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To begin with, we introduce several exact models for SU�3� spin chains: First is a translationally invariant
parent Hamiltonian involving four-site interactions for the trimer chain, with a threefold degenerate ground
state. We provide numerical evidence that the elementary excitations of this model transform under represen-

tation 3̄ of SU�3� if the original spins of the model transform under representation 3. Second is a family of
parent Hamiltonians for valence bond solids of SU�3� chains with spin representations 6, 10, and 8 on each
lattice site. We argue that of these three models, only the latter two exhibit spinon confinement and, hence, a
Haldane gap in the excitation spectrum. We generalize some of our models to SU�n�. Finally, we use the
emerging rules for the construction of valence bond solid states to argue that models of antiferromagnetic
chains of SU�n� spins, in general, possess a Haldane gap if the spins transform under a representation corre-
sponding to a Young tableau consisting of a number of boxes � which is divisible by n. If � and n have no
common divisor, the spin chain will support deconfined spinons and not exhibit a Haldane gap. If � and n have
a common divisor different from n, it will depend on the specifics of the model including the range of the
interaction.
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I. INTRODUCTION

Quantum spin chains have been a most rewarding subject
of study almost since the early days of quantum mechanics,
beginning with the invention of the Bethe ansatz in 1931
�Ref. 1� as a method of solving the S= 1

2 Heisenberg chain
with nearest-neighbor interactions. The method led to the
discovery of the Yang-Baxter equation in 1967 �Refs. 2 and
3� and provides the foundation for the field of integrable
models.4 Faddeev and Takhtajan5 discovered in 1981 that the
elementary excitations �now called spinons� of the spin-1 /2
Heisenberg chain carry spin 1/2 while the Hilbert space is
spanned by spin flips, which carry spin 1. The fractional
quantization of spin in spin chains is conceptually similar to
the fractional quantization of charge in quantized Hall
liquids.6,7 In 1982, Haldane8,9 identified the O�3� nonlinear
sigma model as the effective low-energy field theory of
SU�2� spin chains and argued that chains with integer spin
possess a gap in the excitation spectrum, while a topological
term renders half-integer spin chains gapless.10,11

The general methods—the Bethe ansatz method and the
use of effective field theories including bosonization12,13—
are complemented by a number of exactly solvable models;
most prominently among them are the Majumdar-Ghosh
�MG� Hamiltonian for the S= 1

2 dimer chain,14 the AKLT
model as a paradigm of the gapped S=1 chain,15,16 and the
Haldane-Shastry model �HSM�.17–20 The HSM is by far the
most sophisticated among these three, as it is not only solv-
able for the ground state but fully integrable due to its Yan-
gian symmetry.20 The wave functions for the ground state
and single-spinon excitations are of a simple Jastrow form,
elevating the conceptual similarity to quantized Hall states to
a formal equivalence. Another unique feature of the HSM is
that the spinons are free in the sense that they only interact
through their half-Fermi statistics,21–25 which renders the
model an ideal starting point for any perturbative description

of spin systems in terms of interacting spinons.26 The HSM
has been generalized from SU�2� to SU�n�.27–32

For the MG and the AKLT model, only the ground states
are known exactly. Nonetheless, these models have amply
contributed to our understanding of many aspects of spin
chains, each of them through the specific concepts captured
in its ground state.33–51 The models are specific to SU�2� spin
chains. We will review both models below.

In the past, the motivation to study SU�n� spin systems
with n�2 has been mainly formal. The Bethe ansatz method
has been generalized to multiple-component systems by
Sutherland,52 yielding the so-called nested Bethe ansatz. In
particular, this has led to a deeper understanding of quantum
integrability and the applicability of the Bethe ansatz.53 Fur-
thermore, the nested Bethe ansatz was used to study the
spectrum of the SU�n� HSM.22,27 It has also been applied to
SU�2� spin chains with orbital degeneracy at the SU�4� sym-
metric point.54,55 Most recently, Damerau and Klümper ob-
tained highly accurate numerical results for the thermody-
namic properties of the SU�4� spin-orbital model.56 SU�n�
Heisenberg models have been studied recently by Ka-
washima and Tanabe57 with quantum Monte Carlo and by
Paramekanti and Marston58 using variational wave functions.

The effective field theory description of SU�2� spin chains
by Haldane yielding the distinction between gapless half-
integer spin chains with deconfined spinons and gapped in-
teger spin chains with confined spinons cannot be directly
generalized to SU�n�, as there is no direct equivalent of the
CP1 representation used in Haldane’s analysis. The critical
behavior of SU�n� spin chains, however, has been analyzed
by Affleck in the framework of effective field theories.59,60

An experimental realization of an SU�3� spin system and,
in particular, an antiferromagnetic SU�3� spin chain, how-
ever, might be possible in an optical lattice of ultracold at-
oms in the not-too-distant future. The “spin” in these systems
would, of course, not relate to the rotation group of our
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physical space but rather relate to SU�3� rotations in an in-
ternal space spanned by three degenerate “colors” the atom
may assume, subject to the requirement that the number of
atoms of each color is conserved. A possible way to realize
such a system experimentally is described in Appendix A.
Moreover, it has been suggested recently that an SU�3� tri-
mer state might be realized approximately in a spin tetrahe-
dron chain.61,62

Motivated by both this prospect as well as the mathemati-
cal challenges inherent to the problem, we propose several
exact models for SU�3� spin chains in this paper. The models
are similar in spirit to the MG or the AKLT model for SU�2�
and consist of parent Hamiltonians and their exact ground
states. There is no reason to expect any of these models to be
integrable, and none of the excited states are known exactly.
We generalize several of our models to SU�n� and use the
emerging rules to investigate and motivate which SU�n� spin
chains exhibit spinon confinement and a Haldane gap.

