂η
+ η

)
ωF (U(η)V (ξ)) = 0 . (5.70)

Since η 7→ πF (U(η)) and ξ 7→ πF (V (ξ)) are strongly continuous, Stone’s
Theorem (see, e. g., [RS80], theorem VIII.8, p. 266), guarantees the existence
of self-adjoint operators X and P that are in general unbounded, but defined
on dense subdomains of DX , DY ⊆ Hπ

X : DX → Hπ (5.71a)

P : DP → Hπ (5.71b)
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with

πF (U(η)) = eiηX (5.72a)

πF (V (ξ)) = eiξP . (5.72b)

Thus we can write

−i
∂

∂ξ
πF (V (ξ)) = PπF (V (ξ)) = πF (V (ξ))P (5.73a)

∂

∂η
πF (U(η)) = iXπF (U(η)) = iπF (U(η))X (5.73b)

and find(
−i

∂

∂ξ
+

∂

∂η
+ η

)
πF (U(η))πF (V (ξ)) = πF (U(η)) (P + iX + η) πF (V (ξ))

(5.74)
i. e., from (5.70),

0 =

(
−i

∂

∂ξ
+

∂

∂η
+ η

)
(ΩF , πF (U(η)V (ξ))ΩF )

= (ΩF , πF (U(η)) (P + iX + η)πF (V (ξ))ΩF ) . (5.75)

Since

X = −i lim
η→0

∂

∂η
πF (U(η)) (5.76a)

P = −i lim
ξ→0

∂

∂ξ
πF (V (ξ)) . (5.76b)

we can compute

XπF (W (ξ, η))− πF (W (ξ, η))X

= −i lim
η′→0

∂

∂η′
(πF (W (0, η′))πF (W (ξ, η))− πF (W (ξ, η))πF (W (0, η′)))

= −i lim
η′→0

∂

∂η′

(
πF (W (ξ, η + η′))e−

i
2
ξη′ − πF (W (ξ, η + η′))e

i
2
ξη′
)

= −2 lim
η′→0

∂

∂η′

(
πF (W (ξ, η + η′)) sin

ξη′

2

)
= −2 lim

η′→0

(
sin

ξη′

2

∂

∂η′
πF (W (ξ, η + η′)) + πF (W (ξ, η + η′))

ξ

2
cos

ξη′

2

)
= −ξπF (W (ξ, η)) (5.77)
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and analogously

PπF (W (ξ, η))− πF (W (ξ, η))P

= −i lim
ξ′→0

∂

∂ξ′
(πF (W (ξ′, 0))πF (W (ξ, η))− πF (W (ξ, η))πF (W (ξ′, 0)))

= −i lim
ξ′→0

∂

∂ξ′

(
πF (W (ξ + ξ′, η))e

i
2
ξ′η − πF (W (ξ + ξ′, η))e−

i
2
ξ′η
)

= 2 lim
ξ′→0

∂

∂ξ′

(
πF (W (ξ + ξ′, η)) sin

ξ′η

2

)
= 2 lim

ξ′→0

(
sin

ξ′η

2

∂

∂ξ′
πF (W (ξ + ξ′, η)) + πF (W (ξ + ξ′, η))

η

2
cos

ξ′η

2

)
= ηπF (W (ξ, η)) , (5.78)

i. e.

XπF (W (ξ, η)) = πF (W (ξ, η))(X − ξ) (5.79a)

PπF (W (ξ, η)) = πF (W (ξ, η))(P + η) . (5.79b)

Using this, we can infer from (5.75)

0 = (ΩF , πF (U(η))(X − iP − iη)πF (V (ξ))ΩF )

= (ΩF , (X − iP )πF (U(η))πF (V (ξ))ΩF )

= ((X + iP )ΩF , πF (U(η))πF (V (ξ))ΩF ) (5.80)

i. e.
∀Ψ ∈ Hπ : ((X + iP )ΩF ,Ψ) = 0 (5.81)

or
(X + iP )ΩF = 0 , (5.82)

which should be familiar from the algebraic solution of the harmonic oscillator

H =
1

2
p2 +

1

2
x2 = a∗a+

1

2
(5.83)

with

a =
1√
2

(x+ ip) (5.84)

in elementary quantum mechanics.
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5.3 Schrödinger Representation & Wave Functions

In the following, we will construct a particular representation (HS, πS) ofAW .
The Hilbert space is HS = L2(R,C) with the standard Lebesgue measure
on R. And πS : AW → L(HS) is uniquely defined by the action of the
generating elements {πS(W (ξ, η))}ξ,η∈R on the elements of HS:

(πS(U(η))ψ)(x) = eiηxψ(x) (5.85a)

(πS(V (ξ))ψ)(x) = ψ(x+ ξ) (5.85b)

therefore

(πS(W (ξ, η))ψ)(x) =
((

e
i
2
ηξπS(U(η))πS(V (ξ))

)
ψ
)

(x)

= e
i
2
ηξ (πS(U(η)) (πS(V (ξ))ψ)) (x) = e

i
2
ηξeiηx (πS(V (ξ))ψ) (x)

= eiη(x+ξ/2)ψ(x+ ξ) . (5.86)

This definition satisfies the Weyl relations (5.14) (→ exercise). Note that
is different from the general Weyl system described in example 5.9, where
the π(W (ξ, η)) act on functions on R2. Here we have functions on R.

Theorem 5.14. The Schrödinger representation (HS, πS) with (5.85) is ir-
reducible.

Proof. If (HS, πS) were reducible, there would be a H′ ⊂ HS invariant un-
der πS(AW ) and a φ ∈ HS with

∀ψ ∈ H′, ξ, η ∈ R : 0 = (φ, πS(U(η)V (ξ))ψ)

= (πS(U(−η))φ, πS(V (ξ))ψ) =

∫
dx eiηxφ(x)ψ(x+ ξ) , (5.87)

i. e., the Fourier transform of

x 7→ φ(x)ψ(x+ ξ) (5.88)

vanishes for all ξ ∈ R. Therefore the intersection of the support of φ and the
support of ψ shifted by ξ vanishes. Since ξ is arbitrary, and the support of ψ
is not empty, the support of φ must be empty, i. e. φ = 0. Thus (HS, πS)
can’t be reducible.

Theorem 5.15. The Schrödinger representation (HS, πS) is strongly contin-
uous as maps R→ L(L2(R,C))

ξ 7→ πS(V (ξ)) (5.89a)

η 7→ πS(U(η)) (5.89b)

with (5.85).
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Proof. First compute

‖πS(U(η))ψ − ψ‖2 =

∫
dx |ψ(x)|2

∣∣eiηx − 1
∣∣2︸ ︷︷ ︸

≤ 4xs|ψ(x)|2
(5.90)

and observe that both

x 7→ 4|ψ(x)|2 ∈ L1(R,C) (5.91)

and
lim
η→0
|ψ(x)|2

∣∣eiηx − 1
∣∣2 = 0 (5.92)

pointwise. Therefore, by the Lebesgue dominated convergence theorem2, we
have convergence of the integrand in the L1(R,C) topology and therefore

lim
η→0
‖πS(U(η))ψ − ψ‖2 = 0 (5.93)

in the L2(R,C) topology. Analogously, we can compute

‖πS(V (ξ))ψ − ψ‖2 =

∫
dx |ψ(x+ ξ)− ψ(x)|2︸ ︷︷ ︸

≤ (|ψ(x+ ξ)|+ |ψ(x)|)2

(5.94)

and again both

x 7→ (|ψ(x+ ξ)|+ |ψ(x)|)2 ∈ L1(R,C) (5.95)

and
lim
ξ→0
|ψ(x+ ξ)− ψ(x)|2 = 0 (5.96)

pointwise. Therefore

lim
ξ→0
‖πS(V (ξ))ψ − ψ‖2 = 0 (5.97)

using the same argument.

2E. g. stated as Theorem I.11 on p. 17 of [RS80]:

Theorem 5.16 (Lebesgue dominated convergence theorem). If ∀x ∈ R : fn(x) → f(x)
pointwise and ∃g ∈ L1(R) : ∀x ∈ R,∀n : |fn(x)| ≤ g(x), then f ∈ L1(R) and

∫
dx |fn(x)−

f(x)| → 0.
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Lecture 18: Fri, 11. 12. 2015

Having established the strong continuity, we can use Stone’s theorem to
construct the self-adjoint operators

X = −i lim
η→0

∂

∂η
πS(U(η)) (5.98a)

P = −i lim
ξ→0

∂

∂ξ
πS(V (ξ)) . (5.98b)

On one hand

XP = − lim
ξ,η→0

∂

∂η

∂

∂ξ
πS(U(η)V (ξ)) (5.99)

and on the other

PX = − lim
ξ,η→0

∂

∂η

∂

∂ξ
πS(V (ξ)U(η))

= − lim
ξ,η→0

∂

∂η

∂

∂ξ

(
πS(U(η)V (ξ))eiηξ

)
= XP − i1 . (5.100)

Thus
XP − PX = [X,P ] = i1 (5.101)

and X and P can play the role of position and momentum operators on a
common dense domain S(R) ⊂ HS, i. e. the Schwartz space of smooth func-
tions that fall off faster than any inverse power. We can therefore use f(X)
and g(P ) the observables representing functions of position and momentum,
respectively.

5.3.1 N Degrees of Freedoms

We can easily extend the Schrödinger representation (HS, πS) to a AW with
N degrees of freedom. The Hilbert space is now HS = L2(RN ,C) with the
standard Lebesgue measure on RN . The homomorphism πS : AW → L(Hs)

is uniquely defined by the action of {πS(W (~ξ, ~η))}~ξ,~η∈RN on the elements
of HS by

(πS(W (~ξ, ~η))ψ)(~x) = ei~η(~x+~ξ/2)ψ(~x+ ~ξ) . (5.102)

All regular representations of the Weyl algebra for N d.o.f. are again unitarily
equivalent, since the proof given above goes through.
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5.3.2 Equivalent Representations

We can generalize the above representation π = πS to a two-parameter family
of representations (Hα,β, πα,β) with α, β ∈ R

πα,β(W (ξ, η)) = ei(ξβ−ηα)π(W (ξ, η)) (5.103)

where obviously H = H0,0 and π = π0,0. In particular

(πα,β(U(η))ψ)(x) = eiη(x−α)ψ(x) (5.104a)

(πα,β(Vβ(ξ))ψ)(x) = eiξβψ(x+ ξ) (5.104b)

or
(πα,β(W (ξ, η))ψ)(x) = eiη(x+ξ/2)+i(ξβ−ηα)ψ(x+ ξ) . (5.105)

According to the Stone-von Neumann theorem, all these representations must
be unitarily equivalent. This is indeed the case and we can useHα,β = H0,0 =
H0,0 and πα,β = π0,0 ◦ Uα,β = π ◦ Uα,β with the intertwiners

Uα,β = π(W (α, β)) ∈ L(H) , (5.106)

because from (5.59)

W (−α,−β)W (ξ, η)W (α, β) = ei(βξ−ηα)W (ξ, η) (5.107)

and therefore

U−1
α,βπ(W (ξ, η))Uα,β = ei(βξ−ηα)π(W (ξ, η)) = πα,β(W (ξ, η)) . (5.108)

5.3.3 Pitfalls on the Circle

The proof of the Stone-von Neumann theorem presented above works equally
well for any finite number of degrees of freedom, but fails for an infinite
number of d.o.f., because the infinite product of Gaussian integrals in (5.54)
is not well defined. However, there are simpler systems, where the Stone-von
Neumann theorem doesn’t apply.

Consider a particle on the circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}. A
more convenient parametrization is

S1 = {(cosφ, sinφ) ∈ R2 : 0 ≤ φ < 2π} , (5.109)

but we must impose periodic boundary conditions for wavefunctions at φ→
2π ∼= 0.
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In particular, we must have

∀ψ ∈ Hπ : (π(W (ξ, η))ψ)(x) = (π(W (ξ, η))ψ)(x+ 2π) (5.110)

because otherwise π(W (ξ, η)) would destroy periodicity. Thus

eiη(x+ξ/2)ψ(x+ξ)
!

= eiη(x+2π+ξ/2)ψ(x+2π+ξ) = eiη(x+2π+ξ/2)ψ(x+ξ) , (5.111)

or
eiη(x+ξ/2) !

= eiη(x+2π+ξ/2) (5.112)

i. e. η ∈ Z . Going back from the representation to the algebra, we see that
the Weyl-algebra for S1 is generated by{

W̃ν(ξ) = W (ξ, ν) : ξ ∈ R, ν ∈ Z
}
. (5.113)

We can again study the representations (Hα,β, πα,β), but this time, there are
fewer intertwiners available and we can only construct the representations
with β ∈ Z using

Uα,β = π
(
W̃β(α)

)
, (5.114)

while the representations (Hα,β, πα,β) with 0 < β < 1 could be inequivalent.
The Stone-von Neumann theorem is also of little help, because the conditions
are not met and the proof breaks down, since we can’t use Gaussian inte-
grals over η to construct a projector. We can however obtain a very simple
necessary condition for two representations to be unitarily equivalent from
the observation

Lemma 5.17. The spectrum σ(A) of an operator A ∈ L(H) is invariant
under similarity transformations A → SAS−1 ∈ L(H′) with invertible S :
H → H′.

∀A ∈ L(H) : σL(H)(A) = σL(H′)(SAS
−1) . (5.115)

Proof. S−1 : H′ → H exists and B = SAS−1 ∈ L(H′) is well defined. The
operator

z1−B = z1− SAS−1 = S (z1− A)S−1 (5.116)

is invertible iff z1−A is invertible. Thus the resolvent set and the spectrum
agree.

Corollary 5.18. The spectrum of the representatives is the same in two
unitarily equivalent representations (H1, π1) and (H2, π2) of a C∗-algebra A:

∀A ∈ A : σL(H1)(π1(A)) = σL(H2)(π2(A)) . (5.117)
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Proof. The unitary intertwiner U : H1 → H2 defines a similarity transfor-
mation π1(A)→ π2(A) = Uπ1(A)U−1.

Of course, z1− π(W (ξ, η)) is invertible, i. e. z 6∈ σ(π(W (ξ, η))), iff

ei(βξ−ηα)z1− πα,β(W (ξ, η)) = ei(βξ−ηα) (z1− π(W (ξ, η)))) (5.118)

is invertible, i. e. ei(βξ−ηα)z 6∈ σ(πα,β(W (ξ, η))). Thus we have shown that

σ(πα,β(W (ξ, η))) = ei(βξ−ηα)σ(π(W (ξ, η))) (5.119)

and in particular

σ(πα,β(W (ξ, 0))) = eiβξσ(π(W (ξ, 0))) . (5.120)

If we can compute σ(π(W (ξ, 0))) and show that is a strict subset of S1

not invariant under arbitrary rotations, we have proven the existence of in-
equivalent representations. Indeed,

σ(π(W̃0(ξ))) = σ(π(W (ξ, 0))) =
{

einξ
}
n∈Z (5.121)

since3 for ψn : x 7→ einx

(π(W (ξ, 0))ψn)(x) = ψn(x+ ξ) = einξψn(x) . (5.122)

Even for irrational ξ,
{

einξ
}
n∈Z, while dense in S1 ⊂ C, remains always

strictly smaller. In any case, given a ξ, we can find a β ∈ (0, 1) such that{
einξ
}
n∈Z 6= eiβξ

{
einξ
}
n∈Z . (5.123)

The example of a particle on S1 introduces a new feature, a non trivial
center of a C∗-algebra.

