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We investigate a family of spin-S chain Hamiltonians recently introduced by one of us [1]. For
S = 1/2, it corresponds to the Haldane–Shastry model. For general spin S, we numerically show that
the low–energy theory of these spin chains is described by the SU(2)k Wess–Zumino–Witten model
with coupling k = 2S. In particular, we investigate the S = 1 model whose ground state is given by
a Pfaffian for even number of sites N . We reconcile aspects of the spectrum of the Hamiltonian for
arbitrary N with trial states obtained by Schwinger projection of two Haldane–Shastry chains.

PACS numbers: 75.10.Jm,75.10.Pq,75.10.D

Introduction— Conformal field theory (CFT) has sig-
nificantly deepened our understanding of quantum spin
chains and phase transitions in two-dimensional space-
time [2–4]. In particular, it has provided a platform to
distinguish different universality classes of critical spin
chains according to e.g. the power law parameters of
multi-point spin correlation functions. Moreover, the
central charge parameter c of the CFT emerges in experi-
mentally connected quantities such as specific heat [5, 6].
For critical SU(2) spin-S chains, the conformal symme-
try is supplemented by a Lie group symmetry and yields
a low energy field theory description in terms of Wess-
Zumino-Witten (WZW) models [7, 8]. The WZW action
consists of a non-linear σ term plus the Wess-Zumino
term, whose topological coupling factor k is constrained
to be integer and defines the level k of the WZWk

model [4]. In the absence of broken continuous symme-
tries, WZW1 is the generic low energy theory for half-
odd-integer antiferromagnetic spin chains [9], while in-
teger spin chains show a Haldane gap [10] Spin chains
associated with WZWk>1 models only appear at rare
multi-critical points, and are of particular interest for in-
teger spin chains where they can mark phase transitions
between different gapped phases [9, 11, 12].

The 1/r2 Heisenberg spin-1/2 chain independently
found by Haldane and Shastry [13, 14] plays a special
role among all other models related to WZW1. While
any finite size chain generally exhibits logarithmic cor-
rections to the WZW long-wavelength limit depending
on the system length L = aN where N is the number of
sites and a is the lattice constant, the Haldane–Shastry
model (HSM) exactly obeys the WZW1 scalings for any
finite L. (This is related to its enlarged Yangian quan-
tum group symmetry [15].) Moreover, the exact HSM
ground state wave function corresponds to the Laughlin
wave function [16] in terms of bosonic spin flip particles
at ν = 1/2 filling, and establishes the notion of fractional
quantization and statistics of spinons as the fundamental
excitations of quantum spin chains [17]. In this respect,

it is the one-dimensional analogue of the chiral spin liq-
uid [18, 19], where the concept of topological order was
introduced in spin models [20].

It was realized recently that not only the Laughlin
state, but a subset of the bosonic Read-Rezayi quan-
tum Hall series [21] can be generalized to a series of
singlet spin S wave functions at spin flip particle fill-
ing ν = S [22]. For one spatial dimension, these states
are constructed by a Schwinger boson projection tech-
nique [23] of k copies of HSM ground states. The possi-
bility of defining SU(2) invariant spin S = k/2 states
related to the parafermionic CFT construction of the
Read-Rezayi states is intuitive, as their current algebra
reduces to the SU(2)k Kac-Moody algebra [21] for the
relevant fillings. As one particularly interesting mem-
ber, the k = 2 state corresponds to an S = 1 Pfaffian
spin state, which promises to establish the basis at which
manifestations of non-Abelian spinons in spin chains can
be investigated.