The paper is organized as follows. Following a brief re-
view of the MG model in Sec. II, we introduce the trimer
model for SU�3� spin chains in Sec. III. This model consists
of a translationally invariant Hamiltonian involving four-site
interactions, with a threefold degenerate ground state, in
which triples of neighboring sites form SU�3� singlets �or
trimers�. In Sec. IV, we review the representations of SU�3�,
which we use to verify the trimer model in Sec. V. In this
section, we further provide numerical evidence that the el-
ementary excitations of this model transform under represen-

tation 3̄ of SU�3� if the original spins of the model transform
under representation 3. We proceed by introducing
Schwinger bosons in Sec. VI and a review of the AKLT
model in Sec. VII. In Sec. VIII, we formulate a family of
parent Hamiltonians for valence bond solids of SU�3� chains
with spin representations 6, 10, and 8 on each lattice site and
prove their validity. We argue that only the representation 10
and the representation 8 model, which are in a wider sense
generalizations of the AKLT model to SU�3�, exhibit spinon
confinement and, hence, a Haldane-type gap in the excitation
spectrum. In Sec. IX, we generalize three of our models from
SU�3� to SU�n�. In Sec. X, we use the rules emerging from
the numerous valence bond solid �VBS� models we studied
to investigate which models of SU�n� spin chains, in general,
exhibit spinon confinement and a Haldane gap. In this con-
text, we first review a rigorous theorem due to Affleck and
Lieb63 in Sec. X A. In Sec. X B, we argue that the spinons in
SU�n� spin chains with spins transforming under representa-
tions with Young tableaux consisting of a number of boxes �
which is divisible by n are always confined. In Sec. X C, we
construct several specific examples to argue that if � and n
have a common divisor different from n, the model will be
confining only if the interactions are sufficiently long ranged.
Specifically, the models we study suggest that if q is the
largest common divisor of � and n, the model will exhibit
spinon confinement only if the interactions extend at least to
the �n /q�th neighbor on the chain. If � and n have no com-
mon divisor, the spinons will be free and the chain will not
exhibit a Haldane gap. We briefly summarize the different
categories of models in Sec. X D and present a counterex-
ample to the general rules in Sec. X E. We conclude with a

brief summary of the results obtained in this paper in Sec.
XI.

A brief and concise account of the SU�3� VBS models we
elaborate here has been given previously.64

II. MAJUMDAR-GHOSH MODEL

Majumdar and Ghosh14 noticed in 1969 that on a linear
spin S= 1

2 chain with an even number of sites, the two va-
lence bond solid or dimer states

∣∣ψ even
(odd)

MG

〉
=

∏
i even
(i odd)

(
c†i↑c

†
i+1↓ − c†i↓c

†
i+1↑

)
| 0 〉 =

=

{ | � � � � � � � 〉 “even”

| � � � � � � � 〉 “odd”�1�

where the product runs over all even sites i for one state and
over all odd sites for the other, are exact zero-energy ground
states65 of the parent Hamiltonian

HMG = �
i
�SiSi+1 +

1

2
SiSi+2 +

3

8
� , �2�

where

Si =
1

2 �
�,��=↑,↓

ci�
† ����ci��, �3�

and �= ��x ,�y ,�z� is the vector consisting of the three Pauli
matrices.

The proof is exceedingly simple. We rewrite

HMG =
1

4�
i

Hi, Hi = �Si + Si+1 + Si+2�2 −
3

4
. �4�

Clearly, any state in which the total spin of three neighboring
spins is 1

2 will be annihilated by Hi. �The total spin can only
be 1

2 or 3
2 , as 1

2 �
1
2 �

1
2 = 1

2 �
1
2 �

3
2 .� In the dimer states above,

this is always the case as two of the three neighboring spins
are in a singlet configuration, and 0 �

1
2 = 1

2 . Graphically, we
may express this as

Hi | � � � 〉 = Hi | � � � 〉 = 0.
�5�

As Hi is positive definite, the two zero-energy eigenstates of
HMG are also ground states.

Is the Majumdar-Ghosh or dimer state in the universality
class generic to one-dimensional spin-1

2 liquids, and hence a
useful paradigm to understand, say, the nearest-neighbor
Heisenberg chain? The answer is clearly no, as the dimer
states �Eq. �1�� violate translational symmetry modulo trans-
lations by two lattice spacings, while the generic liquid is
invariant.