3From the ansatz

(π(W (ξ, 0))ψn)(x) = ψn(x+ ξ) = αn(ξ)ψn(x)

we find
αn(ξ)αn(ξ′) = αn(ξ + ξ′) ∧ αn(2π) = 1

and therefore
αn(ξ) = eimξ

with m ∈ Z. WLOG we can choose m = n.
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Definition 5.19 (commutant, center). The commutant B′ of a subset B of a
C∗-algebra A is the set of all elements of A that commute with all elements
of B, i. e.

B′ = {A ∈ A : ∀B ∈ B : AB = BA} . (5.124)

The center Z(A) of a C∗-algebra A is the set of all elements of A that
commute with all other elements, i. e.

Z(A) = A′ ∩ A . (5.125)

Indeed, we can compute

∀n, ν ∈ Z : V (2nπ)U(ν) = U(ν)V (2nπ)ei2nνπ = U(ν)V (2nπ) (5.126)

and, of course,
V (2nπ)V (ξ) = V (ξ)V (2nπ) (5.127)

or more generally

∀n ∈ Z : W̃0(2nπ)W̃ν(ξ) = W̃ν(ξ)W̃0(2nπ)ei2nπν = W̃0(ξ)W̃ν(2nπ) . (5.128)

Lecture 19: Wed, 16. 12. 2015

Therefore
∀n ∈ Z : W̃0(2nπ) ∈ Z(AS1

W ) (5.129)

but from
W̃0(2nπ)W̃ν(ξ) = einπνW̃ν(ξ + 2nπ) (5.130)

and the fact that there is a priori no 2π-periodicity in the family of algebra
elements W̃ν : R→ AS1

W , we can expect that W̃0(2nπ) 6= 1, i. e.

Z(AS1

W ) 6= {z1 : z ∈ C} . (5.131)

Indeed, computing the action of W̃0(2nπ) in the representations (Hα,β, πα,β),
we find from (5.105)

(πα,β(W̃0(2nπ))ψ)(x) = ei2nπβψ(x+ 2nπ) = ei2nπβψ(x) , (5.132)

i. e.
πα,β(W̃0(2nπ)) = ei2nπβ1 . (5.133)

For 0 < β < 1, this is not compatible with W̃0(2nπ) = z1, because for all
representations

πα,β(z1) = zπα,β(1) = z1 , (5.134)



ohl: Fri Feb 5 13:21:28 CET 2016 subject to change! 89

independently from β.
As mentioned in section 4.2 on page 65, symmetries are realized as au-

tomorphisms of the C∗-algebra of observables. For example the transla-
tions x 7→ x− α

τα : AW → AW
W (ξ, η) 7→ e−iηαW (ξ, η)

(5.135)

and Galileo boosts p 7→ p+ β

σβ : AW → AW
W (ξ, η) 7→ eiξβW (ξ, η)

(5.136)

form an abelian4 two-parameter group of automorphisms Γα,β : AW → AW ,
with α, β ∈ R,

Γα,β = σβ ◦ τα = τα ◦ σβ (5.137)

and5

Γα,β(W (ξ, η)) = τα(σβ(W (ξ, η))

= ei(ξβ−ηα)W (ξ, η) = W (−α,−β)W (ξ, η)W (α, β) . (5.140)

As we have seen above (5.106), in a representation (H, π), the Γα,β are rep-
resented unitarily

π (Γα,β(W (ξ, η)) = π (W (−α,−β)W (ξ, η)W (α, β)) = U∗α,βW (ξ, η)Uα,β
(5.141)

by
Uα,β = π (W (α, β)) . (5.142)

However, while Γα,β : AS1

W → AS1

W remains well defined on the circle for
all α, β ∈ R, only Γα,ν with α ∈ R and ν ∈ Z can be realized unitarily.
We may say that we have a case of Spontaneous Symmetry Breaking (SSB):
the symmetry is an automorphism of the microscopic algebra of observables,
but not of the representation corresponding to the macroscopic state. In

4Cf. section 3.8.4 on page 59 of [Ohl14].
5Note that

W (α, 0)W (0, β) 6= W (0, β)W (α, 0) 6= W (α, β) , (5.138)

but

W (0,−β) (W (−α, 0)AW (α, 0))W (0, β) = W (−α,−β)AW (α, β)

= W (−α, 0) (W (0,−β)AW (0, β))W (α, 0) , (5.139)

because the phases cancel.
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the present case, all translations τα = Γα,0 remain unbroken, but the Galileo
boosts σν = Γ0,ν are broken by the quantization of momenta, except for
integer amounts.

In this example, the breaking of the symmetry is of course not fully spon-
taneous, because it is brought about by a enforcing the non-trivial topology
of the configuration space S1. Another way to describe the situation is that
the classical boost symmetry p 7→ p+β is anomalous in the quantum theory
or that we have an example of an anomaly, where a classical symmetry can
not (fully) be realized in the quantum theory.

Nevertheless, there remains a weaker form of the Stone-von Neumann
theorem, namely that all representations (H, π) with π(W̃0(2nπ)) = 1 are
unitarily equivalent. In fact, we can show that there is a cyclic vector Ω0

with
∀ν ∈ Z, ξ ∈ R :

(
Ω0, πα,β(W̃ν(ξ))Ω0

)
= δν,0 (5.143)

corresponding to the state

ω(W̃ν(ξ)) = δν,0 . (5.144)

Indeed from
W̃0(ξ)W̃0(ξ′) = W̃0(ξ + ξ′) (5.145)

we infer
W̃0(ξ + 2π) = W̃0(2π)W̃0(ξ) (5.146)

and
π(W̃0(ξ + 2π)) = π(W̃0(2π))π(W̃0(ξ)) = π(W̃0(ξ)) . (5.147)

Thus π(W̃0(ξ)) is periodic with period 2π and we are let to define

Pπ =

∫ 2π

0

dξ

2π
π(W̃0(ξ)) . (5.148)

Again, this is self-adjoint

P ∗π =

∫ 2π

0

dξ

2π
π(W̃0(−ξ)) = −

∫ −2π

0

dξ

2π
π(W̃0(ξ))

=

∫ 0

−2π

dξ

2π
π(W̃0(ξ)) =

∫ 2π

0

dξ

2π
π(W̃0(ξ)) = Pπ (5.149)

and Pπ 6= 0 since

π(W̃−ν(−ξ))Pππ(W̃ν(ξ)) =

∫ 2π

0

dξ′

2π
π(W̃−ν(−ξ)W̃0(ξ′)W̃ν(ξ))
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=

∫ 2π

0

dξ′

2π
eiνξ′π(W̃0(ξ′)) (5.150)

can not vanish, because it’s the νth Fourier coefficient of the periodic unitary
operator π(W̃0(ξ)). Finally, similarly to the proof of the Stone-von Neumann

Pππ(W̃ν(ξ))Pπ = δν,0Pπ . (5.151)

Thus we see that Pπ is an orthogonal projection and can construct Ω0 as a
normalized eigenvector of Pπ.

5.4 Reducible Representations

A representation (H, π) of a C∗-algebra A corresponding to an impure state

ω =
N∑
i=1

piωi (5.152)

with each ωi pure, R 3 pi > 0 and
∑N

i=1 pi = 1, will not be reducible and
can be written as a direct sum (or integral) of N irreducible representations

H =
N⊕
i=1

Hi (5.153a)

π =
N⊕
i=1

πi , (5.153b)

where we must allow that not all (Hi, πi) are different. Since all (Hi, πi)
in (5.153) are, by definition, irreducible, they correspond to the pure states

ωi : A → C

A 7→ ωi(A) = (Ωi, πi(A)Ωi)
(5.154)

with Ωi ∈ Hi. Therefore the state ω has the decomposition

ω : A → C

A 7→ ω(A) =
N∑
i=1

pi (Ωi, πi(A)Ωi) .
(5.155)

Introducing the operator

ρ : H → H

Ψ 7→
N∑
i=1

Ωi (Ωi,Ψ) pi ,
(5.156)
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we can express the state ω as a trace

ω(A) = trH(ρπ(A)) . (5.157)

This suggests the pair of definitions

Definition 5.20. A bounded operator A ∈ L(H) in a separable Hilbert
space H is called trace class, iff the sum (or integral) for any orthonormal
basis {ψi}i∈I⊆N satisfies

trH(|A|) = trH(
√
A∗A) =

∑
i∈I

(
ψi,
√
A∗Aψi

)
<∞ . (5.158)

Then the trace of A
trH(A) =

∑
i∈I

(ψi, Aψi) (5.159)

is absolutely convergent and independent of the basis.

Definition 5.21. A positive trace class operator ρ ∈ L(H) with

trH(ρ) = 1 (5.160)

is called a density matrix.

Theorem 5.22. Given a representation (H, π) of a C∗-algebra A, each den-
sity matrix ρ : H → H defines a state

ωρ : A → C

A 7→ trH(ρ π(A)) .
(5.161)

Proof. ωρ is normalized by definition

ωρ(1) = trH ρ = 1 (5.162)

and since positivity implies self-adjointness, we can diagonalize ρ

ρ : φ 7→
∑
i∈I

piψi(ψi, φ) (5.163)

with R 3 pi > 0 and
∑

i∈I pi = 1. Thus

ωρ(A
∗A) = trH(ρ π(A∗A)) =

∑
i∈I

(ψi, ρ π(A∗A)ψi)

=
∑
i,j∈I

pj (ψi, ψj)︸ ︷︷ ︸
=δij

(ψj, π(A∗A)ψi) =
∑
i∈I

pj (ψi, π(A∗A)ψi)

=
∑
i∈I

pj︸︷︷︸
≥0

(π(A)ψi, π(A)ψi)︸ ︷︷ ︸
≥0

≥ 0 . (5.164)
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Remark 5.23. The pure states correspond to density matrices that are one-
dimensional projections

ρ : Φ 7→ Ψρ (Ψρ,Φ) (5.165)

with ‖Ψρ‖ = 1.

Proof.

ωρ(A) =
∑
i∈I

(ψi, ρ π(A)ψi) =
∑
i∈I

(ψi,Ψρ) (Ψρ, π(A)ψi)

=
∑
i∈I

(Ψρ, π(A)ψi) (ψi,Ψρ) = (Ψρ, π(A)Ψρ) , (5.166)

using the completeness of the basis {ψi}i∈I⊆N:

∀φ ∈ H :
∑
i∈I

ψi (ψi, φ) = φ . (5.167)

Note that density matrices appear here in two very different ways. First
we have decomposed a reducible representation and written the state as a
sum of pure vector states

ω : A 7→=
N∑
i=1

pi (Ωi, πi(A)Ωi) , (5.168)

which we have rewritten as a trace of a density matrix in the big Hilbert
space. But after introducing the notion of a density matrix, we have noticed
that every density matrix defines a state

ωρ : A 7→ trH(ρ π(A)) , (5.169)

which can be pure or not.

Example 5.24. Consider the C∗-algebra M2 of 2 × 2-Matrices, for which
furnish their own representation (H, π) = (C2, id). As we have also seen in
the exercises, the states onM2 can be parametrized by three real numbers ~α
with |~α| ≤ 1 and

ω~α :M2 → C

M 7→ tr(Mρ(~α)) ,
(5.170)

where

ρ(~α) =
1

2
(1 + ~α~σ) . (5.171)
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The pure states are those with |~α| = 1. It is important to realize that the
representation (C2, id) is in general not the GNS-representation associated
to the state ω~α or even unitarily equivalent to it.

In fact, the dimension of the representation space H~α of the GNS-repre-
sentation (H~α, π~α) constructed from ω~α depends on the dimension of the
Gel’fand ideal

I~α = {M ∈M2 : ω~α(M∗M) = 0} (5.172)

via
dimH~α = dim (M2/I~α) = dimM2︸ ︷︷ ︸

=4

− dim I~α . (5.173)

Iff ω(~α) is not a pure state, ρ(~α) has rank 2, the Gel’fand ideal is trivial
and dimH~α = 4. OTOH, iff ω(~α) is pure, ρ(~α) is a projector with rank 1,
the Gel’fand ideal has dimension 2 (all matrices with vanishing first column)
and dimH~α = 2.

5.4.1 Fell’s Theorem

Lecture 20: Thu, 17. 12. 2015

In order to organize the representations, we make the following

Definition 5.25 (vector states). Given a state ω over a C∗-algebra A and
the corresponding representation (Hω, πω), we call the members of the set

{ωΨ : Ψ ∈ Hω, ‖Ψ‖ = 1} (5.174)

with
ωΨ : A → C

A 7→ (Ψ, πω(A)Ψ) ,
(5.175)

the vector states of this representation.

Definition 5.26 (folium). Given a state ω over a C∗-algebra A and the
corresponding representation (Hω, πω), we call set

{ωρ : ρ ∈ L(Hω), 0 ≤ ρ trace class, trHω ρ = 1} (5.176)

with
ωρ : A → C

A 7→ trHω(ρ πω(A)) ,
(5.177)

the folium of this representation.
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Besides the norm topology on the space A∗ of all linear functionals ω :
A → C,

‖ω‖ = sup
A∈A,‖A‖=1

|ω(A)| , (4.1)

introduced earlier, we can define a weaker topology, that is probably physi-
cally better motivated. We start from a family of seminorms

‖ · ‖A1,...,An : A∗ → R+ ∪ {0}
ω 7→ sup

k=1,...,n
|ω(Ak)| (5.178)

indexed by finite subsets of A with ‖Ak‖ = 1 and define neighborhoods of
the origin

N(ε;A1, . . . , An) = {ω ∈ A∗ : ‖ω‖A1,...,An < ε}
= {ω ∈ A∗ : ∀k = 1, . . . , n : |ω(Ak)| < ε} . (5.179)

The set of all such neighborhoods define the weak topology on A∗. Because
we use only a finite number of elements of A to measure distances, the
neighborhoods in the weak topology are cylinders, while the neighborhoods
in the norm topology are balls. Therefore, the open sets in the weak topology
can be generated by infinite unions of open sets in the norm topology, but the
open sets in the norm topology can not be generated as finite intersections
of open sets in the weak topology. Thus every open set in the weak topology
is also an open set in the norm topology, but not vice-versa (unless A is
finite-dimensional). Therefore, the weak topology is coarser than the norm
topology.

Since only a finite number of measurements can be performed in real life,
the weak topology appears to be more appropriate than the norm topology,
which can only be realized when all observables are measured.

The importance of the notion of folium is explained by

Theorem 5.27 (Fell [Fel60]). The folium of a faithful representation of a
C∗-algebra A is weakly dense in the set of all states on A.

