2. Problemset "Quantum Algebra & Dynamics" October 23, 2015

Adjoined Units, Ideals and Factor Algebras

2.1 Adjoining a Unit

Just like in Theorem 2.1, let \mathcal{A} be a C^* -algebra without identity and $\bar{\mathcal{A}}$ denote the set of pairs

$$\bar{\mathcal{A}} = \{ (\alpha, A) : \alpha \in \mathbf{C}, A \in \mathcal{A} \} . \tag{1}$$

The *-algebra operations are again

$$\mu(\alpha, A) + \lambda(\beta, B) = (\mu\alpha + \lambda\beta, \mu A + \lambda B)$$
 (2a)

$$(\alpha, A)(\beta, B) = (\alpha\beta, \alpha B + \beta A + AB) \tag{2b}$$

$$(\alpha, A)^* = (\bar{\alpha}, A^*) \tag{2c}$$

We can define a norm via

$$\|(\alpha, A)\|_{\bar{\mathcal{A}}} = \sup_{B \in \mathcal{A}, \|B\| = 1} \|\alpha B + AB\|_{\mathcal{A}}.$$
 (3)

1. Show that (3) satisfies the triangle inequality

$$\|(\alpha, A) + (\beta, B)\|_{\bar{A}} \le \|(\alpha, A)\|_{\bar{A}} + \|(\beta, B)\|_{\bar{A}}. \tag{4}$$

2. Show that (3) satisfies the product inequality

$$\|(\alpha, A)(\beta, B)\|_{\bar{A}} \le \|(\alpha, A)\|_{\bar{A}} \|(\beta, B)\|_{\bar{A}}.$$
 (5)

2.2 Ideals

A subspace $\mathcal{B} \subseteq \mathcal{A}$ is called a left ideal, if $\forall A \in \mathcal{A}, B \in \mathcal{B} : AB \in \mathcal{B}$. A subspace $\mathcal{B} \subseteq \mathcal{A}$ is called a right ideal, if $\forall A \in \mathcal{A}, B \in \mathcal{B} : BA \in \mathcal{B}$. If \mathcal{B} is both a left and a right ideal it is called a two sided ideal.

- 1. Show that every ideal is a (sub-)algebra.
- 2. Show that if \mathcal{B} is self adjoint and a left or right ideal, it is necessarily two sided.

2.3 Factor Algebras

Let \mathcal{I} be a two sided ideal of an algebra \mathcal{A} .

1. Show that the factor space \mathcal{A}/\mathcal{I} is also an algebra, i. e. that the algebra operations are well defined for the equivalence classes

$$[A] = \{A + I : I \in \mathcal{I}\}. \tag{6}$$

- 2. Show that this is also true for \mathcal{A}/\mathcal{I} if \mathcal{A} is a
 - (a) *-algebra and $\mathcal{I} = \mathcal{I}^*$
 - (b) Banach algebras and \mathcal{I} is complete.

Caveat: a two sided ideal in a *-algebra is not necessarily self adjoint. This can be seen from Stefan Waldmann's "universal counterexample" of $\mathcal{A} = C(S^2)$ with (fg)(x) = f(x)g(x) and $f^*(x) = \bar{f}(-x)$. Then $\mathcal{I} = \{f \in \mathcal{A} : f(\text{north pole}) = 0\}$ is obviously a two sided ideal, but $\mathcal{I}^* = \{f \in \mathcal{A} : f(\text{south pole}) = 0\} \neq \mathcal{I}$.