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Landau level quantization on the sphere
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It is well established that the Hilbert space for charged particles in a plane subject to a uniform magnetic field
can be described by two mutually commuting ladder algebras. We propose a similar formalism for Landau level
quantization on a sphere involving two mutually commuting SU(2) algebras.
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I. INTRODUCTION

The formalism for Landau level quantization in a spherical
geometry, i.e., for the dynamics of a charged particle on the
surface of a sphere with radius R, in a magnetic (monopole)
field, was pioneered by Haldane1 in 1983 as an alternative
geometry for the formulation of fractionally quantized Hall
states.2 In comparison to the disk geometry used by Laughlin3

when he originally proposed the Jastrow-type wave functions
for the ground state, the sphere has the advantage that it does
not have a boundary. At the same time, it does not display the
topological degeneracies associated with the torus geometry
(i.e., a plane with periodic boundary conditions), which has
genus one.4 These two properties make the spherical geometry
particularly suited for numerical work on bulk properties of
quantized Hall states.

Haldane,1 however, worked out the formalism only for the
lowest Landau level, and never generalized it to higher Landau
levels, even though these became more and more important as
time passed. The presently most vividly discussed quantum
Hall state, the Pfaffian state5–15 at Landau level filling fraction
ν = 5/2, is observed only in the second Landau level.

In this paper, we first review Haldane’s formalism for the
lowest Landau level,1,16 and then generalize it to the full Hilbert
space, which includes higher Landau levels as well. The key
insight permitting this generalization is that there is not one
but there are two mutually commuting SU(2) algebras with
spin s, one for the cyclotron variables and one for the guiding
center variables. The formalism we develop will prove useful
for numerical studies of fractionally quantized Hall states
involving higher Landau levels. In particular, it will instruct us
how to calculate pseudopotentials1 for higher Landau levels
on the sphere, which we will discuss as well. Finally, we
will present a convenient way to write the wave function for
M-filled Landau levels on the sphere.

II. HALDANE’S FORMALISM

Following Haldane,1 we assume a radial magnetic field of
strength

B = h̄cs0

eR2
(e > 0). (1)

The number of magnetic Dirac flux quanta through the surface
of the sphere is

�tot

�0
= 4πR2B

2πh̄c/e
= 2s0, (2)

which must be an integer due to Dirac’s monopole quantization
condition.17 In the following, we take h̄ = c = 1.

The Hamiltonian is given by

H = �2

2MR2
= ωc

2s0
�2, (3)

where ωc = eB/M is the cyclotron frequency,

� = r × [−i∇ + eA(r)] (4)

is the dynamical angular momentum, r = Rer , and ∇ × A =
Ber . With (A4)–(A6) from the Appendix, we obtain

� = −i

(
eϕ

∂

∂θ
− eθ

1

sin θ

∂

∂ϕ

)
+ eR[er × A(r)]. (5)

Note that

er� = �er = 0, (6)

as one can easily verify with (A5). The commutators of
the Cartesian components of � with themselves and with
er can easily be evaluated using (5) and (A3)–(A5). This
yields

[�i,�j ] = iεijk
(
�k − s0e

k
r

)
, (7)[

�i,ej
r

] = iεijkek
r , (8)

where i,j,k = x,y, or z, and ek
r is the kth Cartesian coordinate

of er . From (6)–(8), we see that that the operator

L = � + s0er (9)

is the generator of rotations around the origin,

[Li,Xj ] = iεijkXk with X = �,er, or L, (10)

and hence the angular momentum. As it satisfies the angular-
momentum algebra, it can be quantized accordingly. Note that
L has a component in the er direction

Ler = erL = s0. (11)

If we take the eigenvalue of L2 to be s(s + 1), this im-
plies s = s0 + n, where n = 0,1,2, . . . is a non-negative
integer (while s and s0 can be an integer or half integer,
according to the number of Dirac flux quanta through the
sphere).