This theorem is however somewhat disappointing, because it means that
one can not distiguish folia by physically realizable measurements, which nec-
essarily involve only a finite number of observables. In particular, if we have
two states ω and ω′ corresponding to unitarily inequivalent representations,
states from one folium can nevertheless be approximated arbitrarily well by
states from the other folium. Thus one might conclude that “one folium fits
all” or “one Hilbert space fits them all”.
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This conclusion is wrong, however, because the qualitative description
of important physical phenomena like SSB and phase transitions depend on
idealizations like the infinite volume limit, which corresponds to choosing
values for an infinite number of measurements. While a sample of finite size
will never undergo a phase transition or SSB, we get a better description of
its properties by making this idealization.
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—6—
Infinite Number of Degrees of

Freedom

6.1 Fock Representation

Coming back to example 5.8, i. e. the Weyl algebra AW for quantum mechan-
ics with n d.o.f.

W (ξ1, η1)W (ξ2, η2) = e
i
2

∑n
i=1(ξ1,iη2,i−η1,iξ2,i)W (ξ1 + ξ2, η1 + η2) (6.1)

we will now allow for n → ∞. Of course, in order to have a well defined
multiplication law (6.1), we must assume that ξ, η ∈ l2.

Since we know from Stone’s theorem that

π(xi) = −i lim
η→0

∂

∂ηi
π(W (0, η)) (6.2a)

π(pi) = −i lim
ξ→0

∂

∂ξi
π(W (ξ, 0)) (6.2b)

are well defined symmetric operators on a common dense domain in any
regular representation (H, π), we can suppress the π and write

W (ξ, η) = exp

(
i

n∑
i=1

(ξipi + ηixi)

)
. (6.3)

For convenience, we will in the following also use representations of the
Heisenberg algebra AH , generated by the symmetric xi, pi with

[xi, pj] = iδij (6.4a)

[xi, xj] = [pi, pj] = 0 . (6.4b)

Since xi and pi can not be simultaneously bounded, AH is not a C∗-algebra
and we have to specify a representation (H, π) and a common dense do-
main D ⊂ H. Nevertheless will will in the following often write xi for π(xi)
and pi for π(pi) and leave the representation implicit.
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As suggested by the proof of the Stone-von Neumann theorem 5.12 and
also discussed in the exercises, one can introduce

ai =
1√
2

(xi + ipi) (6.5a)

a∗i =
1√
2

(xi − ipi) , (6.5b)

the (unbounded) annihilation and creation operators, together with the num-
ber operators

Ni = a∗i ai (6.5c)

for all i ∈ N. Obviously, one has

[ai, a
∗
j ] = δij (6.6a)

[ai, aj] = [a∗i , a
∗
j ] = 0 (6.6b)

and

[Ni, aj] = −δijai (6.6c)

[Ni, a
∗
j ] = δija

∗
i . (6.6d)

Theorem 6.1. In an irreducible representation (H, π) of the Heisenberg al-
gebra AH with domain D ⊂ H, the following are equivalent (suppressing
the π):

1. The total number operator

N =
∞∑
i=1

Ni (6.7)

exists in the sense that the strong limit

∀α ∈ R : s-lim
n→∞

eiα
∑n
i=1 a

∗
i ai = eiαN = T (α) (6.8)

exists on D and defines a one-parameter group of unitary operators T (α) :
D → D, that is strongly continuous in α, such that N exists as its gen-
erator.

2. There exists a non-zero vector Ω ∈ H, called the Fock state, or Fock
vacuum state, such that

∀i : aiΩ = 0 . (6.9)

Such a representation is called a Fock representation (H, π,Ω).
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Lecture 21: Fri, 18. 12. 2015

Proof. From 1) and the commutation relations, we see, using the Hausdorff
formula

eABe−A = e[A,·]B (6.10)

that
T (α)ai (T (α))−1 = e−iαai . (6.11)

Therefore
T (2π)ai = aiT (2π) (6.12)

or
[T (2π), ai] = 0 . (6.13)

Analogously
[T (2π), a∗i ] = 0 , (6.14)

i. e.
[T (2π),AH ] = 0 . (6.15)

Since the representation is irreducible, this implies that T (2π) is proportional
to 1H and since it is unitary

∃θ ∈ R : T (2π) = eiθ1H . (6.16)

This suggests to define

T ′(α) = e−iαθ/2πT (α) (6.17)

with
T ′(2π) = 1H . (6.18)

In the spectral decomposition

T ′(α) =

∫
σN ′

dP (λ) eiαλ , (6.19)

where

N ′ = N − θ

2π
, (6.20)

this means that
∀λ ∈ σ(N ′) : ei2πλ = 1 . (6.21)

Thus σ(N ′) ⊆ Z and σ(N) is also discrete. If σ(N) 3 λ > 0 with Ψλ one of
the corresponding eigenvectors1, we have

0 < λ‖Ψλ‖2 = (Ψλ, NΨλ) =
∑
i

‖aiΨλ‖2 (6.22)

1λ might be a degenerate eigenvalue.
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and therefore
∃i ∈ N : aiΨλ 6= 0 . (6.23)

Using the commutation relations

T (α)aiΨλ = aie
−iαT (α)Ψλ = aie

−iαeiαNΨλ = aie
−iαeiαλΨλ = ei(λ−1)αaiΨλ

(6.24)
we conclude that ai acts as a lowering operator and λ − 1 ∈ σ(N) as well.
OTOH N ≥ 0, because it is a sum of positive operators and therefore σ(N) ⊆
R+∪{0}. Thus there must be a λ ∈ σ(N) where the lowering terminates for
all ai. This λ must be 0, i. e.

∀i : aiΨ0 = 0 , (6.25)

and we have shown 2) with Ω = Ψ0.
The other direction follows from

AHΩ = P(a∗)Ω ⊂ H , (6.26)

where P(a∗) are the polynomials in {a∗i }. P(a∗)Ω is dense in H, since the
representation is irreducible. N exists on P(a∗)Ω by construction and the
exponential series for T (α) converges strongly to a one parameter group of
unitary operators.

Remark 6.2. The eigenvalue 0 of the total number operator N is not degen-
erate in a Fock representation (H, π,Ω), i. e. Ω is unique.

Proof. Assume that there is a second H 3 Ω′ 6= Ω with NΩ′ = 0. Then,
since N ≥ 0,

∀i : aiΩ
′ = 0 (6.27)

and for every polynomial P

(Ω′, P (a∗)Ω) = (P (a)Ω′,Ω) = 0 (6.28)

and Ω′ = 0, because Ω is cyclic.

We can rescue a part of the Stone-von Neumann to the case of an infinite
number of d.o.f.

Theorem 6.3. All irreducible Fock representations (H, π,Ω) of a Heisenberg
algebra AH are unitarily equivalent.

Therefore, it makes sense to speak of “the” Fock representation.
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Proof. Given two irreducible Fock representations {(Hi, πi,Ωi)}i=1,2 of AH ,
we can use the cyclic vectors Ω1 and Ω2 to define a map U : H1 ⊇ π1(AH)Ω1 →
π2(AH)Ω2 ⊆ H2 and its inverse U−1 : π2(AH)Ω→ π1(AH)Ω on dense subsets
by

∀A ∈ AH : Uπ1(A)Ω1 = π2(A)Ω2 (6.29a)

∀A ∈ AH : U−1π2(A)Ω2 = π1(A)Ω1 , (6.29b)

including UΩ1 = Ω2 and U−1Ω2 = Ω1. Since we can compute the matrix
elements

(πi(A)Ωi, πi(B)Ωi) (6.30)

for all A,B ∈ P(a∗) from the commutation relations and the condition ajΩi =
0, they can’t depend on the representation and U must be unitary.

The polynomials in the creation operators {π(a∗i )} applied to Ω form a
dense subset of H, in which all vectors are simultaneous eigenvectors of all
the {Ni}. Therefore the Fock representation is also called the occupation
number representation.

Note that we have not yet made any reference to the dynamics of the
system. The Fock representation exists independently of the Hamiltonian.
In the case of decoupled harmonic oscillators it provides a diagonalization of
the Hamiltonian

H0 =
∑
i

ωia
∗
i ai + const. , (6.31)

but it exists also for free particles and other potentials. However only in the
case (6.31) is Ω the ground state of the system. By the Stone-von Neumann
theorem, the Fock representation is as good as any other representation for
a finite number of d.o.f., even though there might be calculationally more
convenient choices.

In the case of an infinite number of d.o.f., this is no longer true. As we
shall see below, one can show with simple arguments that interacting rela-
tivistic quantum fields and many body systems with non-zero density can not
be described by a Fock representation or the folium of a Fock representation.

The Fock representation a good representation, iff the total occupation
number N is a good quantum number for the description of the system.
Assume that the system described by (6.31) has a mass gap or energy gap m

∀i : ωi ≥ m > 0 . (6.32)

Then the series defining H0 dominates the series defining N term by term
and

N ≤ 1

m
H0 (6.33)
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and the existence of H0 as a self adjoint operator implies the existence of the
number operator N .

6.2 Non-Fock Representations

Consider a many particle system with non-zero density n in the thermody-
namic limit

N →∞
V →∞

}
n =

N

V
= const. > 0 . (6.34)

If NV denotes the number operator in the volume NV , we have

NV ≤ N (6.35)

and therefore

∀Ψ ∈ D(N) : ‖nΨ‖ = lim
V→∞

1

V
‖NV ψ‖ ≤ lim

V→∞

1

V
‖Nψ‖︸ ︷︷ ︸
<∞

= 0 . (6.36)

Thus if n 6= 0, the total number operator N must not be a well defined
operator with a dense domain. Thus we cannot use the Fock representation
to describe such a system.

6.2.1 Haag’s Theorem

A typical description of a physical system starts from a Hamiltonian for “free”
or “non-interacting” states that can be described by decoupled harmonic
oscillators (6.31) in the bosonic case (e. g. photons, phonons and Cooper
pairs) and by anti-commuting annihilation and creation operators in the
fermionic case (e. g. electrons). These states can be simple plane waves for
photons in the vacuum or or complicated wave functions for electrons in
condensed matter.

The interactions among these states is then taken into account by adding
a polynomial in the annihilation and creation operators

Hg =
∑
i

ωia
∗
i ai︸ ︷︷ ︸

= H0

+gHint.(a, a
∗) . (6.37)

If we could diagonalize the Hamiltonian (6.2.1) explicitely, we could introduce
annihilation and creation operators Ai and A∗i for the interacting modes with
energies Ei and write the Hamiltonian in a quadratic form

Hg =
∑
i

EiA
∗
iAi + const. . (6.38)
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A more realistic way to solve the dynamics of (6.2.1) is to first solve the
linear Heisenberg picture equations corresponding to H0

d

dt
a

(0)
i (t) = i[H0, a

(0)
i (t)] = −iωia

(0)
i (t) (6.39)

as
a

(0)
i (t) = eiH0tai(0)e−iH0t = e−iωitai(0) . (6.40)

OTOH, the full Heisenberg equations of motion

d

dt
ai(t) = i[Hg, ai(t)] (6.41)

for g 6= 0 are not linear and we can not derive a closed expression for

ai(t) = eiHtai(0)e−iHt . (6.42)

The compatibility of matrix elements in the Heisenberg and Schrödinger
picture

(ΨH , aH(t)ΦH) =
(
Ψ, eiHgtae−iHgtΦ

)
=
(
e−iHgtΨ, ae−iHgtΦ

)
= (ΨS(t), aSΦS(t)) (6.43)

can be extended to the interaction picture

(ΨH , aH(t)ΦH) =
(
eiH0te−iHgtΨ, eiH0tae−iH0teiH0te−iHgtΦ

)
=
(
U(t)Ψ, a(0)(t)U(t)Φ

)
=
(
Ψ, U∗(t)a(0)(t)U(t)Φ

)
(6.44)

where

a(0)(t) = eiH0tae−iH0t (6.45a)

U(t) = eiH0te−iHt = 1 +O(g) . (6.45b)

Since

i
d

dt
U(t) = eiH0t (Hg −H0) e−iHgt = geiH0tHint.e

−iHgt

= geiH0tHint.e
−iH0teiH0te−iHgt = gHint.(t)U(t) , (6.46)

the formally unitary operator U(t) = (U∗(t))−1 satisfies

i
d

dt
U(t) = gHint.(t)U(t) (6.47a)
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with a time dependent interaction

Hint.(t) = eiH0tHint.(a, a
∗)e−iH0t = Hint.

(
a(0)(t),

(
a(0)(t)

)∗)
. (6.47b)

The Schrödinger equation (6.47a) is solved formally by Dyson’s series

U(t) = Te−ig
∫ t
0 dt′Hint.(t

′) . (6.48)

Matrix elements involving Dyson’s series (6.48) are evaluated in perturbation
theory using Feynman diagrams, for example,

gHint.(a, a
∗) = g

∑
klm

vklma
∗
ka
∗
l am + h. c. ≡ −ig

a∗k a∗l

am

vklm
. (6.49)

A typical second order contribution is then

−g2

∑
j vkjmvljn

a∗k a∗l

am an

. (6.50)

While perturbation theory has been spectacularly successful for predicting
scattering cross sections in weakly interacting theories, it can fail spectacu-
larly if the couplings become large or if the energy denominators appearing
in the perturbation series become small.

This brings us to the question under which circumstances the opera-
tor U(t) in (6.47a) is a well defined unitary operator relating the free and
interacting modes. The surprising and somewhat disappointing answer is
provided by

Theorem 6.4 (Haag (1955)). Let AH be the Heisenberg algebra of a sys-
tem with local degrees of freedom that is invariant under translations. Let
(H0, π0,Ω0) and (Hg, πg,Ωg) be the Fock representations of AH in which the
free and interacting Hamiltonians H0 and Hg, respectively, are well defined.
These representations are not unitarily equivalent for g 6= 0.

Thus the interaction picture does not exist for translation invariant sys-
tems, such as quantum field theories in the vacuum.
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Lecture 22: Fri, 08. 01. 2016

Before we can prove this theorem, we must define the systems under
consideration more precisely. By “local degrees of freedom”, we mean that
the annihilation and creation operators spanning the corresponding AH can
be written in terms of operator valued distributions

ai = ψ(fi) =

∫
dnx f̄i(x)ψ(x) (6.51)

with
[ψ(x), ψ∗(x′)] = δn(x− x′) (6.52)

and {fi} an orthonormal set of square integrable smooth functions. Con-
versely, if {fi} is complete

ψ(x) =
∑
i

fi(x)ai . (6.53)

Note that x corresponds to a point in space, not an event in space time.
The dynamics is given by the temporal evolution of the ai or ψ(x). If we
have defined the annihilation and creation operators as in (6.51), we can
implement space translations straighforwardly

α : Rn ×AH → AH
(ξ, ψ(f)) 7→ αξ(ψ(f)) = ψ(α̃ξf)

(6.54a)

where
(α̃ξf)(x) = f(x− ξ) . (6.54b)

One could also write formally

(αξψ)(x) = ψ(x+ ξ) , (6.55)

but this is only to be understood as a short hand, because the ψ are distri-
butions and ψ(x) is not an element of AH .

