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Family of spin-S chain representations of SU(2)k Wess-Zumino-Witten models
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We investigate a family of spin-S chain Hamiltonians recently introduced by one of us [Greiter, Mapping of
Parent Hamiltonians, Springer Tracts in Modern Physics, Vol. 244 (Springer, Berlin, 2011)]. For S = 1/2, it
corresponds to the Haldane-Shastry model. For general spin S, we find indication that the low-energy theory of
these spin chains is described by the SU(2)k Wess-Zumino-Witten model with coupling k = 2S. In particular, we
investigate the S = 1 model whose ground state is given by a Pfaffian for even number of sites N . We reconcile
aspects of the spectrum of the Hamiltonian for arbitrary N with trial states obtained by Schwinger projection of
two Haldane-Shastry chains.
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Introduction. Conformal field theory (CFT) has signifi-
cantly deepened our understanding of quantum spin chains
and phase transitions in two-dimensional space-time.1–3 In
particular, it has provided a platform to distinguish different
universality classes of critical spin chains according to, e.g., the
power law parameters of multipoint spin correlation functions.
Moreover, the central charge parameter c of the CFT emerges
in experimentally connected quantities such as specific heat.4,5

For critical SU(2) spin-S chains, the conformal symmetry
is supplemented by a Lie group symmetry and yields a
low-energy field theory description in terms of Wess-Zumino-
Witten (WZW) models.6,7 The WZW action consists of a
nonlinear σ model action plus the Wess-Zumino term, whose
topological coupling factor k is constrained to be integer and
defines the level k of the WZWk model.3 In the absence
of broken continuous symmetries, WZW1 is the generic
low-energy theory for half-odd-integer antiferromagnetic spin
chains,8 while integer spin chains show a Haldane gap.9 Spin
chains associated with WZWk>1 models only appear at rare
multicritical points, and are of particular interest for integer
spin chains where they can mark phase transitions between
different gapped phases.8,10,11

The 1/r2 Heisenberg spin-1/2 chain independently found
by Haldane and Shastry12,13 plays a special role among all other
models related to WZW1. While any finite size chain generally
exhibits logarithmic corrections to the WZW long-wavelength
limit depending on the system length L = aN where N is
the number of sites and a is the lattice constant, the Haldane-
Shastry model (HSM) exactly obeys the WZW1 scalings for
any finite L. (This is related to its enlarged Yangian quantum
group symmetry.14) Moreover, the exact HSM ground state
wave function corresponds to the Laughlin wave function15

in terms of bosonic spin flip particles at ν = 1/2 filling, and
establishes the notion of fractional quantization and statistics
of spinons as the fundamental excitations of quantum spin
chains.16 In this respect, it is the one-dimensional analog of
the chiral spin liquid,17,18 where the concept of topological
order was introduced in spin models.19

It was realized recently that not only the Laughlin state,
but a subset of the bosonic Read-Rezayi quantum Hall series20

can be generalized to a series of singlet spin-S wave functions
at spin flip particle filling ν = S.21 For one spatial dimension,
these states are constructed by a Schwinger boson projection
technique22 of k copies of HSM ground states. The possibility
of defining SU(2) invariant spin S = k/2 states related to the
parafermionic CFT construction of the Read-Rezayi states is
intuitive, as their current algebra reduces to the SU(2)k Kac-
Moody algebra20 for the relevant fillings. As one particularly
interesting member, the k = 2 state corresponds to an S = 1
Pfaffian spin state, which promises to establish the basis at
which manifestations of non-Abelian spinons in spin chains
can be investigated.

From the combined view of state properties and low-energy
theory, it is then natural to ask whether these states may
establish finite size representations of spin chains as the
conformally invariant fixed point of WZWk>1 in the same
way as the HSM does for WZW1. A step in this direction has
been recently accomplished by one of us,23 who introduced
a family of Hamiltonians which singles out the spin-S chain
states obtained by projection from k = 2S HS ground states as
exact ground states. In this paper, we further investigate these
Hamiltonians. We numerically show that these S = k/2 spin
chains are critical and indeed connected to the WZWk in the
long-wavelength limit. In contrast to the HSM, however, we
find that the S > 1/2 models exhibit logarithmic corrections
and hence do not describe the conformally invariant fixed
point of WZWk>1. For the S = 1 chain, we further analyze
the excited states of the model, and generalize the Schwinger
boson projection method to trial states for the simplest
excitations.