From the combined of view of state properties and
low energy theory, it is then natural to ask whether
these states may establish finite size representations of
spin chains as the conformally invariant fixed point of
WZWk>1 in the same way as the HSM does for WZW1.
A step in this direction has been recently accomplished
by one of us [1], who introduced a family of Hamiltonians
which singles out the spin S chain states obtained by pro-
jection from k = 2S HS ground states as exact ground
states. In this Letter, we further investigate these Hamil-
tonians. We numerically show that these S = k/2 spin
chains are critical and indeed connected to the WZWk in
the long wavelength limit. In contrast to the HSM, how-
ever, we find that the S > 1/2 models exhibit logarithmic
corrections and hence do not describe the conformally in-
variant fixed point of WZWk>1. For the S = 1 chain, we
further analyze the excited states of the model, and gen-
eralize the Schwinger boson projection method to trial
states for the simplest excitations.

Hamiltonians and ground states— The general Hamil-
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FIG. 1: (color online) Entanglement entropy S(x) of HS

for S = 1 and S = 3/2 vs. the conformal length d(x) =
L/π sinπx/L. Our results for the fitted central charge agree
well with SU(2) WZW2S field theory.

tonian for the spin-S chain [1] consists of a bilinear and
biquadratic as well as a three-site Heisenberg term
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FIG. 2: (color online) Scaling dimensions for the Haldane
Shastry model (left) and H1 (right). Left: The finite size data
(crosses) exactly matches the estimated CFT result x = 1

2
(dashed line). Right: The finite size linear fit (solid line)
shows a mismatch with the estimated CFT result x ∼ 3

8
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HS =
2π2

N2

[∑
α6=β

SαSβ
|ηα − ηβ |2 −

1
2(S + 1)(2S + 3)

∑
α,β,γ
α 6=β,γ

(SαSβ)(SαSγ) + (SαSγ)(SαSβ)
(η̄α − η̄β)(ηα − ηγ)

]
(1)

where Sα is a spin-S operator acting on site α and
periodic boundary conditions are imposed by sites
parametrized as complex roots of unity ηα = exp (i 2π

N α),
α ∈ 1, 2, . . . , N . (Note that the bi-quadratic two-site
term is contained in the three-site term in (1) as the spe-
cial case β = γ.) For S = 1, this Hamiltonian was very
recently obtained independently through field theoreti-

cal methods by Nielson, Cirac, and Sierra [24]. H1/2 is
the HSM [13, 14] (the three-site term trivially simpli-
fies with the biquadratic term in this case). In Holstein-
Primakoff representation, the ground state, which is the
Gutzwiller wave function [25], takes the ν = 1/2 Laugh-
lin form ΨHS

0 (z1, . . . , zM ) =
∏M
i<j(zi−zj)2

∏M
i=1 zi, where
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M = νN and the zi’s denote the coordinates of the spin
flip operators acting on a spin polarized vacuum. The
1st degree homogeneous polynomial multiplied with the
squared Jastrow factor ensures that the state is both real
and a spin singlet.

ΨHS
0 is the building block for all other spin-S ground

states. The spin-S state is constructed by symmetriza-
tion of the spin flip coordinates of k = 2S identical copies
of ΨHS

0 . Technically, this can be accomplished conve-
niently in terms of auxiliary Schwinger boson creation
operators a† and b†, where the symmetrization effectively
reduces to a multiplication of k = 2S copies

∣∣ψS0 〉 =(
ψHS

0 [a†, b†]
)2S | 0 〉 [22]. The ground state energy yields

HS
∣∣ψS0 〉 = E0

∣∣ψS0 〉 with E0 = − 2π2

N2
S(S+1)2

2S+3
N(N2+5)

12 [1].
The S = 1 ground state of (1) is hence computed
form the Schwinger projection of two HSM ground
states and takes the explicit form ΨPfaff

0 (z1, . . . , zM ) =
Pf( 1

zi−zj
)
∏M
i<j(zi − zj)

∏M
i=1 zi, where M = N and

Pf( 1
zi−zj

) = A
[

1
z1−z2

1
z3−z4 . . .

1
zN−1−zN

]
, and A is the

antisymmetrization operator. Note that as the HSM sin-
glet ground state requires N even, the ground states for
all S ≥ 1 of (1) require N even as well. The case of N
odd will be analyzed below.

