

1. Problemset "Quantum Algebra & Dynamics" October 16, 2015

Unbounded Operators / Dynamics of States

1.1 CCRs vs. Boundedness

Consider two bounded operators A and B on a Hilbert space \mathcal{H} , i. e.

$$\exists c_A \in \mathbf{R} : \forall \psi \in \mathcal{H} : ||A\psi|| < c_A ||\psi|| \tag{1a}$$

$$\exists c_B \in \mathbf{R} : \forall \psi \in \mathcal{H} : ||B\psi|| \le c_B ||\psi||. \tag{1b}$$

Show that the canonical commutation relations

$$[A, B] = AB - BA = i \tag{2}$$

are inconsistent with the assumption of boundedness for the operators A and B.

NB: it is *not* necessary to find an original proof. It suffices to find, understand and present a proof from the literature.

1.2 Classical Dynamics on the 2-Torus

Consider a classical dynamical system with the 2-Torus $T^2 = S^1 \times S^1$ as phase space Γ (this is not a cotangent bundle, but it has the technical advantage of being compact).

Using standard coordinates $(\theta_1, \theta_2) \in [0, 2\pi)^2$, a consistent Poisson bracket is given by

$$\{f,g\} = \left(\frac{\partial f}{\partial \theta_1} \frac{\partial g}{\partial \theta_2} - \frac{\partial f}{\partial \theta_2} \frac{\partial g}{\partial \theta_1}\right). \tag{3}$$

Assume that the Hamiltonian is

$$H: \Gamma \to \mathbf{R}$$

$$(\theta_1, \theta_2) \mapsto H(\theta_1, \theta_2) = c \cos \theta_1.$$
(4)

In order to be well defined globally, the Hamiltonian must be periodic in θ_1 and θ_2 . This is the simplest choice.

1. Derive the equations of motion

- 2. Determine the flow Φ of a phase space point $(\theta_1, \theta_2) \in \Gamma$
- 3. Determine the time evolution of the state ω , where

$$\omega(f) = \int_{\Gamma} d^2\theta \, \omega(\theta) f(\theta) \tag{5}$$

with

$$\omega: \Gamma \to \mathbf{R}$$

$$(\theta_1, \theta_2) \mapsto \omega(\theta_1, \theta_2) = \frac{1}{\pi^2} \sin^2 \theta_1 \sin^2 \theta_2.$$
(6)

1.3 Classical Dynamics on the 2-Sphere

Consider a classical dynamical system with the 2-Sphere S^2 as phase space Γ (this is again not a cotangent bundle, but it has the technical advantage of being compact and is highly symmetric).

Using standard spherical coordinates $(\theta, \phi) \in [0, \pi) \times [0, 2\pi]$, a consistent Poisson bracket is given by

$$\{f,g\} = \frac{1}{\sin\theta} \left(\frac{\partial f}{\partial \theta} \frac{\partial g}{\partial \phi} - \frac{\partial f}{\partial \phi} \frac{\partial g}{\partial \theta} \right) \tag{7}$$

Assume that the Hamiltonian is

$$H: \Gamma \to \mathbf{R}$$

$$(\theta, \phi) \mapsto H(\theta, \phi) = c \cos \theta.$$
(8)

In order to be well defined globally, the Hamiltonian must be periodic in θ and ϕ . This one of the simplest choices.

- 1. Show that the Poisson bracket satisfies all requirements.
- 2. Determine the flow Φ of a phase space point $(\theta, \phi) \in \Gamma$
- 3. Determine the time evolution of the state ω , where

$$\omega(f) = \int_{\Gamma} \sin \theta \, d\theta d\phi \, \omega(\theta, \phi) f(\theta, \phi) \tag{9}$$

with

$$\omega: \Gamma \to \mathbf{R}$$

$$(\theta, \phi) \mapsto \omega(\theta, \phi) = \frac{2}{\pi^2} \sin \theta \cos^2 \phi$$
(10)