Hamiltonians and ground states. The general Hamiltonian
for the spin-S chain23 consists of a bilinear and biquadratic as
well as a three-site Heisenberg term

HS = 2π2

N2

[ ∑
α �=β

Sα Sβ

|ηα − ηβ |2 − 1

2(S + 1)(2S + 3)

×
∑
α,β,γ

α �= β,γ

(Sα Sβ)(Sα Sγ ) + (Sα Sγ )(Sα Sβ)

(η̄α − η̄β)(ηα − ηγ )

]
, (1)
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where Sα is a spin-S operator acting on site α and periodic
boundary conditions are imposed by sites parametrized as
complex roots of unity ηα = exp (i 2π

N
α), α ∈ 1,2, . . . ,N .

[Note that the biquadratic two-site term is contained in
the three-site term in (1) as the special case β = γ .] For
S = 1, this Hamiltonian has very recently been obtained
independently through field theoretical methods by Nielson,
Cirac, and Sierra.24 H1/2 is the HSM12,13 (the three-site term
trivially simplifies with the biquadratic term in this case). In
Holstein-Primakoff representation, the ground state, which is
the Gutzwiller wave function,25 takes the ν = 1/2 Laughlin
form 	HS

0 (z1, . . . ,zM ) = ∏M
i<j (zi − zj )2 ∏M

i=1 zi , where M =
νN and the zi’s denote the coordinates of the spin flip
operators acting on a spin polarized vacuum. The first degree
homogeneous polynomial multiplied with the squared Jastrow
factor ensures that the state is both real and a spin singlet.

	HS
0 is the building block for all other spin-S ground

states. The spin-S state is constructed by symmetrization
of the spin flip coordinates of k = 2S identical copies of
	HS

0 . Technically, this can be accomplished conveniently in
terms of auxiliary Schwinger boson creation operators a†

and b†, where the symmetrization effectively reduces to a
multiplication of k = 2S copies |ψS

0 〉 = ψHS
0 [a†,b†])2S |0〉.21

The ground state energy yields HS |ψS
0 〉 = E0|ψS

0 〉 with

E0 = − 2π2

N2
S(S+1)2

2S+3
N(N2+5)

12 .23 The S = 1 ground state of
(1) is hence computed from the Schwinger projection
of two HSM ground states and takes the explicit form
	Pfaff

0 (z1, . . . ,zM ) = Pf( 1
zi−zj

)
∏M

i<j (zi − zj )
∏M

i=1 zi , where

M = N and Pf( 1
zi−zj

) = A[ 1
z1−z2

1
z3−z4

. . . 1
zN−1−zN

], and A is
the antisymmetrization operator. Note that as the HSM singlet
ground state requires N even, the ground states for all S � 1 of
(1) require N even as well. The case of N odd will be analyzed
below.

Conformal field theory. Let us now determine the long-
wavelength universality classes of HS . We employ the density
matrix renormalization group (DMRG)26 to compute the von
Neumann entanglement entropy (EE) for large system sizes.
To begin with, we checked the analytic formula for the ground
state energy up to large values of S and N . For gapped models,
the EE saturates to a constant value; for gapless models, the
EE diverges logarithmically, and, for finite chains, takes the
analytic form27

S(x) ∼ c

3
log

(
L

π
sin

πx

L

)
. (2)

The computation of the ground states in (1) turns out to
be challenging. One reason is the long-range terms in the
Hamiltonian which add to the enlarged local basis for higher
spin S. For S = 1 (S = 3/2) we have kept up to 800 (1200)
states of the reduced density matrix and performed up to 12
(14) sweeps, which enabled us to keep the discarded entropy
below 10−7 (10−5). For (1) with S = 1/2, 1, and 3/2, we
confirm critical behavior due to the log-divergent behavior of
the EE. For S = 1/2, 1, and 3/2, we find central charges c = 1,
c = 1.46(2) and c = 1.60(2) from chains up to L = 30 (Fig. 1),
which are approximately consistent with the expected values
cWZW = 3k/(k + 2) for WZWk . The discrepancy between the
numerically obtained c and the asymptotically expected values
is absent for S = 1/2 but sets in for higher S. From finite size

d(x)