Obviously, each αξ defines a ∗-automorphism of AH and α therefore a
n-parameter family of ∗-automorphisms.

Lemma 6.5. In an irreducible Fock representation (H, π,Ω) of a AH that is
invariant under translations (6.54), the Fock state Ω is the unique translation
invariant state and space translations are implemented by strongly continuous
unitary operators U(ξ), i. e.

U(ξ)ψ(x)U∗(ξ) = ψ(x+ ξ) . (6.56)
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Proof. In a Fock representation, the number operator

N =
∑
i

a∗i ai =
∑
i

∫
dnxdny f̄i(x)fi(y)ψ∗(x)ψ(y)

=

∫
dnxdny δn(x− y)ψ∗(x)ψ(y) =

∫
dnxψ∗(x)ψ(x) (6.57)

is well defined. It is obviously invariant under translations αξ(N) = N
and the spacial translations commute with it [U(ξ), N ] = 0. Thus is suf-
fices to study the sectors of H with a fixed number of modes, WLOG m.
These correspond to wavefunctions for m “particles”, i. e. square integrable
functions Rnm → C. But square integrable functions must fall of in ev-
ery direction for nm > 0 and can not be invariant under the action of α̃ξ,
i. e. constant shift ∀i = 1, . . . ,m : xi 7→ xi + ξ. Thus only the 0-“particle”
state Ω is translation invariant.

Proof of Haag’s Theorem 6.4. By lemma 6.5, Ωg is the unique translation
invariant state with Ug(ξ)Ωg = Ωg for all members of the family of transla-
tion operators Ug(ξ). OTOH, assume that (H0, π0,Ω0) is another, unitarily
equivalent Fock representation for ai and a∗i . Then we can use both Ug(ξ)
and U0(ξ) to translate them

Ug(ξ)aiU
∗
g (ξ) = αξ(ai) (6.58a)

U0(ξ)aiU
∗
0 (ξ) = αξ(ai) (6.58b)

and find
Ug(ξ)U

∗
0 (ξ)aiU0(ξ)U∗g (ξ) = αξ(α−ξ(ai)) = ai . (6.59)

Therefore [
UgU

−1
0 , ai

]
=
[
UgU

−1
0 , a∗i

]
= 0 (6.60)

or [
UgU

−1
0 , π(AH)

]
= 0 (6.61)

for all representations π. In an irreducible representation, we must have

Ug(ξ)U
−1
0 (ξ) = 1eiθg(ξ) = 1eiθg ·ξ , (6.62)

where the second equation is a result of the group property. We can therefore
absorb the phase eiθg ·ξ

Ug(ξ)→ Ug(ξ)e
−iθg ·ξ (6.63)

to get
Ug(ξ) = U0(ξ) . (6.64)
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Finally, if the translation operators are the same, the unique states left in-
variant by them must also be the same

Ωg = Ω0 . (6.65)

This implies that the Fock state, which is the lowest energy state in both
representations agrees, which can not be, since the interaction changes the
ground state.

In fact, this phenomenon can be demonstrated already by very simple
examples

Example 6.6. While this caricature

H =
∑
i

ωia
∗
i ai + g

∑
i

(j̄iai + jia
∗
i ) (6.66)

of a scalar field ψ ∝ a + a∗ coupled to a classical “source” {ji} can be
diagonalized exactly for any {ji} and the corresponding unitary operators
intertwining between g = 0 and g 6= 0 can be constructed explicitely for
each mode seperately, the product exists only if

∑
i |ji|2/ω2

i ≤ ∞. In a local
theory, we will have limi→∞ ji 6→ 0, however.

Example 6.7. A quadratic perturbation

H =
∑
i

(
1

2m
p2
i +

mω2
i

2
x2
i

)
+ g

∑
i

mω2
i

2
x2
i (6.67)

can also be diagonalized exactly by Bogolyubov tranformations(
ai
a∗i

)
7→
(
u v
ū v̄

)(
ai
a∗i

)
(6.68)

with |u|2 − |v|2 = 1 and the intertwining unitary operators exist for each
mode, but the product does not exist.

These examples show how important it is, to solve the linear and quadratic
interactions exactly before attempting perturbation theory for the remaining
nonlinear interactions. Of course, the perturbation series for the remaining
terms can still diverge and the intertwining operators can fail to exist even
if the series converges.
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O1

O2

ct = x0

|~x|

x2 > 0

x2 > 0

x2 < 0

x2 < 0

Figure 6.1: The light cone x2 = c2t2−~x2 = 0 separates time-like x2 > 0 from
space-like x2 < 0 distances in R×Rn. The regions O1 and O2 are separated
by a space-like distance.

6.3 Local Quantum Theory

While locality in concert with translation invariance provided the ingredients
for Haag’s theorem, it is nevertheless an important physical principle, realized
in most models of microphysics.

A systematic approach considers the C∗-algebras A(V) and A(O) gen-
erated by the observables localized in a volume V ⊆ Rn or a space-time
region O ⊆ R×Rn. The algebras obviously must satisfy

∀O1 ⊆ O2 : A(O1) ⊆ A(O2) . (6.69)

In relativistic physics, the measurements of observables in regions O1

and O1 that are separated by a space-like distance, as in figure 6.1, must not
influence each other, i. e. the corresponding algebras must commute

[A(O1),A(O2)] = 0 . (6.70)

This usually called Einstein locality.
In any case, the physically relevant algebra is the local algebra

AL =
⋃
O

A(O) (6.71)
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or
⋃
V A(V), respectively. While the multiplication of two elements from

different algebras A(O1) and A(O2) is a priori not defined, this is never
a problem in practice when the elements of the algebras are generated by
smearings of local operators, e. g.

exp

(
i

∫
dxψ(x)f̄(x)

)
(6.72)

with supp (f) ∈ Oi. But note that AL is not complete by construction and
one needs to complete it in an appropriate topology to the local algebra

A = AL , (6.73)

In relativistic physics, the finite propagation speed causes the completion in
the norm topology to be invariant under the time evolution described by a
one parameter family of automorphisms

α : R×A → A
(t, A) 7→ αt(A) ,

(6.74)

but in the non-relativistic approximation with instantaneous interactions, it
can happen that only a larger algebra, obtained by completing in a weaker
topology, is stable under the time evolution α.

6.3.1 Asymptotic Abelianness

In general, even in the non-relativistic case, we should be able to require that
two observables commute asymptotically, if we move them apart

∀A,B ∈ A : lim
|x|→∞

[αx(A), B] = 0 , (6.75)

where αx is the automorphism (6.54) of A that realize spacial translations.
Indeed, if asymptotic abelianness (6.75) was not satisfied, observables would
be influenced by measurements at spacial infinity, which would be unphysical,
of course.

However, one might relax (6.75) to weak asymptotic abelianness

∀A,B ∈ A : w-lim
|x|→∞

[π(αx(A)), π(B)] = 0 , (6.76)

for any “relevant” representation (H, π) of A.
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6.3.2 Physically Relevant Representations

The local algebra A necessarily corresponds to a Weyl or Heisenberg algebra
with an infinite number of d.o.f., since the creation and annihilation operators
are convolutions of field operators with functions

a(f) =

∫
dx f̄(x)ψ(x) . (6.77)

Thus we cannot rely on the Stone-von Neumann theorem to make sure that
predictions are independent of the representation chosen.

Therefore we must develop criteria to choose the correct representation(s)
(H, π) describing a given system in a given state:

1. Existence of energy and momentum: the space translation Rn×A → A
and time evolution Rn×A → A automorphisms are realized by strongly
continuous abelian groups of unitary operators

∀x ∈ Rn, A ∈ A : U(x)π(A)U∗(x) = π(αx(A)) (6.78a)

∀y ∈ R, A ∈ A : U(t)π(A)U∗(t) = π(αt(A)) . (6.78b)

By Stone’s theorem, this guarantees that there are self-adjoint genera-
tors P and H with a common dense domain D ⊂ H and corresponding
to momentum and energy, respectively. Note that in condensed matter
theory, the continuous group of translations might have to be replaced
by the discrete subgroup of lattice translations.

2. Stability: the spectrum σ(H) of the Hamiltonian is bounded from below

σ(H) ⊆ [Emin,∞) (6.79)

and by the redefinition U(t) 7→ U(t)e−iEmint, we may choose Emin = 0.
The relativistically invariant form of the spectral condition is

σ(H) ⊆ [0,∞) (6.80a)

H2 ≥ P 2 . (6.80b)

3. Existence of a ground state: The infinimum of σ(H) is a non degenerate
eigenvalue of H with associated eigenvector Ω ∈ H, which is called the
ground state and has the properties:

(a) Ω is cyclic wrt to the local algebra AL, i. e.

H = π(AL)Ω . (6.81)

and
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(b) Ω is the unique translation invariant state.

Note that the non-degeracy of the lowest eigenvalue is refers to the cho-
sen representation (H, π) only. There is in general more than one rep-
resentation with the same local eigenvalue and corresponding ground
state.

The cyclicity of Ω wrt AL is equivalent to the requirement that it must
be possible, at least in principle, to prepare all states by local operations.
The translation invariance of the ground state means that the large distance
behaviour of the system is encoded in the ground state.

Lecture 23: Wed, 13. 01. 2016

In fact, the uniqueness of the translation invariant state follows from asymp-
totic abelianness

Theorem 6.8. In any irreducible cyclic representation (H, π,Ω) of the alge-
bra A, that satisfies weak asymptotic abelianness (6.76), the ground state is
the unique translation invariant state.

This can be shown using

Theorem 6.9 (Von Neumann bicommutant theorem). For any unital ∗-
subalgebra A of L(H), the following are equivalent

1. A = A′′ = (A′)′

2. A is closed in the weak topology

3. A is closed in the strong topology ,

which we state without proof.

Proof of theorem 6.8. If there is another translation invariant state not equal
to Ω, we can construct a state Ω′ ∈ H that is orthogonal to Ω. Then, with PΩ

the projection on Ω,

∀A ∈ A : (Ω′, π(A)Ω) = (Ω′, π(αx(A))Ω) = (Ω′, π(αx(A))PΩΩ)

= (Ω′, PΩπ(αx(A))Ω)︸ ︷︷ ︸
= 0

+ (Ω′, [π(αx(A)), PΩ] Ω)︸ ︷︷ ︸
independent of x

(6.82)

because PΩΩ′ = 0 and both (Ω′, π(αx(A))Ω) and (Ω, π(αx(A))Ω) are inde-
pendent of x. Therefore

∀A ∈ A : (Ω′, π(A)Ω) = lim
|x|→∞

(Ω′, [π(αx(A)), PΩ] Ω) . (6.83)
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From the bicommutant theorem 6.9

π(A) =
(
π(A)

)′′
. (6.84)

OTOH, in an irreducible representation (H, π), π(A)′ = {λ1}λ∈C and there-
fore

π(A)′′ = L(H) . (6.85)

Finally (
π(A)

)′′
⊇ π(A)′′ (6.86)

since π(A) ⊇ π(A). Thus we have shown

π(A) ⊇ L(H) (6.87)

and therefore
PΩ ∈ π(A) . (6.88)

From asymptotic abelianness we can now argue

∀A ∈ A : lim
|x|→∞

(Ω′, [π(αx(A)), PΩ] Ω) = 0 (6.89)

and finally
(Ω′, π(A)Ω) = 0 , (6.90)

i. e. Ω′ = 0 from irreducibility of (H, π,Ω).

Actually, using an almost identical calculation, one can prove an even
stronger result:

w-lim
|x|→∞

π(αx(A)) = (Ω, π(A)Ω)1 . (6.91)

Indeed

∀B ∈ A : w-lim
|x|→∞

π(αx(A))π(B)Ω = w-lim
|x|→∞

π(B)π(αx(A))Ω

= π(B) w-lim
|x|→∞

([π(αx(A)), PΩ] + PΩπ(αx(A))) Ω

= π(B)PΩπ(A)Ω = π(B)Ω(Ω, π(A)Ω) . (6.92)

We arrive at the conclusion, that under the assumption of asymptotic abelian-
ness, the large distance behaviour of the system is encoded entirely in the
ground state.
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6.3.3 Cluster Property

Using

lim
|x|→∞

(Ω, π(αx(A))π(B)Ω) = (Ω, (Ω, π(A)Ω)π(B)Ω) = (Ω, π(A)Ω)(Ω, π(B)Ω)

(6.93)
we have just shown

Theorem 6.10 (Cluster property). In any irreducible cyclic representa-
tion (H, π,Ω) of the algebra A, that satisfies weak asymptotic abelianness
(6.76), the ground state correlations factorize for infinite spacial separation

∀A,B ∈ A : lim
|x|→∞

(Ω, π(αx(A))π(B)Ω) = (Ω, π(A)Ω)(Ω, π(B)Ω) . (6.94)

This cluster property is crucially important for the physical interpretation
of quantum theory:

• it allows the definition of scattering states of separated particles and
thus of an S-matrix,

• it shows that the necessarily non-local character of the translation in-
variant ground state only appears in expectation values of observables
and that all correlations among spacially separated observables vanish,
if their distance is taken to infinity

In fact, one could also start from the cluster property, which is technically
simpler to handle and derive irreducibility and uniqueness of the translation
invariant state from it.

