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We introduce several exact models for SU�3� spin chains: �1� a translationally invariant parent Hamiltonian
involving four-site interactions for the trimer chain, with a threefold degenerate ground state. We provide

numerical evidence that the elementary excitations of this model transform under representation 3̄ of SU�3� if
the original spins of the model transform under representation 3. �2� a family of parent Hamiltonians for
valence bond solids of SU�3� chains with spin representations 6, 10, and 8 on each lattice site. We argue that
of these three models, only the latter two exhibit spinon confinement, and a Haldane gap in the excitation
spectrum.
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Beginning with the invention of the Bethe ansatz in 19311

as a method to solve the S= 1
2 Heisenberg chain with nearest

neighbor interactions, a significant share of the entire effort
in condensed matter physics has been devoted to the study of
quantum spin chains. Faddeev and Takhtajan2 discovered in
1981 that the elementary excitations �now called spinons� of
the spin-1 /2 Heisenberg chain carry spin 1/2 while the Hil-
bert space is spanned by spin flips, which carry spin 1. The
fractional quantization of spin in spin chains is comparable
to the fractional quantization of charge in quantized Hall
liquids.3 In 1982, Haldane4 identified the O�3� nonlinear
sigma model as the effective low-energy field theory of
SU�2� spin chains, and argued that chains with integer spin
possess a gap in the excitation spectrum, while a topological
term renders half-integer spin chains gapless.

The general methods—the Bethe ansatz and the use of
effective field theories including bosonization—are comple-
mented by a number of exactly solvable models, most
prominently among them the Majumdar-Ghosh �MG�
Hamiltonian5 for the S= 1

2 dimer chain, the AKLT model6 as
a paradigm of the gapped S=1 chain, and the Haldane-
Shastry model �HSM�.7–9 In the HSM the wave functions for
the ground state and single-spinon excitations are of a simple
Jastrow form, elevating the conceptual similarity to quan-
tized Hall states to a formal equivalence. One of the unique
features of the HSM is that the spinons are free in the sense
that they only interact through their half-Fermi statistics.10–12

The HSM has been generalized from SU�2� to SU�n�.13–16

For the MG and the AKLT model, only the ground states
are known exactly. Nonetheless, these models have amply
contributed to our understanding of many aspects of spin
chains, each of them through the specific concepts captured
in its ground state.17–24

In the past, the motivation to study SU�n� spin systems
with n�2 has been mainly formal. The Bethe ansatz has
been generalized to multiple component systems by
Sutherland,25 which has been applied to the SU�n� HSM
�Refs. 13 and 14� and an SU�4� spin chain used for the de-
scription of transition-metal oxides.26–28 The effective field
theory description of Haldane yielding the distinction be-
tween gapless half-integer spin chains and gapped integer
spin chains, however, cannot be directly generalized to
SU�n� chains, as there is no direct equivalent of the CP1

representation used in Haldane’s analysis.

In recent years, ultracold atoms in optical lattices have
provided a framework for model realizations of various
problems of condensed matter physics, including the phase
transition from a superfluid to a Mott insulator,29,30 the fer-
mionic Hubbard model,31,32 and SU�2� spin chains.33,34 In
particular, the Hamiltonians for spin lattice models may be
engineered with polar molecules stored in optical lattices,
where the spin is represented by a single-valence electron of
a heteronuclear molecule.35 Systems of ultracold atoms in
optical lattices may further provide an experimantal realiza-
tion of SU�3� spin systems, and in particular antiferromag-
netic SU�3� spin chains, in due course. A simple and intrigu-
ing possibility is to manipulate an atomic system with total
angular momentum F= 3

2 such that it simulates an SU�3�
spin. For such atoms, one effectively suppresses the occupa-
tion of one of the middle states, say the Fz=− 1

2 state, by
shifting it to a higher energy while keeping the other states
approximately degenerate. At sufficiently low temperatures,
one is left with three internal states Fz=− 3

2 , + 1
2 , + 3

2 , which
one identifies with the colors blue, red, and green of an
SU�3� spin. In leading order, the number of particles of each
color is now conserved, as required by the SU�3� symmetry.
If one places one of these atoms at each site of an optical
lattice and allows for a weak hopping, one obtains an SU�3�
antiferromagnet for sufficiently large on-site repulsions U.

