

6. Problemset "Quantum Algebra & Dynamics" November 20, 2015

Direct Sum, Tensor Product & Hilbert Space(s)

6.1 Sum and Product

Consider the direct sum $\mathcal{A}_1 \oplus \mathcal{A}_2$ and tensor product $\mathcal{A}_1 \otimes \mathcal{A}_2$ of two C^* -algebras $\mathcal{A}_{1,2}$ and show that they can be made into C^* -algebras with the natural products and norms.

6.2 Spin Chain

Consider a chain of N spin-1/2 systems in the Hilbert space

$$\mathcal{H}_N = \bigotimes_{i=1}^N \mathcal{H}^{(i)} \tag{1}$$

with

$$\forall i \in \{1, 2, \dots, N\} : \mathcal{H}^{(i)} = \{c_{\uparrow}\Psi_{\uparrow} + c_{\downarrow}\Psi_{\downarrow} : c_{\uparrow}, c_{\downarrow} \in \mathbf{C}\} \cong \mathbf{C}^{2}, \qquad (2)$$

in which the C*-Algebra \mathcal{A}_N of observables generated by the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(3)

is represented by

$$\Sigma_k^{(i)} = \bigotimes_{k=1}^{i-1} \mathbf{1} \otimes \sigma_k \otimes \bigotimes_{k=i+1}^N \mathbf{1}.$$
(4)

- 1. Which dimension has \mathcal{H}_N ?
- 2. Which dimension has \mathcal{A}_N ?
- 3. Compute the commutation relations

$$\left[\Sigma_k^{(i)}, \Sigma_l^{(j)}\right]_{-} = \Sigma_k^{(i)} \Sigma_l^{(j)} - \Sigma_l^{(j)} \Sigma_k^{(i)} \,. \tag{5}$$

4. Construct the states $\Psi_{\vec{a}}^N \in \mathcal{H}_N$ with the property

$$\forall i \in \{1, 2, \dots, N\} : \left(\vec{a}\vec{\Sigma}_{3}^{(i)}\right)\Psi_{\vec{a}}^{N} = \Psi_{\vec{a}}^{N}$$
 (6)

for all $\vec{a} \in \mathbf{R}^3$.

5. Find a unitary operator $U_N(\vec{a}, \vec{b})$ with

$$U_N(\vec{a}, \vec{b})\Psi_{\vec{b}}^N = \Psi_{\vec{a}}^N \,. \tag{7}$$

6. In the limit $N \to \infty$, we can study the Hilbert spaces

$$\mathcal{H}_{\vec{a}} = \overline{\lim_{N \to \infty} \mathcal{A}_N \Psi_{\vec{a}}^N} \ni \Psi_{\vec{a}} = \lim_{N \to \infty} \Psi_{\vec{a}}^N \tag{8}$$

that are obtained by completing the spaces of states obtained from applying elements of $\lim_{N\to\infty} \mathcal{A}_N$ to $\Psi_{\vec{a}}$.

- (a) Do we have $\Psi_{\vec{a}} \in \mathcal{H}_{\vec{b}}^N$?
- (b) Does $U = \lim_{N \to \infty} U_N$ exist in the operator topology?