6.4 Free Bose Gas

A “gas” of interacting nonrelativistic bosons in a volume V ⊂ Rn is described
by the Hamiltonian

HV =
1

2m

∫
V

dx (∇ψ∗(x)) (∇ψ(x))︸ ︷︷ ︸
∼ 1

2m
p2

+
1

2

∫
V

dxdy ψ∗(x)ψ∗(y)Hint.(x− y)ψ(x)ψ(y)
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with ψ and ψ∗ annihilation and creation operators2. respectively. Already
the non-interacting case Hint. = 0 with finite occupation number and energy
density is quite interesting and we shall concentrate on it

HV =
1

2m

∫
V

dx (∇ψ∗(x)) (∇ψ(x)) (6.95)

and its infinite volume limit

H = lim
V→Rn

HV =
1

2m

∫
dx (∇ψ∗(x)) (∇ψ(x)) . (6.96)

The occupation number, a.k.a. particle number, operator is

NV =

∫
V

dxψ∗(x)ψ(x) (6.97)

and its density in the infinite volume limit

n = lim
V→Rn

NV

V
= lim

V→Rn

1

V

∫
V

dxψ∗(x)ψ(x) . (6.98)

6.4.1 Heuristic Discussion

Below, we will discuss the model in greater mathematical rigor, but we start
with a heuristic discussion of what to expect. Both (6.95) and (6.96) are
formally3 positive and a state Ω with

HV Ω = 0 , (6.99)

if it exists and is unique, is necessarily the ground state of the system. Thus

0 = (Ω, HV Ω) =
1

2m

∫
V

dx (∇ψ(x)Ω,∇ψ(x)Ω) (6.100)

and
∇ψ(x)Ω = 0 . (6.101)

Since the momentum operator P generates translations

∇ψ(x) = i [P, ψ(x)] , (6.102)

we infer from the translation invariance of the ground state PΩ = 0 that

0 = [P, ψ(x)] Ω = Pψ(x)Ω , (6.103)

2Operator valued distributions, to be precise
3A product of operator vcalued distributions like (∇ψ∗(x)) (∇ψ(x)) is not well defined

and we must show that the integral exists and leads to a positive operator.
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i. e. that ψ(x)Ω is translation invariant itself. However there is only one
translation invariant state and therefore

∃c ∈ C : ψ(x)Ω = cΩ . (6.104)

Obviously, we can compute c as follows

c = (Ω, ψ(x)Ω) =: 〈ψ〉 . (6.105)

We can define operators

ψF (x) = ψ(x)− 〈ψ〉1 (6.106a)

ψ∗F (x) = ψ∗(x)− 〈ψ〉1 (6.106b)

that satisfy the same commutation relations as ψ(x) and ψ∗(x), i. e. furnish
another representation of the same algebra. From

ψF (x)Ω = 0 (6.107)

we see that it is a Fock representation. The correlation functions turn out
to be very simple and free of singularities

〈ψ∗(x)ψ(y)〉 := (Ω, ψ∗(x)ψ(y)Ω) = (ψ(x)Ω, ψ(y)Ω)

= (〈ψ〉Ω, 〈ψ〉Ω) = 〈ψ〉〈ψ〉 (Ω,Ω) = |〈ψ〉|2 (6.108a)

and

〈ψ(x)ψ(y)〉 = 〈ψ〉2 (6.108b)

〈ψ∗(x)ψ∗(y)〉 =
(
〈ψ〉
)2

. (6.108c)

From the definion we have a well defined occupation number density

n =
NV

V
= 〈ψ∗(x)ψ(x)〉 = |〈ψ〉|2 (6.109)

and we can parametrize the ground state Ωn,θ by two parameters:

∃θ ∈ [0, 2π) : 〈ψ〉 = (Ωn,θ, ψ(x)Ωn,θ) =
√
neiθ , (6.110)

However, while the number density n is fixed by the preparation of the sys-
tem, the phase θ is free. This situation reminds us of the particle on a circle,
as discussed in section 5.3.3. Again we have a family of representations,
labelled by a phase θ ∈ [0, 2π). Indeed one can define states

ωn,θ : A → C

A 7→ (Ωn,θ, πn,θ(A)Ωn,θ)
(6.111)
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and in the infinite volume limit |V | → ∞, the GNS-representations con-
structed from ωn,θ and ωn,θ′ will be unitarily inequivalent for n > 0 ∧ θ 6= θ′.

The classical theory (6.96) has a rigid gauge symmetry4(
ψ(x)
ψ̄(x)

)
7→
(

eiθψ(x)
e−iθψ̄(x)

)
(6.112)

that leaves the Hamiltonian invariant. Also the algebra generated by the
observables has the corresponding one parameter group of ∗-automorphisms

β : [0, 2π)×A → A
(θ, ψ(x)) 7→ eiθψ(x) ,

(6.113)

but, as we will show below explicitely, the symmetry can not be realized by
unitary operators in representations with n > 0. Thus the gauge symmetry
is a spontaneously broken symmetry.

6.4.2 Detailed Discussion

Canonical Commutation Relations

Lecture 24: Fri, 15. 01. 2016

The C∗-algebra AV generated by the observables of the free bose gas in a
volume V (including V → Rn) is a Weyl system. Instead of the unbounded
operator valued distributions ψ and ψ∗, we introduce unitary algebra ele-
ments U(f), V (g) with test functions f, g : V → R and multiplication laws

U(f)V (g) = V (g)U(f)e−i〈f,g〉 (6.114a)

U(f)U(g) = U(f + g) (6.114b)

V (f)V (g) = V (f + g) , (6.114c)

4NB: this is not the gauge invariance ψ(x)
ψ̄(x)
Aµ(x)

 7→
 eiθ(x)ψ(x)

e−iθ(x)ψ̄(x)
Aµ(x) + ∂µθ(x)


of Quantum Electrodynamics with a space-time dependent function θ, but a constant
phase transformation. Note that gauge invariance is not a symmetry of a model, but a
reparametrisation of our mathematical description of the same physical state. OTOH,
rigid phase transformations relate different physical states and are symmetries, iff the
dynamics respect them.
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where

〈f, g〉 =

∫
dx f(x)g(x) . (6.115)

As discussed above, these relations are compatible with

U(f) = eiφ(f) (6.116a)

V (f) = eiπ(g) (6.116b)

and an unbounded self-adjoint algebra elements

[φ(f), π(g)] = i〈f, g〉 (6.117a)

[φ(f), φ(g)] = [π(f), π(g)] = 0 . (6.117b)

We can now introduce

a(f) =
1√
2

(φ(f) + iπ(f)) (6.118a)

a∗(f) =
1√
2

(φ(f)− iπ(f)) (6.118b)

and find the commutation relations

[a(f), a∗(g)] = 〈f, g〉 (6.119a)

[a(f), a(g)] = [a∗(f), a∗(g)] = 0 . (6.119b)

These are in turn compatible with

a(f) =

∫
V

dx f(x)ψ(x) (6.120a)

a∗(f) =

∫
V

dx f(x)ψ∗(x) (6.120b)

and the formal commutation relations

[ψ(x), ψ∗(y)] = δ(x− y) (6.121a)

[ψ(x), ψ(y)] = [ψ∗(x), ψ∗(y)] = 0 , (6.121b)

i. e. our local annihilation and creation operators.
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Representations

Our algebra A is the completion of linear combinations of products of U(f)s
and V (g)s. Using the canonical commutation relations (6.114), we can bring
every product in the form eiφU(f)V (g) with φ ∈ [0, 2π). Thus, it suffices
to specify the value of a state ω : A → C on such elements to define a
state on the whole algebra by linearity. Since a state ω determines a corre-
sponding GNS-representation up to unitary equivalence, we can characterize
a representation with cyclic vector Ω by the function

ωΩ(f, g) = (Ω, π(U(f))π(V (g))Ω) . (6.122)

Fock Representation

In order to avoid the unbounded annihilation and creation operators, we
don’t define the Hilbert space HF of the Fock representation (HF , πF ,ΩF )
as the direct sum of n-particle spaces. Instead [AW63], we use the infinite
tensor product

HF =
⊗
i∈N

Hi (6.123)

of Hilbert spaces {Hi}i∈N in which self-adjoint operators Qi and Pi with CCR
[Qi, Pi] = i act irreducibly and Ωi are cylic vectors5. The cyclic vector ΩF is
accordingly

ΩF =
⊗
i∈N

Ωi . (6.124)

Define unitary operators on HF by

Ui(ξ) = 11 ⊗ . . .⊗ 1i−1 ⊗ eiξQi ⊗ 1i+1 ⊗ . . . (6.125a)

Vi(η) = 11 ⊗ . . .⊗ 1i−1 ⊗ eiηPi ⊗ 1i+1 ⊗ . . . . (6.125b)

Choosing a complete orthonormal basis {fi}i∈N for L2(V,R), we can decom-
pose every function f ∈ L2(V,R)

f =
∑
i∈N

λfi fi (6.126)

with real coefficients {λi}i∈N and define unitary operators

UF (f) =
∏
i∈N

Ui(λ
f
i ) =

⊗
i∈N

eiλfi Qi (6.127a)

5In the Schrödinger representation, xi → e−x
2
i /2/π1/4 is a good choice for Ωi, but any

square integrable function that is almost everywhere non zero is fine.
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VF (g) =
∏
i∈N

Vi(λ
g
i ) =

⊗
i∈N

eiλgi Pi (6.127b)

for every f ∈ L2(V,R). By construction, the UF (f), VF (f) are irreducible
and ΩF is cyclic.

We can now compute

ωF (f, g) = ωΩF (f, g) = (ΩF , UF (f)VF (g)ΩF )

= exp

(
−1

4
〈f, f〉 − 1

4
〈g, g〉 − i

2
〈f, g〉

)
(6.128)

using (6.126) and

〈f, g〉 =

∫
V

dx f(x)g(x) =
∑
i∈N

λfi λ
g
i . (6.129)

Using the strongly continuous groups of unitary operators {UF (sf)}s∈R and
{VF (sg)}s∈R, we can construct the generators

φF (f) = −i
d

ds

∣∣∣∣
s=0

UF (sf) (6.130a)

πF (g) = −i
d

ds

∣∣∣∣
s=0

VF (sg) . (6.130b)

Note that the functional form of ωF (6.128) suffices to calculate expectation
values of polynomials in these generators, e. g.

(ΩF , φF (f1)φF (f2)ΩF ) = − d

ds1

d

ds2

∣∣∣∣
s1=s2=0

(ΩF , UF (s1f1)UF (s2f2)ΩF )

= − d

ds1

d

ds2

∣∣∣∣
s1=s2=0

(ΩF , UF (s1f1 + s2f2)ΩF )

= − d

ds1

d

ds2

∣∣∣∣
s1=s2=0

ωF (s1f1 + s2f2, 0)

= − d

ds1

d

ds2

∣∣∣∣
s1=s2=0

exp

(
−1

4
〈s1f1 + s2f2, s1f1 + s2f2〉

)
=

1

2
〈f1, f2〉 . (6.131)

This is the same as the result obtained from formal manipulations of the
unbounded annihilation and creation operators
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(ΩF , φF (f1)φF (f2)ΩF ) =
1

2
(ΩF , (a(f1) + a∗(f1)) (a(f2) + a∗(f2)) ΩF )

=
1

2
(ΩF , a(f1)a∗(f2)ΩF ) =

1

2
(ΩF , [a(f1), a∗(f2)]ΩF ) =

1

2
〈f1, f2〉 . (6.132)

Note also that the representation carries a unitary representation of the Eu-
clidean group

αR,a(UF (f)) = UF (α∗R,af) (6.133a)

αR,a(VF (g)) = VF (α∗R,ag) (6.133b)

with
(α∗R,af)(x) = f(R−1(x− a)) . (6.134)

Occupation Number Density

As mentioned above, a rigorous definition of the occupation number operator

NV =

∫
V

dxψ∗(x)ψ(x) (6.97)

is subtle, because ψ(x) and ψ∗(x) are not operators that can be multiplied.
Instead ψ and ψ∗ must be understood as operator valued distributions. A
rigorous definition uses a complete orthonormal set {fi}i∈N for V → R (in-
cluding V = Rn)

NV =
∑
i∈N

a∗(fi)a(fi) . (6.135)

However, NV and NV /V are unbounded operators, so the definition of the
infinite volume limits for occupation number and occupation number density

N = lim
V→Rn

NV (6.136a)

n = lim
V→Rn

NV

V
(6.136b)

is not obvious. We can however use the convergence of a group of unitary
exponentials to define the convergence of the generators:

Definition 6.11. If {Tn}n∈N and T are self-adjoint operators on a Hilbert
space H, we say that

lim
n→∞

Tn = T (6.137)

iff
∀λ ∈ R : lim

n→∞
eiλTn = eiλT . (6.138)
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The operators φ(f) and π(g) are linear combinations of a(f) and a∗(f)
with

[NV , a(f)] = −a(f) (6.139a)

[NV , a
∗(f)] = a∗(f) . (6.139b)

Consequently all polynomials in φ(f) and π(g) can change the eigenvalues
of NV only by a finite number. In states with a non-vanishing occupation
number density n (cf. (6.136b)), the occupation number (6.136a) is formally
infinite. Therefore, polynomials in φ(f) and π(g) will not be able to change n

[n, φ(f)] = [n, π(g)] = 0 . (6.140)

This observation can be turned into a

Lemma 6.12. In a irreducible representation (H, π), the occupation number
density n is a constant, if it exists.

Proof. Using our notion of convergence, we must show that

∀f, g : ∀λ ∈ R : lim
V→Rn

[
U(f), eiλNV /V

]
= lim

V→Rn

[
V (f), eiλNV /V

]
= 0 . (6.141)

Indeed, by a straightforward calculation (→ exercise)

eiλNV /VU(f) = U

(
f cos

λ

V

)
︸ ︷︷ ︸
→ U(f)

V

(
f sin

λ

V

)
ei
〈f,f〉

4
sin 2λ

V︸ ︷︷ ︸
→ 1

eiλNV /V (6.142a)

eiλNV /V V (g) = V

(
g cos

λ

V

)
︸ ︷︷ ︸
→ V (g)

U

(
−g sin

λ

V

)
ei
〈g,g〉

4
sin 2λ

V︸ ︷︷ ︸
→ 1

eiλNV /V (6.142b)

and the product of two limits of unitary operators is the limit of the products,
as will be shown in the following lemma.

Lemma 6.13. Let

s-lim
n→∞

Un = U (6.143a)

s-lim
n→∞

Vn = V (6.143b)

with all Un and Vn unitary, then

s-lim
n→∞

UnVn = UV . (6.144)
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Proof. As the strong limits of unitary operators, U and V are isometries.
Then

∀Ψ ∈ H :
∥∥(U−1

n U − 1
)

Ψ
∥∥2

= 2
(
‖Ψ‖2 − Re (UΨ, UnΨ)

) n→∞−→ 0 (6.145)

and therefore
s-lim
n→∞

U−1
n U = 1 . (6.146)

Also

∀Ψ ∈ H : ‖(UnVn − UV ) Ψ‖2 = 2
(
‖Ψ‖2 − Re

(
U−1
n UVΨ, VnΨ

)) n→∞−→ 0
(6.147)

using this result twice.

Lemma 6.14. In a cyclic representation (H, π,Ψ) with

∃ρ ∈ R : ∀λ ∈ R : lim
V→Rn

eiλNV /V Ψ = eiλρΨ , (6.148)

the occupation number density n = limNV /V exists and

n = ρ1 . (6.149)

Proof.

lim
V→Rn

eiλNV /VU(f)V (g)Ψ = U(f)V (g) lim
V→Rn

eiλNV /V Ψ

= U(f)V (g)eiλρΨ = eiλρU(f)V (g)Ψ (6.150)

and since linear combinations of U(f)V (g)Ψ are dense in H,

s-lim
V→Rn

eiλNV /V = eiλρ1 . (6.151)

One can use similar arguments to show that that the energy density of a
free bose gas is also a constant.
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Representation for Finite Occupation Number Density

We can construct an appropriate representation for finite occupation number
density ρ by computing the limit

ωρ(f, g) = lim
V→R

ωρV (f, g) (6.152)

of state with occupation number ν = ρV in the finite volume Fock represen-
tation

ωρV (f, g) = (Ψρ
F , UF (f)VF (g)Ψρ

F ) . (6.153)

The lowest energy wave function in the finite volume V is constant

fV : V → R

x 7→ 1√
|V |

(6.154)

and has no infinite volume limit. The Fock state with ρ = ν/|V | is

Ψρ
F =

1√
ν!