S
(x

)

fit c = 1.60(2)
H3/2 H1

fit c = 1.46(2)

CFT
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FIG. 1. (Color online) Entanglement entropy S(x) of HS for S =
1 and S = 3/2 vs the conformal length d(x) = L/π sin πx/L. Data
points are given for L = 20 (red), L = 24 (blue), and L = 30 (green).
The thermodynamic WZW results are sketched by dashed lines. The
fitted central charges (solid lines) agree well with SU(2) WZW2S field
theory within reasonable error bars.

scaling, we cannot exclude the existence of nonmonotonous
corrections for small L spin-S chains. Still, over all we find
numerical indication that the low-energy theory of HS is the
SU(2) WZW2S model within reasonable error bars.

Logarithmic corrections. Having established that the CFTs
related to the spin chains in (1) are of WZWk type, we now
address the question of logarithmic corrections. As stated
before, the HSM as the S = 1/2 realization of (1) shows no
finite size corrections as compared to the long-wavelength
limit. To analyze this issue in more detail, we calculate
the scaling dimension x of the WZWk primary fields, as
this quantity is highly sensitive to finite size corrections.28

Specifically, the value for the primary field at momentum
π can be extracted from E1 − E0 = 2πvx/L, where v is
the velocity parameter and E0 and E1 are the energies of
the ground state and first excited state. Only small system
sizes are needed to determine whether a spin chain resides
at the conformally invariant fixed point or not. In Fig. 2 we
have plotted E1 − E0 for H1/2 and H1 as computed by exact
diagonalization (ED) for chain lengths up to N = 16. [As H1
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FIG. 2. (Color online) Scaling dimensions for the Haldane-
Shastry model (left) andH1 (right). Left: The finite size data (crosses)
exactly matches the estimated CFT result x = 1

2 (dashed line). Right:
The finite size linear fit (solid line) shows a mismatch with the
estimated CFT result x = 3

8 .
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FIG. 3. (Color online) S = 1 energy spectra scaled to units of unity for the Sz = 0 sector for N = 16 sites. Left: S = 1 Takhtajan-Babudjan
Hamiltonian. Right: HS for S = 1.

is not very sparse, the number of scattering elements is already
of O(1013) for N = 16.] With x = 1

2 and 3
8 for S = 1/2 and

1 as predicted from CFT, we nicely observe the absence of
finite size corrections for the HSM, but its presence for the
S = 1 chain (Fig. 2). This suggests that logarithmic corrections
are present for S > 1

2 , and as a consequence that the models
(1) do not represent the conformally invariant fixed points of
WZWk for k > 1, or, stated differently, do not exhibit Yangian
symmetry as present for S = 1/2.14

Spectrum of the S = 1 chain. We investigate the structure
of the finite size spectrum of (1) for S = 1 as obtained from
ED. For this purpose, we compare it with the spectrum of
the Takhtajan-Babudjan (TB) model,10,11 which is likewise
connected to WZW2 and describes the critical point between
the dimerized phase and the Haldane gap phase of the bilinear-
biquadratic spin-1 chain. The low-energy spectra for N = 16
are plotted in Fig. 3. Aside from the singlet ground state at
momentum k = 0, the spin multiplet quantum numbers of the
lowest-energy modes in the different momentum subsectors
are related. The lowest level at momentum k = π determines
the finite size gap. Both spectra look very similar, showing a
two-lobe feature (Fig. 3). Still, the overlap of the Pfaffian and
TB ground state is below 0.85 already for small system sizes,
indicating that the models have different finite size structures.
This becomes explicit as we develop a specific trial state
Ansatz for the S = 1 model in the following, which does not
similarly apply to the TB model.