With (9) and (6), we obtain

�2 = L2 − s2
0 . (12)
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The energy eigenvalues of (3) are hence

En = ωc

2s0

[
s(s + 1) − s2

0

]
= ωc

2s0
[(2n + 1)s0 + n(n + 1)]

= ωc

[(
n + 1

2

)
+ n(n + 1)

2s0

]
. (13)

The index n hence labels the Landau levels.
To obtain the eigenstates of (3), we have to choose a gauge

and then explicitly solve the eigenvalue equation. We choose
the latitudinal gauge

A = −eϕ

s0

eR
cot θ. (14)

The singularities of B = ∇ × A at the poles are without
physical significance. They describe infinitely thin solenoids
admitting flux s0�0 each and reflect our inability to formulate
a true magnetic monopole.

The dynamical angular momentum (5) becomes

� = −i

[
eϕ

∂

∂θ
− eθ

1

sin θ

(
∂

∂ϕ
− is0 cos θ

)]
. (15)

With (A5), we obtain

�2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

(
∂

∂ϕ
− is0 cos θ

)2

.

(16)

To formulate the eigenstates, Haldane1 introduced spinor
coordinates for the particle position

u = cos
θ

2
exp

(
iϕ

2

)
, v = sin

θ

2
exp

(
− iϕ

2

)
, (17)

such that

er = �(u,v) ≡ (u,v)σ

(
ū

v̄

)
, (18)

where σ = (σx,σy,σz) is the vector consisting of the three Pauli
matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (19)

In terms of these, a complete, orthogonal basis of the states
spanning the lowest Landau level (n = 0, s = s0) is given by

ψs
m,0(u,v) = us+mvs−m, (20)

with m = −s,s + 1, . . . ,s. For these states,

Lzψs
m,0 = mψs

m,0, Hψs
m,0 = 1

2ωcψ
s
m,0. (21)

To verify (21), we consider the action of (16) on the more
general basis states

φs
m,p(u,v) =

(
cos

θ

2

)s+m (
sin

θ

2

)s−m

ei(m−p)ϕ

=
{

v̄−pus+mvs−m+p for p < 0,

ūpus+m−pvs−m for p � 0.
(22)

This yields

�2φs
m,p =

[
s −

(
s cos θ − m

sin θ

)2

+
(

s0 cos θ − m + p

sin θ

)2
]

φs
m,p

=
[
s + 2(s cos θ − m + p) (p − n cos θ ) − (p2 − n2 cos2 θ )

sin2 θ

]
φs

m,p. (23)

For p = n = 0, this clearly reduces to �2ψs
m,0 = sψs

m,0, and
hence (21). The normalization of (20) can easily be obtained
with the integral

1

4π

∫
d�ūs ′+m′

v̄s ′−m′
us+mvs−m

= (s + m)!(s − m)!

(2s + 1)!
δmm′δss ′ , (24)

where d� = sin θdθdφ.
To describe particles in the lowest Landau level, which are

localized at a point �(α,β) with spinor coordinates (α,β),

�(α,β) = (α,β)σ

(
ᾱ

β̄

)
, (25)

Haldane1 introduced “coherent states” defined by

{�(α,β)L}ψs
(α,β),0(u,v) = sψs

(α,β),0(u,v). (26)

In the lowest Landau level, the angular momentum L can be
written as

L = 1

2
(u,v)σ

(
∂
∂u

∂
∂v

)
. (27)

Note that u,v may be viewed as Schwinger boson creation,
and ∂

∂u
, ∂
∂v

as the corresponding annihilation operators.18 The
solutions of (26) are given by

ψs
(α,β),0(u,v) = (ᾱu + β̄v)2s , (28)

as one can verify easily with the identity

(aσb) (cσd) = 2(ad) (cb) − (ab) (cd). (29)

where a, b, c, and d are two-component spinors.
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III. GENERALIZATION TO HIGHER LANDAU LEVELS