(a∗(fV ))ν ΩF (6.155)

and therefore

ω
ν/|V |
V (f, g) =

1

ν!
(ΩF , (a(fV ))ν UF (f)VF (g) (a∗(fV ))ν ΩF ) . (6.156)

One can compute (→ exercise)

ω
ν/|V |
V (f, g) = ωF (f, g)Lν

(
〈f, fV 〉2 + 〈g, fV 〉2

2

)
(6.157)

with Lν the νth Laguerre polynomial. Note that

〈f, fν〉 =

∫
V

dx
f(x)√
|V |

=

√
ρ

ν

∫
V

dx f(x) =:

√
ρ

ν
f0 . (6.158)

In the infinite volume limit ν → ∞ and V → Rn with ρ = ν/|V | constant.
In this limit, the Laguerre polynomial becomes a Bessel function

lim
ν→∞

Lν

(z
ν

)
= J0

(
2
√
z
)
. (6.159)

(theorem 8.1.3 of [Sze75]) and we find

ωρ(f, g) = ωF (f, g)J0

(√
2ρ (f 2

0 + g2
0)

)
. (6.160)

Since the Bessel function is not manifestly positive, it is not obvious
that ωρ : A → C defines a positive functional and that we can use the
GNS construction to obtain a representation. A convenient way to prove the
positivity is to construct a representation explicitely.
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Lecture 25: Wed, 27. 01. 2016

The factorized form of (6.160) suggests to use a tensor product

Hρ = HF ⊗K , (6.161)

with K another Hilbert space. In fact, we can choose the square integrable
real functions on the unit circle

K = L2(S1,C, dx/2π) . (6.162)

We define bounded operators S and C on K by

(Sψ)(θ) = sin θ · ψ(θ) (6.163a)

(Cψ)(θ) = cos θ · ψ(θ) (6.163b)

and denote by Φ0 ∈ K the constant function

ψ : S1 → C

θ 7→ 1 .
(6.164)

The ground state is
Ωρ = ΩF ⊗ Φ0 (6.165)

and the Weyl operators are represented by

Uρ(f) = UF (f)⊗ ei
√

2ρf0C

Vρ(g) = VF (g)⊗ ei
√

2ρg0S ,
(6.166)

because the operators in the second factor form a two-parameter abelian
group

ei
√

2ρf0Cei
√

2ρf ′0C = ei
√

2ρ(f0+f ′0)C (6.167a)

ei
√

2ρg0Sei
√

2ρg′0S = ei
√

2ρ(f0+f ′0)S (6.167b)

ei
√

2ρf0Cei
√

2ρg0S = ei
√

2ρ(f0C+g0S) . (6.167c)

We can compute the expectation values and find

(Ωρ, Uρ(f)Vρ(g)Ωρ) = (ΩF , UF (f)VF (g)ΩF )︸ ︷︷ ︸
ωF (f, g)

∫ 2π

0

dθ

2π
ei
√

2ρ(f0 cos θ+g0 sin θ)︸ ︷︷ ︸
J0

(√
2ρ (f 2

0 + g2
0)

)
︸ ︷︷ ︸

ωρ(f, g)
(6.168)
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as desired.
It remains to show that Ωρ is indeed a cyclic vector. For this purpose,

consider a family of functions

{fs,α : Rn → R}s,α>0 (6.169)

that converges to a function with vanishing L2(Rn) norm and non-vanishing
Fourier transform

lim
s→0
〈fs,α, fs,α〉 = 0 (6.170a)

lim
s→0

∫
dx fs,α(x) = lim

s→0
fs,α,0 = α . (6.170b)

In the case n = 3, an example is

fs,α(x) =
αs

4π

e−s|x|

1 + |x|2
(6.171)

since6∫
dx fs,α(x) = αs

∫ ∞
0

dr
r2e−sr

1 + r2

= α
(

1− π

2
s cos(s)− s sin(s) Ci(s) + s cos(s) Si(s)

)
s→0−→ α (6.173)

and ∫
dx (fs,α(x))2 = O(s2) . (6.174)

Then from (6.170a)

lim
s→0

ωF (fs,α, 0) = 1 = lim
s→0

ωF (0, fs,α) (6.175)

and one can show

s-lim
s→0

UF (fs,α) = 1 = s-lim
s→0

VF (fs,α) . (6.176)

6Using the sine and cosine integrals

Si(x) =

∫ x

0

dξ
sin ξ

ξ
(6.172a)

Ci(x) = −
∫ ∞
x

dξ
cos ξ

ξ
(6.172b)
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Thus from (6.170b) we find

s-lim
s→0

Uρ(fs,α) = 1⊗ ei
√

2ραC (6.177a)

s-lim
s→0

Vρ(fs,α) = 1⊗ ei
√

2ραS . (6.177b)

Using the double angle formulas

sin(2θ) = 2 sin θ cos θ (6.178a)

cos(2θ) = cos2 θ − sin2 θ , (6.178b)

we find that repeated application of S and C will generate sin(nx) and cos(nx)
for all n ∈ N. By Fourier decomposition of L2(S1) the constant function Φ0

is thus cyclic for S and C. Since ΩF is cyclic for UF (f) and VF (g), we have
established that Ωρ is cyclic for Uρ(f) and Vρ(g).

Superselection Sectors

By construction, all operators of the form

A = 1⊗ T (6.179)

where
[S, T ] = [C, T ] = 0 (6.180)

commute with all operators from the representation πρ(A):

[Uρ(f), A] = [Vρ(g), A] = 0 . (6.181)

Among the operators commuting with C and S are arbitrary multiplication
operators

(Tψ)(θ) = t(θ) · ψ(θ) . (6.182)

Thefore the representation (Hρ, πρ,Ωρ) is highly reducible and the Hilbert
space decomposes into superselection sectors carrying irreducible representa-
tions labelled by (improper) eigenvalues of the angle operator Θ

(Θψ)(θ) = θ · ψ(θ) (6.183)

as direct integrals

K =

∫ ⊕
S1

dθ

2π
Kθ . (6.184)

and

Hρ = HF ⊗
∫ ⊕
S1

dθ

2π
Kθ . =

∫ ⊕
S1

dθ

2π
(HF ⊗Kθ)︸ ︷︷ ︸
Hρ,θ

. (6.185)
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The corresponding decomposition of the operators is

Uρ(f) =

∫ ⊕
S1

dθ

2π
Uρ,θ(f) (6.186a)

Vρ(g) =

∫ ⊕
S1

dθ

2π
Vρ,θ(g) (6.186b)

with

Uρ,θ(f) = UF (f)⊗ ei
√

2ρf0 cos θ (6.187a)

Vρ,θ(g) = VF (g)⊗ ei
√

2ρg0 sin θ . (6.187b)

Since the action on Kθ is just a phase, we can equivalently write

Uρ,θ(f) = UF (f)ei
√

2ρf0 cos θ = exp
(

i
(
φF (f) +

√
2ρf0 cos θ

))
(6.188a)

Vρ,θ(g) = VF (g)ei
√

2ρg0 sin θ = exp
(

i
(
πF (g) +

√
2ρg0 cos θ

))
(6.188b)

or

φρ,θ(f) = φF (f) +
√

2ρf0 cos θ (6.189a)

πρ,θ(g) = πF (g) +
√

2ρg0 sin θ . (6.189b)

Formally, we find the same result as in the heuristic discussion above:

φρ,θ(x) = φF (x) +
√

2ρ cos θ (6.190a)

πρ,θ(x) = πF (x) +
√

2ρ sin θ , (6.190b)

i. e. the inequivalent irreducible representations are labelled by the expecta-
tion values

〈φρ,θ(x)〉 = 〈φρ,θ〉 =
√

2ρ cos θ (6.191a)

〈πρ,θ(x)〉 = 〈πρ,θ〉 =
√

2ρ sin θ . (6.191b)

As discussed in section 5.3.3 for a particle on a circle, the intertwiners relat-
ing (φρ,θ, πρ,θ) with (φρ,θ′ , πρ,θ′) for θ 6= θ′ can not be represented by unitary
operators, i. e. the gauge symmetry is spontaneously broken.

We can interpret

a0 = lim
V→Rn

a(χV ) =
1√
2ρ

(〈φρ,θ〉+ i〈πρ,θ〉) = eiθ (6.192a)

a∗0 = lim
V→Rn

a∗(χV ) =
1√
2ρ

(〈φρ,θ〉 − i〈πρ,θ〉) = e−iθ (6.192b)
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with

χV (x) =

{
1√
ρV

x ∈ V
0 x 6∈ V

(6.193)

as unitary and commuting annihilation and creation operators for zero mo-
mentum particles in the ground state.

6.5 The BCS Model

An important realization of the phenomena discussed for the free Bose gas in
a physics model with interactions is given by the Bardeen-Cooper-Shrieffer
model for superconductivity.

6.5.1 The Model

Instead of bosons, we have fermions with anti commutation relations[
ψi(f), ψ∗j (g)

]
+

:= ψi(f)ψ∗j (g) + ψ∗j (g)ψi(f) = δij〈f, g〉 (6.194a)

[ψi(f), ψj(g)]+ =
[
ψ∗i (f), ψ∗j (g)

]
+

= 0 (6.194b)

with spin quantum numbers i, j ∈ {1, 2} and complex valued square inte-
grable functions f and g

〈f, g〉 =

∫
dx f̄(x)g(x) . (6.195)

Again, we can interpret this as operator valued distributions

ψi(f) =

∫
dx f̄(x)ψi(x) (6.196a)

ψ∗i (f) =

∫
dx f(x)ψ∗i (x) (6.196b)

with [
ψi(x), ψ∗j (y)

]
+

= δijδ(x− y) (6.197a)

[ψi(x), ψj(y)]+ =
[
ψ∗i (x), ψ∗j (y)

]
+

= 0 . (6.197b)

The hamiltonian in a finite volume V is

HV =

∫
V

dx
2∑
i=1

(
1

2m
(∇ψ∗i (x)) (∇ψi(x))− µψ∗i (x)ψi(x)

)
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+
1

V

∫
V

dxdx′dydy′ ψ∗1(x)ψ∗2(x+ y)Hint.(y, y
′)ψ2(x′ + y′)ψ1(x′)︸ ︷︷ ︸

= HI

. (6.198)

Despite the nonlinear interactions in HV for Hint. 6= 0, the model can be
solved exactly in the infinite volume limit [Haa62]

H = lim
V→Rn

HV + const. (6.199)

with the constant adjusted, such that the expectation value of the hamil-
tonian vanishes in the ground state. The crucial ingredient is that we will
show

lim
V→Rn

[HV , ψ
∗(x)] = −

∫
dy∆(y)ψ∗(x− y) ,

i. e. that the nonlinear terms in the Heisenberg equation of motion will vansish
in the infinite volume limit.

6.5.2 The Solution

Lemma 6.15. The fermionic annihilation and creation operators ψi(f) and
ψ∗i (f) are bounded iff f is square-integrable and

‖ψi(f)‖ = ‖ψ∗i (f)‖ =
√
〈f, f〉 . (6.200)

Proof. From the anti commutation relations, we find

(ψ∗i (f)ψi(f))2 = ψ∗i (f)ψi(f)ψ∗i (f)ψi(f)

= 〈f, f〉ψ∗i (f)ψi(f)− ψ∗i (f)ψ∗i (f)︸ ︷︷ ︸
= 0

ψi(f)ψi(f)︸ ︷︷ ︸
= 0

(6.201)

that

Pi(f) =
1

〈f, f〉
ψ∗i (f)ψi(f) (6.202)

is an orthogonal projection

Pi(f) = P 2
i (f) = P ∗i (f) , (6.203)

which is necessarily bounded

‖Pi(f)‖ = 1 . (6.204)

Therefore

‖ψ∗i (f)‖ = ‖ψi(f)‖ =
√
‖ψ∗i (f)ψi(f)‖ =

√
〈f, f〉 . (6.205)
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Definition 6.16 (even, quasi local). A quantity Q is called quasi-local quan-
tity iff it can be written as

Q(x) =

∫
dy1 . . . dyndz1 . . . dzm Fi1,...,in;j1,...,jm(y1, . . . , yn; z1, . . . , zm)

ψ∗i1(x+ y1) . . . ψ∗in(x+ yn)ψj1(x+ z1) . . . ψjm(x+ zm) (6.206)

and F is rapidly decreasing for each |yi|, |zi| → ∞. Q(x) is called even,
iff n+m ∈ 2N.

We use quantity instead of operator, because it is in general an operator
valued distribution.

Lecture 26: Fri, 29. 01. 2015

Lemma 6.17. If Q is an even, quasi-local quantity, its space average in the
infinite volume limit

〈Q〉 := lim
V→Rn

1

V

∫
V

dxQ(x) (6.207)

commutes with all operators in the algebra generated by the annihilation and
creation operators ψ(f) and ψ∗(x).

Proof. The essential ingredients of the proof are the rapid decrease of the
function F defining Q and the boundedness of the fermionic operators. Con-
sider, e. g.,

Q(x) =

∫
dz1dz2 F (z1, z2)ψ1(x+ z1)ψ2(x+ z2) (6.208)

and compute

[〈Q〉, ψ∗2(f)] =

lim
V→Rn

1

V

∫
V

dx

∫
dz1dz2 F (z1, z2) [ψ1(x+ z1)ψ2(x+ z2), ψ∗2(f)]

= lim
V→Rn

1

V

∫
V

dx

∫
dz1dz2 F (z1, z2)ψ1(x+ z1)f(x+ z2)

= lim
V→Rn

1

V

∫
V

dxψ1(x)

∫
dz1dz2 F (z1, z2)f(x+ z2 − z1)

= lim
V→Rn

1

V
ψ(gV ) (6.209)
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with

gV (x) =

{∫
dz1dz2 F (z1, z2)f(x+ z2 − z1) for x ∈ V

0 for x 6∈ V
. (6.210)

Since f is square integrable and F is rapidly decreasing, g will be square
integrable and remain so in the limit V → Rn. Therefore ψ(gV ) will remain
bounded in the limit V → Rn and due to the factor 1/V

[〈Q〉, ψ∗i (f)] = 0 . (6.211)

With the Leibniz rule for commutators, this immediately implies the gener-
alization to arbitrary polynomials[

〈Q〉, ψ∗i1(f1) · · ·ψ∗in(fn)ψj1(g1) · · ·ψjm(gm)
]

= 0 (6.212)

and one can show that it also holds for arbitrary quasi-local Q(x).