Conformal field theory— Let us now determine the
long wavelength universality classes of HS . We employ
the density matrix renormalization group (DMRG) to
compute the von Neumann entanglement entropy (EE)
for large system sizes. For gapped models, the EE sat-
urates to a constant value; for gapless models, the EE
diverges logarithmically, and, for finite chains takes the
analytical form [26]

S(x) ∼ c

3
log
(
L

π
sin

πx

L

)
. (2)

For (1) with S = 1/2, the EE exactly follows (2) and
one finds c = 1 for the central charge. For S = 1, we
find c = 1.45(2) and for S = 3/2 c = 1.60(2) [Fig. 1].
The computation of the ground states in (1) turns out
to be challenging. One reason are the long-range terms
in the Hamiltonian which adds to the enlarged local ba-
sis for higher spin S. We have kept up to 800 DMRG
states and performed up to 12 sweeps, which enabled us
to keep the discarded entropy below 10−7. For (1) with
S = 1/2, 1, and 3/2, we confirm critical behavior and ob-
tain central charges consistent with the expected values
cWZW = 3k/(k+2) for WZWk. We hence find numerical
indication that the low–energy theory of HS is the SU(2)
WZW2S model.

Logarithmic corrections— Having established that the
CFT’s related to the spin chains in (1) are of WZWk type,
we now address the question of logarithmic corrections.
As stated before, the HSM as the S = 1/2 realization of
(1) shows no finite size corrections as compared to the
long wavelength limit. The EE calculations, due their

finite numerical error, indicate corrections for S > 1
2 . To

analyze this in more detail, we calculate the scaling di-
mension x of the WZWk primary fields, as this quantity
is highly sensitive to finite size corrections [27]. Specifi-
cally, its value can be extracted from E1−E0 = 2πvx/L,
where v is the velocity parameter and E0 and E1 are the
energies of the ground state and first excited state. Only
small system sizes are needed to determine whether a spin
chain resides at the conformally invariant fixed point or
not. In Fig. 2 we have plotted E1 − E0 for H1/2 and
H1 as computed by exact diagonalization (ED) for chain
lengths up to N = 16. (As H1 is not very sparse, the
number of scattering elements is already of O(1013) for
N = 16.) With x = 1

2 and 3
8 for S = 1/2 and 1 as

predicted from CFT, we nicely observe the absence of fi-
nite size corrections for the HSM, but its presence for the
S = 1 chain [Fig. 2]. This suggests that logarithmic cor-
rections are present for S > 1

2 , and as a consequence that
the models (1) do not represent the conformally invariant
fixed points of WZWk for k > 1.

Spectrum of the S = 1 chain.— We investigate the
structure of the finite size spectrum of (1) for S = 1
as obtained from ED. For this purpose, we compare
it with the spectrum of the Takhtajan-Babudjan (TB)
model [11, 12], which is likewise connected to WZW2 and
describes the critical point between the dimerized phase
and the Haldane gap phase of the bilinear-biquadratic
spin-1 chains. The low energy spectra for N = 16 are
plotted in Fig. 3. Aside from the singlet ground state at
momentum k = 0, the spin multiplet quantum numbers
of the lowest energy modes in the different momentum
subsectors are related. The lowest level at momentum
k = π determines the finite size gap. Both spectra look
very similar, showing a two-lobe feature [Fig. 3]. Still,
the overlap of the Pfaffian and TB ground state is be-
low .85 already for small system sizes, indicating that
the models have different finite size structures. This be-
comes explicit as we develop a specific trial state Ansatz
for the S = 1 model in the following, which does not
similarly apply to the TB model.