We will first present the formalism we developed and
then motivate it. In analogy to the two mutually commuting
ladder algebras a,a† and b,b† in the plane,19–23 we describe
the Hilbert space of a charged particle on a sphere with a
magnetic monopole in the center by two mutually commuting
SU(2) angular-momentum algebras. The first algebra for the
cyclotron momentum S consists of operators that allow us
to raise or lower eigenstates from one Landau to the next (as
a,a† do in the plane). The second algebra for the guiding center
momentum L consists of operators that rotate the eigenstates
on the sphere while preserving the Landau level index (as b,b†

do in the plane).
The reason that this structure was not discovered long ago

may be that it is possible to obtain the spectrum without
introducing S, as the eigenvalue of both S2 and L2 is s(s + 1).
The necessity to introduce S is therefore not obvious.

We have already seen above that the spinor coordinates u,v

and the derivatives ∂
∂u

, ∂
∂v

may be viewed as Schwinger boson
creation and annihilation operators, respectively. A complete
basis for the eigenstates of H in the lowest Landau level is
given by um+svm−s , i.e., it could be expressed in terms of u and
v. For higher Landau levels, the analogy to the plane suggests
that we will need ū,v̄ as well. With the derivatives ∂

∂ū
, ∂
∂v̄

, we
have a total of four Schwinger boson creation and annihilation
operators. This suggests that we span two mutually commuting
SU(2) algebras with them.

We will motivate below that the appropriate combinations
are

Sx + iSy = S+ = u
∂

∂v̄
− v

∂

∂ū
,

Sx − iSy = S− = v̄
∂

∂u
− ū

∂

∂v
, (30)

Sz = 1

2

(
u

∂

∂u
+ v

∂

∂v
− ū

∂

∂ū
− v̄

∂

∂v̄

)
for the cyclotron momentum, and

Lx + iLy = L+ = u
∂

∂v
− v̄

∂

∂ū
,

Lx − iLy = L− = v
∂

∂u
− ū

∂

∂v̄
, (31)

Lz = 1

2

(
u

∂

∂u
− v

∂

∂v
− ū

∂

∂ū
+ v̄

∂

∂v̄

)
for the guiding center momentum. We can write these more
compactly as

S = 1

2
(u,v̄)σ

(
∂
∂u

∂
∂v̄

)
− 1

2
(ū,v)σT

(
∂
∂ū

∂
∂v

)
, (32)

L = 1

2
(u,v)σ

(
∂
∂u

∂
∂v

)
− 1

2
(ū,v̄)σT

(
∂
∂ū

∂
∂v̄

)
, (33)

where σT = (σx,−σy,σz) is the vector consisting of the three
transposed Pauli matrices.

From (32) and (33), we see that both S and L obey the
SU(2) angular-momentum algebras

[Si,Sj ] = iεijkSk, [Li,Lj ] = iεijkLk. (34)

With (30) and (31), it is easy to show that the two algebras are
mutually commutative,

[Si,Lj ] = 0 for all i,j. (35)

For S2 and L2, we find

L2 = S2 = S(S + 1) (36)

with

S = 1

2

(
u

∂

∂u
+ v

∂

∂v
+ ū

∂

∂ū
+ v̄

∂

∂v̄

)
. (37)

The component of L normal to the surface of the sphere is

erL = �(u,v)L = Sz, (38)

which is easily verified with (18), (29), (33), and

�(u,v) = (ū,v̄)σT

(
u

v

)
, (39)

(aσT b) (cσT d) = 2(ad) (cb) − (ab) (cd). (40)

It implies that the physical Hilbert space is limited to states
with Sz eigenvalue s0, i.e.,

Szψ = s0ψ for all eigenstates ψ. (41)

With (36)–(38), we write

H = ωc

2s0
[L2 − (erL)2]

= ωc

2s0
[S2 − (Sz)2]

= ωc

4s0
(S+S− + S−S+). (42)

With [S+,S−] = 2Sz and (41), we obtain

H = ωc

(
1

2s0
S−S+ + 1

2

)
. (43)

This is our main result. The operators S− and S+ hence
play the role of Landau level raising and lowering operators,
respectively, as a† and a do in the plane.23 At the same time,
the raising operator S− lowers the eigenvalue of Sz (i.e., s0)
by one, as

[Sz,S−] = −Sz. (44)

This has to be taken into account when constructing the Hilbert
space.