Motivated by both this prospect as well as the mathemati-
cal challenges inherent to the problem, we propose several
exact models for SU�3� spin chains in this paper. The models
are similar in spirit to the MG or the AKLT model for SU�2�,
and consist of parent Hamiltonians and their exact ground
states. There is no reason to expect any of these models to be
integrable, and none of the excited states are known exactly.

Consider a chain with N lattice sites, where N has to be
divisible by three, and periodic boundary conditions �PBCs�.
On each lattice site we place an SU�3� spin which transforms
under the fundamental representation 3= �1,0�, i.e., the spin
can take the values �or colors� blue �b�, red �r�, or green �g�.
�We label the representations of SU�3� by their dimensions
�the bold numbers� or their Dynkin coordinates �a pair of
non-negative integers�.36� The trimer states are obtained by
requiring the spins on each three neighboring sites to form an
SU�3� singlet 1= �0,0�, which we call a trimer and sketch it
by . The three linearly independent trimer states are
given by

PHYSICAL REVIEW B 75, 060401�R� �2007�

RAPID COMMUNICATIONS

1098-0121/2007/75�6�/060401�4� ©2007 The American Physical Society060401-1

http://dx.doi.org/10.1103/PhysRevB.75.060401


�1�

and two more states obtained by shifting this one by one or
two lattice sites, respectively. Introducing operators ci�

† ,
which create a fermion of color � ��=b, r ,g� at lattice site i,
the trimer states can be written as

��trimer
��� � = �

i

� i−�
3

integer�
� 	

��,�,��=��b,r,g�
sgn���ci�

† ci+1�
† ci+2�

† 
�0� ,

�2�

where �=1,2 ,3 labels the three degenerate ground states, i
runs over the lattice sites subject to the constraint that i−�

3 is
integer, and the sum extends over all six permutations � of
the three colors b, r, and g.

The SU�3� generators at each lattice site i are defined as

Ji
a =

1

2 	
�,��=b,r,g

ci�
† 	���

a ci��, a = 1, . . . ,8, �3�

where the 	a are the Gell-Mann matrices.36 The operators �3�
satisfy the commutation relations �Ji

a ,Jj
b�=
ij f

abcJi
c, a ,b ,c

=1, . . . ,8, with fabc the structure constants of SU�3�. We fur-
ther introduce the total SU�3� spin of � neighboring sites
i , . . . , i+�−1,

Ji
��� = 	

j=i

i+�−1

J j , �4�

where Ji is the eight-dimensional vector formed by its com-
ponents �3�. The parent Hamiltonian for the trimer states �2�
is given by

Htrimer = 	
i=1

N ��Ji
�4��4 −

14

3
�Ji

�4��2 +
40

9

 . �5�

To verify this Hamiltonian, note that since the spins on the
individual sites transform under the fundamental representa-
tion 3, the SU�3� content of four sites is

3 � 3 � 3 � 3 = 3 · 3 � 2 · 6̄ � 3 · 15 � 15�, �6�

i.e., we obtain representations 3, 6̄= �0,2�, and the two non-
equivalent representations 15= �2,1� and 15�= �4,0�. All
these representations can be distinguished by their eigenval-
ues of the quadratic Casimir operator.36

For the trimer states �1�, the situation simplifies as we
only have the two possibilities

�where 3̄= �0,1��, i.e., the total SU�3� spin on four neighbor-

ing sites can only transform under representations 3 or 6̄. The
eigenvalues of the quadratic Casimir operator for these rep-
resentations are 4

3 and 10
3 , respectively. The auxiliary opera-

tors

Hi = ��Ji
�4��2 −

4

3

��Ji

�4��2 −
10

3

 �7�

hence annihilate the trimer states for all values of i, while
they yield positive eigenvalues for 15 or 15�, i.e., all other
states. Summing Hi over all lattice sites i yields Eq. �5�.

