8. Problemset "Quantum Algebra & Dynamics"

December 4, 2015

Gel'fand, Neimark, Segal, Stone, von Neumann

8.1 Inclusions

Consider once more the C^* -algebra \mathcal{M}_2 of 2×2 -Matrices $M(a_0, \vec{a})$ parametrized by four complex numbers (a_0, \vec{a}) , using the Pauli matrices with

$$M(a_0, \vec{a}) = a_0 \mathbf{1} + \vec{a} \vec{\sigma} \,. \tag{1}$$

The states on \mathcal{M}_2 can be parametrized by three real numbers $\vec{\alpha}$ with $|\vec{\alpha}| \leq 1$ and

$$\omega_{\vec{\alpha}}: M \mapsto \frac{1}{2}\operatorname{tr}(M\rho(1,\vec{\alpha}))$$
 (2)

using $\rho(\alpha_0, \vec{\alpha}) \in \mathcal{M}_2$. The pure states are those with $|\vec{\alpha}| = 1$.

Consider also the C^* -algebra $\mathcal{M}_1 \cong \mathbf{C}$ of 1×1 -Matrices m(a) = a and the direct sum

$$\mathcal{M}_1 \oplus \mathcal{M}_1 \subset \mathcal{M}_2 \tag{3}$$

with the inclusion maps

$$\iota_{\vec{e}}: \mathcal{M}_1 \oplus \mathcal{M}_1 \hookrightarrow \mathcal{M}_2$$

$$m(a) \oplus m(a') \mapsto \begin{pmatrix} a & 0 \\ 0 & a' \end{pmatrix} = \frac{1}{2}M(a+a', (a-a')\vec{e})$$
(4)

for $|\vec{e}| = 1$.

NB: iff the general formulae become too messy for your taste, you can restrict yourself in the following to the special case $\vec{e} = (0, 0, 1)$.

- 1. Show that $\iota_{\vec{e}}$ is a C^* -algebra homomorphism.
- 2. Show that $\omega_{\vec{e},\vec{\alpha}} = \omega_{\vec{\alpha}} \circ \iota_{\vec{e}}$ is a state on $\mathcal{M}_1 \oplus \mathcal{M}_1$. Give a concrete representation in the chosen basis.
- 3. Give necessary and sufficient conditions on \vec{e} and $\vec{\alpha}$ for $\omega_{\vec{e},\vec{\alpha}}$ to be pure.
- 4. Construct the cyclic representations $(\mathcal{H}_{\vec{e},\vec{\alpha}}, \pi_{\vec{e},\vec{\alpha}}, \Omega_{\vec{e},\vec{\alpha}})$ of $\mathcal{M}_1 \oplus \mathcal{M}_1$ from $\omega_{\vec{e},\vec{\alpha}}$ in the special cases

$$\vec{\alpha} = (0, 0, 0) \tag{5a}$$

$$\vec{\alpha} = (0, 0, 1)$$
 . (5b)

5. Give the concrete matrix realizations of

$$\pi_{\vec{e},\vec{\alpha}}(m(a) \oplus m(a'))$$
. (6)

- 6. Which representations are irreducible? Determine the invariant subspace(s) for the others.
- 7. Verify that

$$\pi_{\vec{e},\vec{\alpha}} = \pi_{\vec{\alpha}} \circ \iota_{\vec{e}} \tag{7}$$

with $\pi_{\vec{\alpha}}$ from problem 7.1.

8.2 Circle

Consider the algebra $C(S^1)$ of bounded complex valued continuous functions $f: S^1 \to \mathbf{C}$ on the unit circle. Perform the GNS construction of a representation for the following linear functionals $\omega: C(S^1) \to \mathbf{C}$:

$$f \mapsto f(0)$$
 (8a)

$$f \mapsto \int_0^{2\pi} \frac{\mathrm{d}\phi}{2\pi} f(\phi) \tag{8b}$$

8.3 Gaussian Integrals

Starting from

$$P_{\pi} = \int \frac{\mathrm{d}\xi \,\mathrm{d}\eta}{2\pi} \mathrm{e}^{-\frac{\xi^2 + \eta^2}{4}} \pi(W(\xi, \eta)) \tag{9}$$

and

$$W(\xi, \eta)W(\xi', \eta') = e^{\frac{i}{2}(\xi\eta' - \eta\xi')}W(\xi + \xi', \eta + \eta')$$
(10)

show that

$$P_{\pi}\pi(W(\xi,\eta))P_{\pi} = e^{-\frac{\xi^2 + \eta^2}{4}}P_{\pi}$$
 (11)

by a suitable variable transformation and evaluating two (identical) Gaussian integrals.