The guiding center momentum L generates rotations of
the states within each Landau level around the sphere, while
leaving the Landau level structure unaltered. Note that the
seemingly unrelated forms (33) and (9) of L describe the same
operator, as both generate identical rotations around the sphere.

The basis states (20) are obviously eigenstates of (43) with
energy 1

2ωc. To lift them into the (n + 1)th Landau level, we
only have to increase the flux from s0 to s = s0 + n, and then
apply (S−)n:

ψs
m,n(u,v) = (S−)nψs

m,0(u,v), (45)

where s = s0 + n and m = −s, . . . ,s. The states ψs
m,n(u,v)

constitute a complete, orthogonal basis for the (n + 1)th
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Landau level on a sphere in a monopole field with 2s0 Dirac
flux quanta through its surface.

We will now show that the states (45) are indeed eigenstates
of (3) with energy (13). Note first that since

ψs
m,0(u,v) = (2s − m)!

(2s)!
(L−)mψs

S,0(u,v)

and [S−,L−] = [H,L−] = 0, it is sufficient to show that

ψs
0,n(u,v) = (S−)n ψs

s,0(u,v)︸ ︷︷ ︸
=u2s

= (2s)!

(2s − n)!
v̄nu2s−n

is an eigenstate. This is (up to a normalization) equal to our
earlier basis state φs

m,p [see (22)] with m = s − n, p = −n.
With (23), we find

�2ψs
0,n =

[
s + 2(s cos θ − s) (−n− n cos θ ) − (n2 − n2 cos2 θ )

sin2 θ

]
ψs

0,n

= [(2n + 1)s − n2]ψs
0,n

= [(2n + 1)s0 + n(n + 1)]ψs
0,n, (46)

which completes the proof.
Note that since S commutes with L, Haldane’s coherent

states remain coherent as we elevate them into higher Landau
levels. In particular, the state

ψs
(α,β),n(u,v) = (S−)n(ᾱu + β̄v)2s (47)

in the (n + 1)th Landau level still satisfies (26).

IV. PSEUDOPOTENTIALS

Haldane1 also introduced two-particle coherent lowest
Landau level states defined by

{�(α,β) (L1 + L2)}ψs,j

(α,β),0[u,v] = jψ
s,j

(α,β),0[u,v], (48)

where [u,v] := (u1,u2,v1,v2) and j is the total angular
momentum

(L1 + L2)2ψ
s,j

(α,β),0[u,v] = j (j + 1)ψs,j

(α,β),0[u,v]. (49)

The solution of (48) is given by

ψ
s,j

(α,β),0[u,v] = (u1v2 − u2v1)2s−j
∏
i=1,2

(ᾱui + β̄vi)
j . (50)

It describes two particles with relative momentum 2s − j

precessing about their common center of mass at �(α,β). It is
straightforward to elevate this state into the (n + 1)th Landau
level

ψ
s,j

(α,β),n[u,v] =
∏

i=1,2

(S−)nψs,j

(α,β),0[u,v]. (51)

Note that (51) still satisfies (48) and (49).
Since 0 � j � 2s, the relative momentum quantum number

l = 2s − j has to be a non-negative integer. For bosons or
fermions, l has to be even or odd, respectively. This implies
that the projection �n onto the (n + 1)th Landau level of
any translationally invariant (i.e., rotationally invariant on the
sphere) operator V (�1 · �2), such as two-particle interaction
potentials, can be expanded as

