

Fakultät für Physik und Astronomie Prof. Dr. Thorsten Ohl

Raimond Abt, Jean-Nicolas Lang, René Meyer

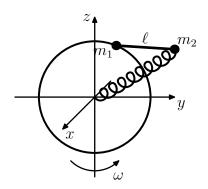
7. Übung zur Klassischen Mechanik

28. November 2016

Lagrangeformalismus

7.1 Hantel auf Kreis mit Feder

Betrachten Sie ein System aus zwei Massen m_1 und m_2 , die durch eine masselose Stange der Länge ℓ verbunden sind, wobei die Bewegung von m_1 auf einen mit der konstanten Winkelgeschwindigkeit $\vec{\omega} = \omega \vec{e}_z$ aufrecht rotierenden Kreisring mit Radius $R > \ell$ eingeschränkt sei.

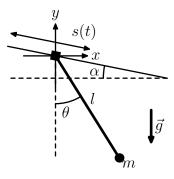


Auch die Bewegung von m_2 beschränke sich auf die Ebene des Krerisrings. Außerdem sei m_2 durch eine masselose harmonische Feder mit der Federkonstanten k mit dem Zentrum des Kreisrings verbunden. Die Ruhelänge der Feder sei vernachlässigbar, ebenso das Schwerefeld.

- 1. Geben Sie eine Lagrangefunktion L für das System an.
- 2. Finden Sie die Gleichgewichtslagen des Systems (d. h. Lösungen der Euler-Lagrange-Gleichungen mit $q={\rm const.}$ und $\dot q=\ddot q=0$) für $\omega=0$. Welche sind stabil und welche instabil (bzw. für welche Gleichgewichtslagen werden kleine Auslenkungen zurückgetrieben)?
- 3. Welche dieser Gleichgewichtslagen verbleiben für $\omega \neq 0$. Welche sind stabil und welche instabil?
- 4. Zusatzaufgabe für Interessierte: Finden Sie mit geeigneten Hilfmitteln die weiteren Gleichgewichtslagen, die kein Analogon bei $\omega=0$ haben. Diskutieren Sie deren Stabilität. Hinweis: die Gleichungen lassen sich leichter lösen, wenn Sie die Zwangsbedingungen r=const. und l=const. mit Lagrangemultiplikatoren behandeln.

7.2 Seilbahn

Betrachten Sie ein ebenes Pendel im Schwerefeld aus einer masselosen Stange der Länge l mit einer Masse m am Ende



dessen Aufhängung sich unter dem Einfluß einer äußeren Kraft auf einer schiefen Ebene mit Neigungswinkel α mit einer gegebenen Zeitabhängigkeit s(t) bewegt.

- 1. Stellen Sie eine Lagrangefunktion für das System auf.
- 2. Leiten Sie daraus die Euler-Lagrange-Gleichungen ab.
- 3. Leiten Sie die linearisierten Euler-Lagrange-Gleichungen für kleine Winkel θ und Winkelgschwindigkeiten $\dot{\theta}$ ab.
- 4. Geben Sie die allgemeine Lösung der linearisierten Euler-Lagrange-Gleichung im Fall einer harmonische Bewegung der Aufhängung

$$s(t) = \sigma \sin(\omega t) \tag{1}$$

mit $\alpha = 0$ an.

5. Zusatzaufgabe für Interessierte: Diskutieren Sie mit geeigneten Hilfmitteln die Lösungen für $\alpha \neq 0$. Hinweis: In der analytischen Lösung für beliebige α tauchen sogenannte Mathieu-Funktionen auf.