The interaction Hamiltonian in (6.198) is not the spatial average of a
quasi-local quantity, because there are two undamped integrations over x
and x′ and only a single factor of 1/V . Nevertheless, we can compute 7

7Alternatively we can compute

[HI , ψ1(z)] = − lim
V→Rn

1

V

∫
V

dx′dydy′ ψ∗2(z + y)Hint.(y, y
′)ψ2(x′ + y′)ψ1(x′) (6.213)

and from this the different types of nested commutators. For mixed annihilation and
creation operators, we find from the rapid falloff of Hint. in all directions

[[HI , ψ1(z)] , ψ∗1(z′)]

= − lim
V→Rn

1

V

∫
V

dydy′ ψ∗2(z + y)Hint.(y, y
′)ψ2(z′ + y′)︸ ︷︷ ︸

bounded

= 0 . (6.214)

Obviously, the same result follows for other spins. On the other hand, for pairs of annihila-
tion operators, there is one undamped integration and the result doesn’t vanish. However,
we can use lemma 6.17 to show that the result lies in the center of the algebra and must
be proportional to the unit operator in an irreducible representation

[[HI , ψ1(z)] , ψ2(z′)]

= − lim
V→Rn

1

V

∫
V

dx′
∫
V

dy′Hint.(z
′ − z, y′)ψ2(x′ + y′)ψ1(x′)︸ ︷︷ ︸
quasi local

= −∆(z′ − z)1 . (6.215)

We get the same result for any pair of annihilation and creation operators with different
spins, but the commutators for pairs with the same spin vanish.
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[HI , ψ1(z)] =

lim
V→Rn

−1

V

∫
V

dxdx′
∫

dydy′ δ(x− z)ψ∗2(x+ y)Hint.(y, y
′)ψ2(x′ + y′)ψ1(x′)

= lim
V→Rn

−1

V

∫
V

dx′
∫

dydy′ ψ∗2(z + y)Hint.(y, y
′)ψ2(x′ + y′)ψ1(x′)

= − lim
V→Rn

∫
dy′

∫
dy ψ∗2(z + y)Hint.(y, y

′)︸ ︷︷ ︸
AV (z, y′)

1

V

∫
V

dx′ψ2(x′ + y′)ψ1(x′)︸ ︷︷ ︸
φV (y′)→ ϕ(y′)1

= − lim
V→Rn

∫
dy ψ∗2(z + y)

∫
dy′Hint.(y, y

′)φV (y′)︸ ︷︷ ︸
∆V (y)→ ∆(y)1

. (6.216)

Similarly to proof of lemma 6.17 we can show that

φ(x) = lim
V→Rn

φV (x) = lim
V→Rn

1

V

∫
V

dy ψ2(x+ y)ψ1(y) (6.217)

commutes with all operators in the algebra generated by ψ(f) and ψ∗(f).
Indeed

[φ(x), ψ∗1(f)] = lim
V→Rn

1

V

∫
V

dy ψ2(x+ y)f(y) = lim
V→Rn

1

V
ψ2(α−xf)︸ ︷︷ ︸
bounded

= 0

(6.218)
where (αxf)(y) = f(x+y). In an irreducible representation, φ(x) is therefore
proportional to the unit for all x. Since the interaction Hint.(y, y

′) is assumed
to fall off rapidly for |y|, |y′| → ∞, the operator

AV (z, y′) =

∫
V

dy ψ∗2(z + y)Hint.(y, y
′) (6.219)

is bounded for all z, y′ ∈ Rn and V ⊆ Rn. In addition it falls off rapidly in
the operator norm for |y′| → ∞.

In summary, we have shown that

[HI , ψ1(z)] = −
∫
V

dy ψ∗2(z + y)∆(y) , (6.220)

with a commuting

∆(y)1 = lim
V→Rn

1

V

∫
V

dx′
∫
V

dy′Hint.(y, y
′)ψ2(x′ + y′)ψ1(x′) . (6.221)
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This means that HI has the same commutation relations as

H ′I =

∫
dxdy

(
∆(y)ψ∗1(x)ψ∗2(x+ y) + ∆̄(y)ψ2(x+ y)ψ1(x)

)
+ const.

(6.222)
in the infinite volume limit. Since we can compute all matrix elements using
the commutation relations, we can replace HI by H ′I everywhere. We will
call H ′ the result of substituting H ′I for HI in H.

As we have seen in the exercises, any Hamiltonian that is a quadratic
polynomial in the annihilation and creation operators can be diagonalized
by a Bogolyubov transformation. Assuming that we know ∆, we obtain in
momentum space

H ′ =

∫
dp ω(p) (c∗1(p)c1(p) + c∗2(p)c2(p)) (6.223)

with

ε(p) =
p2

2m
− µ (6.224)

ω(p) =

√
ε2(p) +

∣∣∣∆̃(p)
∣∣∣2 (6.225)

where ∆̃ is the Fourier transform of ∆ and the free constant has been adjusted
to set the energy in the Fock ground state to zero. The new annihilation and
creation operators ci(p) and c∗i (p) are related to the Fourier transforms of the
original ones by

ψ̃1(p) = u(p)c1(p)− v̄(p)c∗2(−p) (6.226a)

ψ̃2(p) = v̄(−p)c∗1(−p) + u(−p)c2(p) (6.226b)

with

u(p) =
∆̃(p)√

(ω(p)− ε(p))2 +
∣∣∣∆̃(p)

∣∣∣2 (6.227a)

v(p) =
ω(p)− ε(p)√

(ω(p)− ε(p))2 +
∣∣∣∆̃(p)

∣∣∣2 . (6.227b)

We still need to determine ∆.
In lemma 6.17 we have shown that the space average of an even, quasi-

local quantity is proportional the unit operator. The coefficient of the unit
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operator can be computed as the expectation value in the ground state Ω.
However, the ground state is translation invariant and we can compute

〈Q〉 = lim
V→Rn

1

V

∫
V

dx (Ω, Q(x)Ω) = (Ω, Q(x)Ω) . (6.228)

This way, we obtain
ϕ(z) = (Ω, ψ2(z)ψ1(0)Ω) (6.229)

and we can compute its Fourier transform using the Bogolyubov transforma-
tion (6.226)

ϕ̃(p) = −u(p)v̄(p) . (6.230)

Given an interaction Hint., we can compute ∆̃(p) from ϕ̃(p) and insert the
result in (6.227) to obtain an integral equation for ϕ, known as gap equation.
For suitable realistic attractive interactions Hint., the gap equation has not
only the trivial solution ϕ = 0, but also a one parameter family of solutions

ϕθ(x) = eiθϕ0(x) (6.231)

with θ ∈ [0, 2π) and ϕ0 : Rn → [0,∞). It turns out that the nontrivial
solution corresponds to a lower energy and is the interacting ground state
with a condensate of Cooper pairs

ϕ(z) = (Ω, ψ2(z)ψ1(0)Ω) . (6.229)

Since there is a finite energy gap between the Fock state and the correlated
ground state, Cooper pairs in the lowest energy state are not scattered and
move freely at low temperatures.

6.5.3 Gauge Symmetry Breaking

The classical Hamiltonian is invariant under a global gauge symmetry

ψ(x)→ eieαψ(x) (6.232a)

ψ∗(x)→ e−ieαψ∗(x) (6.232b)

under which the condensate φ is not invariant

ϕ(x)→ ei2eαϕ(x) . (6.233)

Using the same arguments as in the case of the free Bose gas, we see that
the ground state with ϕ 6= 0 breaks this symmetry, because the gauge trans-
formations can not be realized as unitary transformations.
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If the system is coupled to an electromagnetic vector potential (Φ, A) by
minmal coupling

µ→ µ− eΦ(x) (6.234a)

∇ → ∇− ieA(x) , (6.234b)

the equations of motion are even invariant under local gauge transformations

ψ(x)→ eieα(x,t)ψ(x) (6.235a)

ψ∗(x)→ e−ieα(x,t)ψ∗(x) (6.235b)

Φ(x)→ Φ(x)− e∂α
∂t

(x, t) (6.235c)

A(x)→ A(x)− e∇α(x, t) . (6.235d)

A non vansishing condensate of Cooper pairs also breaks this symmetry and
gives a mass term to the photons, resulting in a finite penetration depth of
electromagnetic fields into the superconductor, corresponding to the Meißner
effect.
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—7—
Symmetry and Symmetry Breaking

7.1 Wigner’s Theorem

So far, we have identified unbroken symmetries of a quantum mechanical
system with the existence of unitary operators in a Hilbert space represen-
tation (H, π). A priori, this is a too strong requirement, because a state of
a physical system is not described by a single normalized vector Φ ∈ H, but
by a ray

Ψ̂ = {eiλΨ : λ ∈ [0, 2π)} ∈ P (H) (7.1)

and a physical symmetry is only required to preserve probabilies, i. e. the
moduli of matrix elements, which obviously don’t depend on the representa-
tive chosen for each ray

∀Ψ ∈ Ψ̂,Φ ∈ Φ̂, λ, µ ∈ [0, 2π) :
∣∣(eiλΨ, eiµΦ

)∣∣ = |(Ψ,Φ)| =: |(Ψ̂, Φ̂)| . (7.2)

Definition 7.1 (Wigner Symmetry). A Wigner symmetry of a quantum
mechanical system with states described by rays in a Hilbert space H is a
mapping g : P (H) → P (H) of the projective Hilbert space of rays to itself,
which preserves all transition probabilies

∀Ψ̂, Φ̂ ∈ P (H) :
∣∣∣(gΨ̂, gΦ̂

)∣∣∣ =
∣∣∣(Ψ̂, Φ̂

)∣∣∣ . (7.3)

However, there is a famous theorem by Wigner in Hilbert space quantum
mechanics for a finite number of degrees of freedom:

Theorem 7.2 (Wigner). Given a quantum mechanical system, that is de-
scribed by the rays in a Hilbert space H, all Wigner symmetries are realized
by unitary or anti-unitary operators U(g) with

∀Ψ ∈ H : gΨ̂ = Û(g)Ψ , (7.4)

where the U(g) are determined upto a common phase.
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An anti-unitary operator U : H → H satisfies

∀Ψ,Φ ∈ H : (UΨ, UΦ) = (Ψ,Φ) = (Φ,Ψ) (7.5)

and is required for the realization of symmetries involving time-reversal t→
−t, since they switch the rôles of initial and final state in transition matrix
elements.

The non-obvious aspect of Wigner’s theorem is that the phases of the
operators can be consistently chosen in the whole Hilbert space to obtain
unitary or anti-unitary operators. In particular, it must be possible to com-
pose symmetries without additional phases

U(g)U(g′) = eiφ(g,g′)︸ ︷︷ ︸
= 1

U(g ◦ g′) . (7.6)

Proof. See the textbook [Wei95] and the article [Bar54].

7.2 Symmetry Breaking

Lecture 27: Wed, 03. 02. 2016

In the case of an infinite number of d.o.f., we must distinguish between sym-
metries realized algebraically and represented as unitary operators on Hilbert
space.

Definition 7.3. An algebraic symmetry of a physical system is a ∗-auto-
morphism or ∗-anti-automorphism β of the C∗-algebra A generated by the
observables of the system.

Definition 7.4. An ∗-anti-automorphism β : A → A of a C∗-algebra A is
an anti-linear map β preserving the structure of A

∀λ, µ ∈ C, A,B ∈ A : β(λA+ µB) = λ̄β(A) + µ̄β(B) (7.7a)

∀A,B ∈ A : β(AB) = β(B)β(A) (7.7b)

∀A ∈ A : β(A∗) = (β(A))∗ . (7.7c)

Definition 7.5. An internal algebraic symmetry is an algebraic symmetry β
that commutes with all time and space translations αt, αx

∀t ∈ R, x ∈ Rn : [αt, β] = [αx, β] = 0 . (7.8)
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Theorem 7.6. In a “physically relevant” representation (H, π,Ω), i. e. a rep-
resentation satisfying the conditions1 described in section 6.3.2, an internal
algebraic symmetry β is unbroken, i. e. represented unitarily, iff the ground
state correlation functions are invariant under β:

∀A ∈ A : (β∗ω)(A) := ω(β(A)) = (Ω, π(β(A))Ω) = (Ω, π(A)Ω) = ω(A)
(7.9)

Proof. If β is unbroken, it is realized by a unitary operator U(β). Then
U(β)Ω is also translation invariant, since β is an internal symmetry. However,
since Ω is by assumption the unique translation invariant state, we must
have β∗ω = ω. The reverse direction is corollary 4.9.

This theorem allows a simple characterization of symmetry breaking by

Definition 7.7 (order parameter). A ground state expectation value of an
observable A ∈ A that is not invariant under an internal algebraic symme-
try β

ω(β(A)) 6= ω(A) (7.10)

is called an order parameter.

In the following section, we will for brevity leave the representation map π
implicit and write (Ω, AΩ) for (Ω, π(A)Ω) since there is no possibility for
confusion.

7.3 Goldstone Theorem

It turns out that the energy spectrum of systems with spontaneously broken
symmetry is constrained. In fact, it appears2 that the absence of SSB can
be demonstrated by observing a gap in the excitation spectrum above the
ground state:

Theorem 7.8 (Goldstone). If

1. {βλ}λ∈R is a continuous one parameter group of internal symmetries

2. βλ is generated by a self-adjoint charge Q corresponding to a conserved
current (ρ, j), i. e.

δA :=
d

dλ

∣∣∣∣
λ=0

βλ(A) = i lim
R→∞

[QR(t), A] (7.11a)

1Existence of energy and momentum, stability, and existence of a ground state.
2Caveat: the conditions of the following theorem are somewhat subtle and can be

circumvented by important physical systems.
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QR(t) =

∫
|x|≤R

dx ρ(x, t) (7.11b)

∂

∂t
ρ(x, t) +∇j(x, t) = 0 , (7.11c)

acting on a subalgebra A0 of the algebra A generated by the observables.
A0 shall contain the local algebra AL ⊆ A0 and be stable under time
evolution αt(A0) ⊆ A0.

3. βλ is spontaneously broken in a cyclic representation (H, π,Ω) with
translation invariant ground state Ω, i. e. there is a self-adjoint A ∈ A0

with

ω(δA) = i lim
R→∞

ω([QR, A]) = i lim
R→∞

(Ω, [QR, A]Ω) 6= 0 (7.12)

then, the energy spectrum at zero momentum of the states generated by the
states {QRΩ}R∈R does not have a gap above the energy of the ground state Ω.

In other words, under the conditions of the theorem, there are excitations
with arbitrarily small energy.

Proof. In order to study the energy spectrum of a state QRΩ at a given mo-
mentum, 0 in the present case, in the symmetry breaking sector characterized
by the order parameter ω(A), we are let to compute the Fourier transform
of matrix elements like (AΩ, U(x)U(t)QRΩ). Let’s start with the Fourier
transform of

J(x, t) := i(Ω, [ρ(x, t), A]Ω) = i(Ω, ρ(x, t)AΩ)− i(Ω, Aρ(x, t)Ω)

= i(Ω, ρ(x, t)AΩ)− i(Ω, ρ(x, t)AΩ) = 2 Im(Ω, ρ(x, t)AΩ) . (7.13)

Using that the automorphisms βλ commute with the time translations

[δ, αt] =
d

dλ

∣∣∣∣
λ=0

[βλ, αt] = 0 (7.14)

and that A0 is stable under the time evolution, we can compute from the
time evolution of the charge

QR(t) := U(t)QRU
∗(t) (7.15)

that

i lim
R→∞

(Ω, [QR(t), A]Ω) = i lim
R→∞

(Ω, [U(t)QRU
∗(t), A]Ω)



ohl: Fri Feb 5 13:21:28 CET 2016 subject to change! 140

= i lim
R→∞

(Ω, U(t)[QR, U
∗(t)AU(t)]U∗(t)Ω) = i lim

R→∞
(Ω, [QR, α−t(A)]Ω)

= (Ω, δ(α−t(A))Ω) = (Ω, α−t(δ(A))Ω) = (Ω, δ(A)Ω)

= i lim
R→∞

(Ω, [QR, A]Ω) =: a 6= 0 . (7.16)

If we denote by J̃(k, t) the spacial Fourier transform of J(x, t), we have

J̃(0, t) =

∫
dxJ(x, t) = lim

R→∞

∫
|x|≤R

dxJ(x, t)

= lim
R→∞

∫
|x|≤R

dxi(Ω, [ρ(x, t), A]Ω)

= lim
R→∞

i(Ω, [QR, A]Ω) = lim
R→∞

2 Im(Ω, QRAΩ) = a 6= 0 . (7.17)

And if we denote by ˜̃J(k, ω) the double Fourier transform of J(x, t), we find
from the time independence of J̃(0, t)

lim
k→0

˜̃J(k, ω) = bδ(ω) , (7.18)

i. e. there must be a state with zero energy in the spectral decomposition
of Im(Ω, ρ(x, t)AΩ) .