There are two different kinds of domain walls between the
degenerate ground states. The first kind consists of an indi-
vidual SU�3� spin, which transforms under representation 3;
the second kind consists of two antisymmetrically coupled
spins on two neighboring sites, and hence transforms under

representation 3̄. Since they can decay into each other, only
one of these domain walls can constitute an approximate
eigenstate of the trimer model. We have performed numerical
studies on chains with N=13 and N=14, which clearly indi-
cate that the elementary excitations of the trimer chain �5�
transform under 3̄ �see Fig. 1�. This result appears to be a
general feature of representation 3 SU�3� spin chains, as it
was recently shown explicitly to hold for the HSM as well.16

The elementary excitations of the trimer chain are decon-
fined, meaning that the energy of two localized representa-

tion 3̄ domain walls or colorons does not depend on the
distance between them.

We now introduce a family of exactly soluble valence
bond models for SU�3� chains of various spin representations
of the SU�3� spins at each lattice site. To formulate these
models, we will use SU�3� Schwinger bosons b ,b† �blue�,
r ,r† �red�, and g ,g† �green�,38 which are defined by �b�
=cb

†�0�=b†�0�, �r�=cr
†�0�=r†�0�, and �g�=cg

†�0�=g†�0�, and sat-
isfy �b ,b†�= �r ,r†�= �g ,g†�=1 while all other commutators
vanish. The Schwinger bosons can be used to combine spins
transforming under the fundamental representation 3= �1,0�
symmetrically, and hence to construct representations such as
6= �2,0� and 10= �3,0�.

The trimer states �2� can be rewritten using SU�3�
Schwinger bosons as ��trimer

��� �=���b† ,r† ,g†��0� with

FIG. 1. Dispersions of the representations 3 �left� and 3̄ trial
states �right� in comparison to the exact excitation energies of
Eq. �5�. The lines are a guide to the eye.
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���b†,r†,g†� = �
i

� i−�
3

integer�
� 	

��,�,��=��b,r,g�
sgn����i

†�i+1
† �i+2

† 
 .

�8�

We obtain a representations 6 VBS from two trimer states
by projecting the tensor product of two fundamental repre-
sentations 3 onto the symmetric subspace, i.e., onto the 6 in

the tensor product 3 � 3= 3̄ � 6. Graphically, we illustrate this
as follows:

�9�

This construction yields three linearly independent 6 VBS
states, which are readily written out using Eq. �8�,

��6VBS
��� � = ���b†,r†,g†� · ��+1�b†,r†,g†��0� �10�

for �=1, 2, or 3. These states are zero-energy ground states
of the parent Hamiltonian H6VBS=	i=1

N Hi with

Hi = ��Ji
�4��2 −

4

3

��Ji

�4��2 −
10

3

��Ji

�4��2 −
16

3

 �11�

�see Ref. 37�. Note that the operators Ji
a, a=1, . . . ,8, are now

given by 66 matrices, as the Gell-Mann matrices only pro-
vide the generators �3� of the fundamental representation 3.
As in the trimer model, two distinct types of domain walls

exist, which transform according to representation 3 and 3̄.
Since both excitations are merely domain walls between dif-
ferent ground states, there is no confinement between them.