�nV (�1 · �2)�n =
2s∑
l

V n
l P2s−l(L1 + L2), (52)

where the sum over l is restricted to even (odd) integers
for bosons (fermions), Pj (L) is the projection operator on

states with total momentum L2 = j (j + 1), and the V n
l are

pseudopotential coefficients.
The pseudopotential V n

l denotes the potential energy cost of
V (�1 · �2) for two particles with relative angular momentum
l in the (n + 1)th Landau level. We can use the coherent states
(51) to evaluate them. As the result will not depend on the
center of rotation, we can take (α,β) = (1,0), i.e., work with
the coherent states

ψ
s,j

(1,0),n[u,v] = (S−
1 )n(S−

2 )n(u1v2 − u2v1)2s−ju
j

1u
j

2. (53)

This yields

V n
2s−j =

〈
ψ

s,j

(1,0),n

∣∣V (�1 · �2)
∣∣ψs,j

(1,0),n

〉
〈
ψ

s,j

(1,0),n

∣∣ψs,j

(1,0),n

〉 (54)

for the pseudopotentials. Since the chord distance between two
points on the unit sphere is given by

|�1 − �2| = 2 |u1v2 − u2v1| , (55)

a 1/r or Coulomb interaction on the sphere is given by

V (�1 · �2) = 1

2 |u1v2 − u2v1| . (56)

Fano, Ortolani, and Colombo16 evaluated the pseudopotential
coefficients for Coulomb interactions in the lowest Landau
level by explicit integration, and found

V 0
l =

(
2l

l

)(
8s + 2 − 2l

4s + 1 − l

)
(

4s + 2
2s + 1

)2 . (57)

The potential interaction Hamiltonian acting on many-
particle states expanded in a basis of Lz eigenstates (20) or
(45) is given by

H
(n)
int =

s∑
m1=−s

s∑
m2=−s

s∑
m3=−s

s∑
m4=−s

a†
m1,n

a†
m2,n

am3,nam4,n

· δm1+m2,m3+m4

2s∑
l=0

〈s,m1; s,m2|2s − l,m1 + m2〉 V n
l

〈2s − l,m3 + m4|s,m3; s,m4〉 , (58)
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where am,n annihilates a boson or fermion in the properly
normalized single-particle state

ψs
m,n(u,v) = Cm,n(S−)nus+mvs−m (59)

with

Cm,n =
√

(2s − n)!

(2s)!n!

√
(2s + 1)!

4π (s + m)!(s − m)!
. (60)

In (58), we take two particles with Lz eigenval-
ues m3 and m4, use the Clebsch-Gordan coefficients24

〈2s − l,m3 + m4|s,m3; s,m4〉 to change the basis into one
where m3 + m4 and the total two-particle momentum 2s − l

are replacing the quantum numbers m3 and m4, multiply each
amplitude by V n

l , and convert the two-particle states back into
a basis of Lz eigenvalues m1 and m2.

Note that since this basis transformation commutes with
Si for all i, (58) depends on the Landau level index n only
through the pseudopotentials. This means that if we write
out the potential interaction term (58) in a higher Landau
level, the matrix we obtain is exactly as in the lowest Landau
level for the same value of s, except that we have to use the
pseudopotential V n

l for the (n + 1)-th Landau level instead
of V 0

l . Note further that the normalization Cm,n for the basis
states factorizes into a term which depends only on n and
a term which depends only on the Lz eigenvalue m. This
follows again from the commutativity of S and L. It is hence
sufficient to write out the wave function of a quantized Hall
state in the lowest Landau level using the basis states (59) for
n = 0, and use the Hamiltonian matrix (58) with the (n + 1)-th
Landau level pseudopotentials V n

l to evaluate the interaction
energy this state would have if we were to elevate it into
the (n + 1)-th level with

∏
i(S

−
i )n. In other words, the only

difference between an exact diagonalization study in a higher
Landau as compared to the lowest Landau level is that we have
to use V n

l instead of V 0
l .

The generalization of the pseudopotentials for three- and
more-particle interactions25 to higher Landau levels proceeds
without incident.