We can demonstrate this statement more explicitely by introducing a
complete set of states {Ψp,E}p∈Rn,E∈R, i. e.

∀Φ ∈ H : Φ =

∫
dp

(2π)n
dE

2π
(Ψp,E,Φ) Ψp,E , (7.19)

with

PΨp,E = pΨp,E (7.20a)

HΨp,E = EΨp,E (7.20b)

or
U(x, t)Ψp,E = e−i(Et−px)Ψp,E . (7.21)

We can then compute, using

ρ(x, t) = U∗(x, t)ρ(0, 0)U(x, t) , (7.22)

in the spectral decomposition of J

J(x, t) = 2 Im(Ω, ρ(x, t)AΩ)
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= 2 Im

(∫
dp

(2π)n
dE

2π
(Ω, ρ(x, t)Ψp,E)(Ψp,E, AΩ)

)
= 2 Im

(∫
dp

(2π)n
dE

2π
(Ω, U∗(x, t)ρ(0, 0)U(x, t)Ψp,E)(Ψp,E, AΩ)

)
= 2 Im

(∫
dp

(2π)n
dE

2π
(Ω, ρ(0, 0)Ψp,E)(Ψp,E, AΩ)e−i(Et−px)

)
(7.23)

to make the x and t dependence explicit. Now the Fourier transform is trivial

˜̃J(k, ω) =

∫
dxdt ei(ωt−kx)J(x, t) = 2 Im ((Ω, ρ(0, 0)Ψk,ω)(Ψk,ω, AΩ)) (7.24)

and we obtain from (7.18)

lim
k→0

Im ((Ω, ρ(0, 0)Ψk,ω)(Ψk,ω, AΩ)) =
b

2
δ(ω) 6= 0 . (7.25)

This implies
lim
k→0

(Ω, ρ(0, 0)Ψk,ω) (7.26)

must not vanish in a neighborhood of ω = 0. Therefore the Goldstone boson
state Ψp,E must have the quantum numbers of the charge density ρ(x, t).

The most important physical application of Goldstone’s Theorem is the
protection of small energy differences against perturbations.

7.3.1 A Closer Look

While the assumptions of Goldstone’s theorem 7.8 are superficially innocu-
ous, there are systems that appear to satisfy them, yet do exhibit an energy
gap:

• the BCS-Model has a gap above the correlated ground state Ω and a
U(1) gauge symmetry breaking order parameter (Ω, ψ(x)ψ(0)Ω),

• the standard model of elementary particle physics has a SUL(2) break-
ing order parameter giving masses to gauge bosons and fermions, yet
not massless particles with the corresponding quantum numbers.

On the other hand, Goldstone’s theorem is very successful in describing a lot
of physical systems that can not be handled with other tools
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• among strongly interacting elementary particles, there are some that
are significantly lighter than others: according to their quantum num-
bers, pions are composed of two quarks, protons and neutrons of three
quarks π+

π0

π−

 =

 u⊗ d̄
1√
2

(
u⊗ ū+ d⊗ d̄

)
d⊗ ū

 (7.27a)

(
p
n

)
=

(
u⊗ u⊗ d
u⊗ d⊗ d

)
. (7.27b)

Thus one would natively expect

135 GeV ≈ mπ ≈
2

3
mp ≈ 650 GeV , (7.28)

which is obviously incorrect. While we don’t have the analytical tools
yet to solve strongly interacting dynamics, we can use Goldstone’s the-
orem to explain why mπ � 2/3 ·mp. Indeed there is a SUL(2)×SUR(2)
symmetry, that appears to be spontaneously broken to a single SU(2)
and Goldstone’s theorem predicts a triplet of massless Goldstone bosons
with the quantum of the broken symmetries. While perturbation the-
ory would predict them to become heavy through strong interactions
with the other particles, Goldstone’s theorem predicts that they remain
light,

• massless acoustic phonons are the Goldstone bosons resulting from the
breaking of the continuous translation symmetries to the discrete lattice
translations,

• spin waves are massless excitations in a Heisenberg ferromagnet and
are the Goldstone bosons resulting from the spontaneous breaking of
the rotational symmetry.

These examples suggest that Goldstone’s theorem is applicable to some sys-
tems, but not to others. Therefore it is worthwhile to reexamine the condi-
tions of the theorem

Symmetry
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It is often straightforward to show that a symmetry commutes with the time
evolution by studying the Lagrangian or Hamiltonian of a system.

Example 7.9. The Lagrangian

L =

∫
dn+1x

(
1

2

∂ϕ1

∂xµ
(x)

∂ϕ1

∂xµ
(x) +

1

2

∂ϕ2

∂xµ
(x)

∂ϕ2

∂xµ
(x)− P

(
ϕ2

1(x) + ϕ2
2(x)

))
,

(7.29)
with real valued fields φ1, φ2 : R×Rn → R and P an arbitrary real and even
polynomial, is invariant under the transformations(

ϕ1(x)
ϕ2(x)

)
→ O

(
ϕ1(x)
ϕ2(x)

)
(7.30)

with O an arbitrary orthogonal 2× 2-matrix. Noether’s theorem then shows
that the current

(ρ(x), j(x)) = jµ(x) = φ2(x)
∂

∂xµ
φ1(x)− φ1(x)

∂

∂xµ
φ2(x) (7.31)

is conserved in the classical theory.

However, it is not obviuous that an invariance of the classical theory is
realized in the quantum theory, even as an algebraic symmetry. We can
regularize the system by putting it into a box with finite volume V and
taking the limit V → Rn, but it is a priori not clear that the dynamics of
the system respects the symmetry in this limit. Fortunately, we can prove

Theorem 7.10. If the finite volume dynamics αVt converges to the infinite
volume dynamics in the norm topology, then[

βλ, αVt
]

= 0 =⇒
[
βλ, αt

]
= 0 . (7.32)

Proof. An automorphism of a C∗-algebra preserves the norm and is contin-
uous in the norm topology. Then

βλ(αt(A)) = βλ((αt − αVt )︸ ︷︷ ︸
V→Rn

−→ 0

(A)) + βλ(αVt (A))︸ ︷︷ ︸
αVt (βλ(A))

→ αt(β
λ(A)) . (7.33)

Since the finite volume dynamics αVt is generated by a finite volume
Hamiltonian HV , the theorem guaratees that it suffices to verify the invari-
ance of HV . This is usally straightforward.
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Existence of a Charge

The existence of the charge Q is much more subtle. In fact, using translation
invariance, it appears hopeless to define it as the integral

Q(t) = lim
R→∞

∫
|x|≤R

dx ρ(x, t)

of a density ρ(x, t). From

ρ(x, t) = U(x)ρ(0, t)U∗(x) (7.34)

and the unitarity of U(x), we see that

lim
|x|→∞

ρ(x, t) 6= 0 . (7.35)

Fortunately, we only need the convergence of commutators

∀A ∈ A : [Q(t), A] = lim
R→∞

∫
|x|≤R

dx [ρ(x, t), A]

for the proof of Goldstone’s theorem. These are much better behaved due to
the locality of the elements of the algebra A. But nonlocal or instantaneous
interactions can violate the condition that the local algebra is stable under the
time evolution. Relativistic models with finite speed of propagation are safe,
unless we employ nonlocal subsidiary conditions to fix a gauge for quantizing
gauge theories (e. g. Coulomb gauge).

Order Parameter

7.3.2 Ginzburg-Landau

In the usual, intuitive, explanation of Goldstone’s theorem, one writes an
effective potential for the classical order parameter, which is minimized by
a symmetry breaking values of this order parameter, as in figure 7.1. One
then argues that the order parameter will settle in one of the local minima
and choose the quantum fluctuations around this minimum as the effective
low energy degrees of freedom. This is the essence of the Ginzburg-Landau
theory of phase transitions and we can justify the classical treatment of
the order parameter by our previous analysis, in particular the observation
that the order parameter corresponds to a element of the center Z(A) of
the observable algebra. In this picture, all phases of matter, i. e. the states
of macroscopic matter in the thermodynamic limit V → Rn correspond to
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Figure 7.1: Typical “Mexican Hat” potential for the order parameter.

superselection sectors and are labelled by the values of the order parameters.
While this true to a large extent, recently phases have been discovered that
don’t fall into this picture, cf. section 7.3.3.

Using dimensional analysis, one can derive a low energy or long distance
expansion of the effective potential in the Ginzburg-Landau approach. In
fact, the order parameter typically has the dimension of a positive power of
an energy or inverse length, since from

H =

∫
dx

1

2m
(∇ψ∗(x))(∇ψ(x)) + . . . (7.36)

ψ(x) must have dimension energyn/2 or length−n/2. Then high powers of 〈ψ〉
are supressed by a high inverse power of a typical energy scale Λ

V = Λ
∞∑
k=0

Ck

(
ψ

Λn/2

)k
(7.37)

and it suffices to include the lowest orders, which don’t vanish for Λ → ∞.
A typical example for two real valued fields ψ1 and ψ2 is shown in figure 7.1

V (ψ1, ψ2) =
(
ψ2

1 + ψ2
2 − v2

)2
= v4−2v2ψ2

1−2v2ψ2
2 +ψ4

1 +ψ4
2 +2ψ2

1ψ
2
2 . (7.38)

This potential is invariant under rotations(
ψ1

ψ2

)
→
(

cos θ − sin θ
sin θ cos θ

)(
ψ1

ψ2

)
= exp

(
0 −θ
θ 0

)(
ψ1

ψ2

)
(7.39)
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Since the order parameter lies in the center of the algebra and each value
corresponds to a different inequivalent representation, the system will have
to pick a value that minimizes the potential, i. e. with

〈ψ1〉2 + 〈ψ2〉2 = v2 . (7.40)

By expanding around the minima, one can show that the excitations along
the valley are massless, i. e. Goldstone bosons.

7.3.3 Other Quantum Phases of Matter

One should not forget to mention that not only symmetry breaking order
parameters à la Ginzburg-Landau, as described above, characterize different
phases of matter. Since the discovery of the Quantum Hall Effect, the concept
of Topological Order has become very important for characterizing exotic
phases of matter. Here topological invariants create elements of the center
of the algebra that are robust against quantum fluctuations.

7.4 Higgs Mechanism

In gauge theories like quantum electrodynamics, Goldstone’s theorem does
not imply the existence of an observable energy gap, because the states im-
plied by the theorem turn out to be redundant and can be removed by a
suitable choice of gauge.
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—A—
Acronyms

a.k.a. also known as

CCR Canonical Communation Relations

CSI Cauchy-Schwarz Inequality

d.o.f. degrees of freedom

FAPP For All Practical Purposes

iff if and only if

LHS Left Hand Side

OTOH On The Other Hand

QM Quantum Mechanics

RHS Right Hand Side

SSB Spontaneous Symmetry Breaking

WLOG Without Loss Of Generality

wrt with respect to
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adjoining an identity, 22
algebra, 6
algebraic symmetry, 137
annihilation and creation operators,
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canonical commutation relations, 71
canonical phase space, 69
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commutant, 53, 88
commutative, 6
complex vector space, 70
conical sum, 61
Cooper pairs, 134

counting measure, 72
cyclic representation, 52
cyclic vector, 51

decomposition, 51
density matrices, 56
density matrix, 92
Dirac measures, 12
direct sum of representations, 52
dual space, 55
Dyson’s series, 104

effective potential, 144
Einstein locality, 108
energy gap, 101
Euclidean group, 120
even, 130
expectation, 10, 13

faithful, 49
Feynman diagrams, 104
Fock representation, 98
Fock state, 77, 98
Fock vacuum state, 98
folium, 94
full, 19

Galileo boosts, 89
gap equation, 134
gauge invariance, 116
gauge symmetry, 116
general Weyl system, 72
Ginzburg-Landau, 144
GNS representation, 64, 65
Goldstone bosons, 142
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Goldstone’s Theorem, 141
ground state, 110

Hausdorff formula, 99
Heisenberg algebra, 97
Hellinger-Toeplitz theorem, 4
homomorphism, 34, 43

infinite volume limit, 96
internal algebraic symmetry, 137
invariant subspace, 50
invertible, 23
involution, 6
involutive algebra, 6
irreducible representation, 53
isometry, 7
isomorphism, 49

kernel, 44
Klein-Gordon equation, 70

Lebesgue dominated convergence the-
orem, 83

left ideal, 23
local algebra, 108, 109

mass gap, 101
Meißner effect, 135
modulus, 41

net, 45
Noether’s theorem, 143
nondegenerate representation, 51
normal, 7
normalized positive linear functional,

12
normed ∗-algebra, 8
normed algebra, 8
number operators, 98

observable, 13
occupation number representation,

101

one-to-one, 49
onto, 49
operator, 130
order parameter, 138

Peierls bracket, 70
Peierls brackets, 70
phase transitions, 96
phonons, 142
physical, 19
positive, 7
positive linear functional, 55
pure states, 55, 61

Quantum Hall Effect, 146
quantum mechanics, 71
quasi-local, 130, 133

ray, 136
regular representation, 76
representation, 49
resolvent, 23
resolvent identity, 32
resolvent set, 23
right ideal, 23

Schwartz space, 84
Segal system, 18
self-adjoint, 7
separate, 19
sesquilinear form, 61
spectral mapping theorem, 31
spectral radius, 24
spectrum, 23
spin waves, 142
spontaneously broken symmetry, 116
square root, 39
stable subspace, 50
state, 13, 55
Stone-von Neumann, 77
subrepresentation, 50
symplectic vector, 69
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Topological Order, 146
trace, 92
trace class, 92
trivial representations, 51
two sided, 23

unital, 6
unitary, 7
unitary equivalence, 54

vector state, 61
vector states, 55, 94

weak asymptotic abelianness, 109
weak topology, 95
Weyl algebra, 71
Weyl form of the canonical commu-

tation relations, 71
Weyl system, 70
Wigner symmetry, 136
winding number, 32

Zorn’s lemma, 53
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