Generalized Schwinger projection scheme. Up to now, we
have only used our Schwinger projection scheme for HSM
ground states to generate the exact N even ground states for
the spin-S models in (1). We now investigate what we can
achieve when we employ the same approach for HSM excited
states before projection. To begin with, we use the Schwinger
projection scheme to obtain a suitable trial state for the N

odd ground state of the S = 1 chain (Fig. 4). Consider first
the two S = 1/2 chains before projection. For N odd, the
low-energy modes of the HSM are given by the single spinon
branch which only covers one half of the momenta (−π/2 <

ksp � π/2 and π/2 < ksp � 3π/2 for N = 1 mod 4 and N =
3 mod 4, respectively) [Fig. 4(a)]. The ground state for N odd
in the S = 1 chain is located at k = 0. [N = 15 is shown
in Fig. 4(b).] As phases of the wave function are preserved
in Schwinger boson notation, they multiply under projection,
and the total momentum of the projected wave function is

given by the sum of single chain momenta before projection.
In order to find a good trial state 	odd

0 for the S = 1 model (1),
we choose the lowest-energy one-spinon states in two HSM
chains at −π/2 and π/2 before projection. To fully match
the quantum numbers of the target state, we also project the
spin part onto the singlet component of the projected two
one-spinon wave functions. With this construction, we obtain
an excellent overlap with the N odd ground state of (1) with
S = 1, which is of the order of 0.999 and hardly changes with
system size [Fig. 4(c)]. Good overlaps can also be achieved
for trial states to match other modes such as the lowest N

even eigenstates of the S = 1 model in different momentum
sectors (Fig. 3). There, we project the lowest lying two-spinon
HS eigenstate for different momenta and a HS ground state
together. This correspondence explains how the lobe features
for the S = 1 model are connected to the two-spinon levels of
the HSM before projection.

From there, a unified picture emerges: We can interpret
the Schwinger boson projection of Haldane-Shastry states
as the creation of spinon product states. This is a peculiar
property of the Schwinger boson projection of Haldane-
Shastry chains, as we found elsewhere that taking two copies
of a generic S = 1/2 nearest neighbor Heisenberg model
ground state as building blocks, for example, generates a trial

ψodd
0 |ψtrial

ψtrial = ψHS
↑ ⊗ ψHS

↓ ψodd
0

N = 15(a)

0 π−π ψHS
↑

0 π−π
ψHS
↓

(b)

(c)
0.998

0.999

 1

 0  0.05  0.1

ψodd
0

1/N

0

0.1

k0 π/2 π 3π/2 2π

FIG. 4. (Color online) (a) Construction of the S = 1 trial state
ψtrial (k = 0) for N odd out of two Haldane-Shastry one-spinon states
with momenta k = ±π/2. (b) Spectrum of the S = 1 chain for N =
15. The ground state at k = 0 is ψodd

0 . (c) Overlap 〈ψtrial|ψodd
0 〉 vs

1/N . For N → ∞, the overlap is 0.9983(1).
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ground state for a gapped spin-1 model, where the spinons
become confined.29 In contrast to this, the HSM projection
still provides gapless states, which is somewhat intuitive as
the HSM is a free spinon gas. As the Hilbert space after
projection is significantly smaller than the product space of
the individual Haldane-Shastry chains before projection, this
yields an overcomplete basis, and gives rise to selection rules
that specify which many-spinon states before projection map
onto each other after projection. This can be one way of
defining the notion of a “blocking mechanism” connected to
the non-Abelian statistics of the spinons.23 Comparing the trial
states we constructed here via Schwinger boson projection
with the actual eigenstates of (1) for finite systems, we see
that this construction yields reasonable approximations to the
low-energy modes of the system, even though it does not
provide us with exact eigenstates. The trial state we have

constructed for the S = 1 model with N odd illustrates this
point: Since the spinons before projection have been chosen
such that they cannot decay any further as they are located
at the outer edges of the dispersion branches, we suppose
that the “ideal” finite size WZW2 spin chain model in the
sense of spinon product states should exactly correspond to
this construction and give an overlap of unity. The observed
deviation from that is another way to interpret the logarithmic
corrections we found for the Hamiltonian (1) for S > 1/2.
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