Let us now turn to the 10 VBS chain. By combining the
three different trimer states �8� symmetrically,

��10VBS� = �1�b†,r†,g†� · �2�b†,r†,g†� · �3�b†,r†,g†��0� ,

�12�

we automatically project out the represenation 10 in the ten-
sor product 3 � 3 � 3=1 � 2·8 � 10 generated on each lattice
site by the three trimer chains. This construction yields a
unique state

�13�

The parent Hamiltonian acts on pairs of neighboring sites. It
is constructed by noting that the only representations that are

included in both 10 � 10 and 3̄ � 3̄ � 3 � 3 �which is the rep-
resentation content of the total spin of two neighboring sites
of the VBS state as indicated by the dashed box above� are

the representations 10̄= �0,3� and 27= �2,2�. With the eigen-
values of the Casimir operator, which are 6 and 8, respec-
tively, we obtain the parent Hamiltonian for Eq. �12�

H10VBS = 	
i=1

N

��Ji Ji+1�2 + 5Ji Ji+1 + 6� . �14�

The Hamiltonian �14� provides the equivalent of the AKLT
model,6 whose unique ground state is constructed from dimer
states by projection onto spin 1, for SU�3� spin chains.

Since the 10 VBS state �12� is unique, domain walls con-
necting different ground states do not exist. We hence expect
the coloron and anti-coloron excitations to be confined in
pairs, as illustrated below. The state between the excitations
is no longer annihilated by Eq. �14�, as there are pairs of
neighboring sites containing representations different from

10̄ and 27, as indicated by the dotted box below. As the
number of such pairs increases linearly with the distance
between the excitation, the confinement potential depends
linearly on this distance.

�15�

The confinement force between the pair induces a linear os-
cillator potential for the relative motion of the constituents.
The zero-point energy of this oscillator gives rise to a
Haldane-type energy gap �see Ref. 39 for a similar discus-
sion in the two-leg Heisenberg ladder�. We expect this gap to
be a generic feature of representation 10 spin chains with
short-range antiferromagnetic interactions.

Finally, we construct a representation 8 VBS state, where
8= �1,1� is the adjoint representation of SU�3�. Consider first

a chain with alternating representations 3 and 3̄ on neighbor-
ing sites, which we combine into singlets. This can be done
in two ways, yielding the two states

We then combine one 3-3̄ state with the one shifted by one

lattice spacing. This yields representations 3 � 3̄=1 � 8 at
each site. The 8 VBS state is obtained by projecting onto the

adjoint representations 8. Corresponding to the two 3-3̄
states illustrated above, we obtain two linearly independent 8
VBS states, �L and �R, which may be visualized as

�16�

These states transform into each other under parity or color

conjugation �interchange of 3 and 3̄�. The corresponding
states may be formulated as a matrix product.37

The parent Hamiltonian for these states is constructed
along the same lines as above, yielding
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H8VBS = 	
i=1

N ��Ji Ji+1�2 +
9

2
Ji Ji+1 +

9

2

 . �17�

�L and �R are the only �zero-energy� ground states of Eq.
�17� for N�3.

The low-energy excitations of the 8 VBS model are given
by coloron-anticoloron bound states

�18�

We find a linear confinement potential between the excita-
tions, and hence a Haldane-type gap in the spectrum. Nu-
merical studies on a chain with N=8 sites provide evidence
in support of this conclusion.37 In addition to the bound state
�18�, the model allows for domain wall between the two
ground states �L and �R. They consist of bound states of
either two colorons or two anticolorons, which are confined
through the same mechanisms as the coloron-anticoloron

bound state �18�, as one may easily infer from a cartoon
similar to the one above. We hence expect a Haldane gap for
each individual domain wall as well.

The results regarding confinement and deconfinement of
the excitations of the 6, 10, and 8 VBS presented here are
consistent with a rigorous theorem by Affleck and Lieb40 on
the existence of energy gaps in the spectrum of SU�n�
nearest-neighbor Heisenberg spin chains.

In conclusion, we have formulated several exact models
of SU�3� spin chains. We first introduced a trimer model and
presented evidence that the elementary excitations of the
model transform under the SU�3� representations conjugate
to the representation of the original spin on the chain. We
further introduced three SU�3� valence bond solid chains
with representation 6, 10, and 8, respectively, on each lattice
site. The elementary excitations of the 10 and the 8 valence
bond solid chain were found to be confined.
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