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Unbounded Operators / Dynamics of States

1.1 CCRs vs. Boundedness
Consider two bounded operators A and B on a Hilbert space H, i.e.

deqa € RV € H o ||AY|| < call?|| (1a)
dep e RV € H: ||BY|| < egllv - (1b)

Show that the canonical commutation relations
[A,B] = AB— BA=1i (2)

are inconsistent with the assumption of boundedness for the operators A
and B.

NB: it is not necessary to find an original proof. It suffices to find, understand
and present a proof from the literature.

1.2 Classical Dynamics on the 2-Torus

Consider a classical dynamical system with the 2-Torus 7% = S x S as phase
space I' (this is not a cotangent bundle, but it has the technical advantage
of being compact).

Using standard coordinates (61, 6;) € [0,27)?, a consistent Poisson bracket is

given by
af dg  Of 8g>

{f,9) = (8_018_92_8_628_61 (3)

Assume that the Hamiltonian is

H:T—-R

. 4
(01,02) — H(Qheg) = CCOSQl ( )

In order to be well defined globally, the Hamiltonian must be periodic in 6,
and 6. This is the simplest choice.

1. Derive the equations of motion
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2. Determine the flow ® of a phase space point (6;,60;) € T’

3. Determine the time evolution of the state w, where

w(f) = / 020w (6)(0) (5)

with
w:I'—= R

1 .
(01, 02) — W(Ql, 92) = F sin2 01 SiH2 02

1.3 Classical Dynamics on the 2-Sphere

Consider a classical dynamical system with the 2-Sphere S? as phase space I’
(this is again not a cotangent bundle, but it has the technical advantage of
being compact and is highly symmetric).

Using standard spherical coordinates (6,¢) € [0,7) x [0,27], a consistent
Poisson bracket is given by

(7)

(= L (afag afag)

sin 6
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Assume that the Hamiltonian is

H:T—-R

(0,9) — H(0,¢) =ccosf’ (8)

In order to be well defined globally, the Hamiltonian must be periodic in 6
and ¢. This one of the simplest choices.

1. Show that the Poisson bracket satisfies all requirements.
2. Determine the flow ® of a phase space point (6, ¢) € T

3. Determine the time evolution of the state w, where

w(f) = / im0 d6dé w (6, 6) (6, 0) (9)

with
w:I'=R

(0,0) — w(B,¢) = % sin @ cos® ¢



