

December 18, 2015

Fakultät für Physik und Astronomie

Prof. Dr. Thorsten Ohl

Fock Representation(s)

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

10.1 Bogoliubov Transformations

Even in our favorite units with $\hbar = c = 1$, the definition

$$a = \frac{1}{\sqrt{2}} (x + ip)$$
$$a^* = \frac{1}{\sqrt{2}} (x - ip)$$

is not well defined, because x and p have different dimensions and neither is dimensionless. A more suitable definition introduces a mass m and frequency ω to make

$$a = \sqrt{\frac{m\omega}{2}} \left(x + \frac{\mathrm{i}}{m\omega} p \right) \tag{1a}$$

$$a^* = \sqrt{\frac{m\omega}{2}} \left(x - \frac{\mathrm{i}}{m\omega} p \right) \tag{1b}$$

dimensionless. It is well known that the harmonic oscillator

$$H = \frac{1}{2m}p^2 + \frac{m\omega^2}{2}x^2$$
 (2)

is diagonal in the Fock representation $(\mathcal{H}, \pi, \Omega)$ with

$$a\Omega = 0 \tag{3a}$$

and \mathcal{H} the completion of the linear combinations of

$$\Psi_n = \frac{1}{\sqrt{n!}} \left(a^*\right)^n \Omega.$$
(3b)

Consider now a harmonic oscillator with the same mass, but different frequency $\omega_{\alpha} = \alpha^2 \omega$

$$H_{\alpha} = \frac{1}{2m}p^2 + \frac{m\omega_{\alpha}^2}{2}x^2 \tag{4}$$

with $\mathbf{R} \ni \alpha \neq 0$.

1. Find annihilation and creation operators b_α and b^*_α such that

$$H_{\alpha} = \omega_{\alpha} \left(b_{\alpha}^* b_{\alpha} + \frac{1}{2} \right) \,. \tag{5}$$

- 2. Express b_{α} , b_{α}^* and H_{α} as functions of a and a^* .
- 3. Compute the matrix elements

$$(\Psi_k, a\Psi_l) \tag{6a}$$

$$(\Psi_k, a^* \Psi_l) \tag{6b}$$

$$(\Psi_k, H\Psi_l) \tag{6c}$$

and

$$(\Psi_k, b_\alpha \Psi_l) \tag{7a}$$

$$(\Psi_k, b^*_{\alpha} \Psi_l) \tag{7b}$$

$$(\Psi_k, H_\alpha \Psi_l) \tag{7c}$$

4. Show that

$$b_{\alpha} = (U_s(\zeta(\alpha)))^* a U_s(\zeta(\alpha))$$
(8a)

$$b_{\alpha}^* = (U_s(\zeta(\alpha)))^* a^* U_s(\zeta(\alpha))$$
(8b)

with the $squeeze \ operators$

$$U_s(\zeta) = e^{\frac{1}{2}\left(\zeta a^* a^* - \bar{\zeta} a a\right)} \tag{9}$$

and compute $\zeta(\alpha)$.

5. Express the Fock state Ω_{α} with $b_{\alpha}\Omega_{\alpha} = 0$ in terms of the $\{\Psi_n\}_{n \in \mathbb{N}_0}$. Here the formula

$$U_s(\zeta) = e^{-\frac{\zeta}{2} \frac{\tanh|\zeta|}{|\zeta|} a^* a^*} e^{-\ln(\cosh|\zeta|) \left(a^* a + \frac{1}{2}\right)} e^{\frac{\zeta}{2} \frac{\tanh|\zeta|}{|\zeta|} aa}$$
(10)

is helpful. Can you prove it?