Generalized Schwinger projection scheme— Up to now,
we have only used our Schwinger projection scheme for
HSM ground states to generate the exact N even ground
states for the spin-S models in (1). We now investigate
what we can achieve when we employ the same approach
for HSM excited states before projection. To begin with,
we use the Schwinger projection scheme to obtain a suit-
able trial state for the N odd ground state of the S = 1
chain [Fig. 4]. Consider first the two S = 1/2 chains be-
fore projection. For N odd, the low energy modes of the
HSM are given by the single spinon branch which only
covers one half of the momenta (−π/2 < ksp ≤ π/2 and
π/2 < ksp ≤ 3π/2 for N = 1 mod 4 and N = 3 mod 4,
respectively) [Fig. 4a]. The ground state for N odd in
the S = 1 chain is located at k = 0. (N = 15 is shown in
Fig. 4b.) As phases of the wave function are preserved
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FIG. 3: (color online) S = 1 energy spectra scaled to units of unity for the Sz = 0 sector for N = 16 sites. Left: S = 1
Takhtajan-Babudjan Hamiltonian. Right: HS for S = 1.
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FIG. 4: (color online) (a) Construction of the S = 1 trial
state ψtrial (k = 0) for N odd out of two Haldane-Shastry
one-spinon states with momenta k = ±π/2. (b) Spectrum of
the S = 1 chain for N = 15. The ground state at k = 0 is
ψodd

0 . (c) Overlap 〈ψtrial|ψodd
0 〉 vs. 1/N . For N → ∞, the

overlap is 0.9983(1).

in Schwinger boson notation, they multiply under pro-
jection, and the total momentum of the projected wave
function is given by the sum of single chain momenta be-
fore projection. In order to find a good trial state Ψodd

0

for the S = 1 model (1), we choose the lowest energy
one-spinon states in two HSM chains at −π/2 and π/2
before projection. To fully match the quantum numbers
of the target state, we also project the spin part onto the
singlet component of the projected two one-spinon wave
functions. With this construction, we obtain an excellent
overlap with the N odd ground state of (1) with S = 1,
which is of the order of 0.999 and hardly changes with
system size [Fig. 4c]. Good overlaps can also be achieved
for trial states to match other modes such as the lowest N
even eigenstates of the S = 1 model in different momen-
tum sectors [Fig. 3]. There, we project the lowest lying
two-spinon HS eigenstate for different momenta and a
HS ground state together. This correspondence explains
how the lobe features for the S = 1 model are connected

to the two-spinon levels of the HSM before projection.
From there, a unified picture emerges: we can inter-

pret the Schwinger boson projection of Haldane-Shastry
states as the creation of spinon product states. This
is a peculiar property of the Schwinger boson projec-
tion of Haldane-Shastry chains, as we found elsewhere
that taking two copies of a generic S = 1/2 Heisen-
berg model ground state as building blocks, for exam-
ple, generates a trial ground state for a gapped spin-1
model, where the spinons become confined [28]. In con-
trast to this, the HSM projection still provides gapless
states, which is somewhat intuitive as the HSM is a free
spinon gas. As the Hilbert space after projection is signif-
icantly smaller than the product space of the individual
Haldane-Shastry chains before projection, this yeilds an
overcomplete basis, and give rise to selection rules that
specify which many-spinons states before projection map
onto each other after projection. This can be one way of
defining the notion of a ”blocking mechanism” connected
to the non-Abelian statistics the spinons [1]. Compar-
ing the trial states we constructed here via Schwinger
boson projection with the actual eigenstates of (1) for
finite systems, we see that this construction yields rea-
sonable approximations to the low energy modes of the
system, even though it does not provide us with exact
eigenstates. The trial state we have constructed for the
S = 1 model with N odd illustrates this point: since
the spinons before projection have been chosen such that
they cannot decay any further as they are located at the
outer edges of the dispersion branches, we suppose that
the ”ideal” finite size WZW1 spin chain model in the
sense of spinon product states should exactly correspond
to this construction and give an overlap of unity. The ob-
served deviation from that is another way to interpret the
logarithmic corrections we found for the Hamiltonian (1)
for S > 1/2.
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