V. FILLED LANDAU LEVELS

The wave function for a filled (n + 1)th Landau level for
N = 2s + 1 particles with s0 = s − n is given by

ψs
n[u,v,ū,v̄] =

N∏
i=1

(S−
i )n

N∏
i<j

(uivj − ujvi). (61)

Except for n = 0, this does not reduce to any particularly
simple form when we write out all the terms.

We have found, however, a convenient way to write the wave
function for M filled Landau levels with index n = 0, . . . ,

M − 1 (i.e., from the first to the Mth Landau level). We assume
a total of LM particles labeled by two integers l = 1, . . . ,L and
m = 1, . . . ,M , with spinor coordinates (ulm,vlm,ūlm,v̄lm). The
LM particle wave function for a sphere with 2s0 = L − M >

0 flux quanta is then given by

ψs0 [u,v,ū,v̄] = A
{

M∏
m=1

L∏
l<l′

(ulmvl′m − ul′mvlm)

×
L∏

l=1

M∏
m<m′

(ūlmv̄lm′ − ūlm′ v̄lm)

}
, (62)

where A denotes antisymmetrization. To verify (62), multiply
the wave functions (61) for each Landau level n with

N∏
i=1

(uiūi + vi v̄i)
M−1−n,

which is equal to 1 and commutes with both Si and Li for all
i, and then antisymmetrize over all the single-particle states in
the Landau levels with index n = 0, . . . ,M − 1.

The formulation (62) may be useful in the construction of
composite fermion states26 for hierarchical filling fractions,
and in particular as a starting point for obtaining such states
from several filled Landau levels through a process of adiabatic
localization of magnetic flux onto the particles.27

VI. CONCLUSION

We have developed a formalism to describe the Hilbert
space of charged particles on a sphere subject to a mag-
netic monopole field, using two mutually commuting SU(2)
algebras for cyclotron and guiding center momenta. As the
previously developed formalism for the lowest Landau level
has been highly important for numerical studies of fractionally
quantized Hall states, we expect our generalization to higher
Landau levels to be of similar significance.

APPENDIX: SPHERICAL COORDINATES

The formalism requires vector analysis in spherical coordi-
nates. In this appendix, we will briefly review the conventions.

Vectors and vector fields are given by

r = rer , (A1)

v(r) = vrer + vθeθ + vϕeϕ, (A2)

with

er =

⎛
⎜⎝ cos ϕ sin θ

sin ϕ sin θ

cos θ

⎞
⎟⎠ , eθ =

⎛
⎜⎝ cos ϕ cos θ

sin ϕ cos θ

− sin θ

⎞
⎟⎠ ,

eϕ =

⎛
⎜⎝− sin ϕ

cos ϕ

0

⎞
⎟⎠ , (A3)

where ϕ ∈ [0,2π [ and θ ∈ [0,π ]. This implies

er × eθ = eϕ, eθ × eϕ = er , eϕ × er = eθ , (A4)

and
er

θ
= eθ ,

eθ

θ
= −er ,

eϕ

θ
= 0,

er

ϕ
= sin θeϕ,

eθ

ϕ
= cos θeϕ,

eϕ

ϕ
= − sin θer − cos θeθ . (A5)

With the nabla operator

∇ = er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
, (A6)
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we obtain

∇v = 1

r2

∂(r2vr )

∂r
+ 1

r sin θ

∂(sin θvθ )

∂θ
+ 1

r sin θ

∂vϕ

∂ϕ
, (A7)

∇ × v = er

1

r sin θ

(
∂(sin θvϕ)

∂θ
− ∂vθ

∂ϕ

)

+ eθ

(
1

r sin θ

∂vr

∂ϕ
− 1

r

∂(rvϕ)

∂r

)

+ eϕ

(
1

r

∂(rvθ )

∂r
− 1

r

∂vr

∂θ

)
, (A8)

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)

+ 1

r2 sin2 θ

∂2

∂ϕ2
. (A9)

Comparing (16) with (A9), we see that

�2
∣∣
s0=0. = ∇2

∣∣
r≡1, (A10)

as expected.
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