Nonetheless, the dimer chain shares some important prop-
erties of this generic liquid. First, the spinon excitations—
here, domain walls between even and odd ground states—are
deconfined. �To construct approximate eigenstates of HMG,

MARTIN GREITER AND STEPHAN RACHEL PHYSICAL REVIEW B 75, 184441 �2007�

184441-2



we take momentum superpositions of localized domain
walls.� Second, there are �modulo the overall twofold degen-
eracy� only M +1 orbitals available for an individual spinon
if 2M spins are condensed into dimers or valence bond sin-
glets. This is to say that if there are only a few spinons in a
long chain, the number of orbitals available to them is
roughly half the number of sites. This can easily be seen
graphically:

� � � � � � � � � � � � � � � �� �
even odd

If we start with an even ground state on the left, the spinon to
its right must occupy an even lattice site and vice versa. The
resulting state counting is precisely what one finds in the
Haldane-Shastry model, where it is directly linked to the
half-Fermi statistics of the spinons.21

The dimer chain is further meaningful as a piece of a
general paradigm. The two degenerate dimer states �Eq. �1��
can be combined into an S=1 chain, the AKLT chain, which
serves as a generic paradigm for S=1 chains which exhibit
the Haldane gap8,9,34 and provides the intellectual back-
ground for several of the exact models we further introduce
below. Before doing so, however, we will now introduce the
trimer model, which constitutes an SU�3� analog of the MG
model.

III. TRIMER MODEL

A. Hamiltonian and its ground states

Consider a chain with N lattice sites, where N has to be
divisible by 3, and periodic boundary conditions �PBCs�. On

each lattice site, we place an SU�3� spin which transforms
under the fundamental representation 3, i.e., the spin can take
the values �or colors� blue �b�, red �r�, or green �g�. The
trimer states are obtained by requiring the spins on each three
neighboring sites to form an SU�3� singlet, which we call a
trimer and sketch it by �–�–�. The three linearly independent
trimer states on the chain are given by

∣∣∣ψ(µ)
trimer

〉
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

| � � � � � � 〉 ≡
∣∣∣ψ(1)

trimer

〉

| � � � � � � 〉 ≡
∣∣∣ψ(2)

trimer

〉

| � � � � � � 〉 ≡
∣∣∣ψ(3)

trimer

〉
.

�6�

Introducing operators ci�
† which create a fermion of color �

��=b, r ,g� at lattice site i, the trimer states can be written as

��trimer
��� 	

= 

i

��i−��/3 integer�

� �
��,�,	�=
�b,r,g�

sgn�
�ci�
† ci+1�

† ci+2	
† ��0	 ,

�7�

where �=1,2 ,3 labels the three degenerate ground states,
and i runs over the lattice sites subject to the constraint that
i−�

3 is integer. The sum extends over all six permutations 
 of
the three colors b, r, and g, i.e.,

�
��,�,	�=
�b,r,g�

sgn�
�ci�
† ci+1�

† ci+2	
† = cib

† ci+1r
† ci+2g

† + cir
†ci+1g

† ci+2b
† + cig

† ci+1b
† ci+2r

† − cib
† ci+1g

† ci+2r
† − cig

† ci+1r
† ci+2b

† − cir
†ci+1b

† ci+2g
† . �8�

The SU�3� generators at each lattice site i are in analogy
to Eq. �3� defined as

Ji
a =

1

2 �
�,��=b,r,g

ci�
† ����

a ci��, a = 1, . . . ,8, �9�

where the �a are the Gell-Mann matrices �see Appendix B�.
The operators �Eq. �9�� satisfy the commutation relations

�Ji
a,Jj

b� = �ij f
abcJi

c, a,b,c = 1, . . . ,8, �10�

�we use the Einstein summation convention� with fabc the
structure constants of SU�3� �see Appendix B�. We further
introduce the total SU�3� spin of � neighboring sites i , . . . , i
+�−1,

Ji
��� = �

j=i

i+�−1

J j , �11�

where Ji is the eight-dimensional vector formed by its com-
ponents �Eq. �9��. The parent Hamiltonian for the trimer
states �Eq. �7�� is given by

Htrimer = �
i=1

N ��Ji
�4��4

−
14

3
�Ji

�4��2
+

40

9
� . �12�

The JiJ j terms appear complicated in terms of the Gell-Mann
matrices but are rather simply when written out using the
operator Pij, which permutes the SU�n� spins �here, n=3� on
sites i and j:

JiJ j =
1

2
�Pij −

1

n
� . �13�
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To verify the trimer Hamiltonian �Eq. �12��, as well as for
the valence bond solid �VBS� models we propose below, we
will need a few higher-dimensional representations of SU�3�.
We review these in the following section.

IV. REPRESENTATIONS OF SU(3)

A. Young tableaux and representations of SU(2)

Let us begin with a review of Young tableaux and the
representations of SU�2�. The group SU�2� has three genera-
tors Sa, a=1,2 ,3, which obey the algebra

�Sa,Sb� = iabcSc, �14�

where repeated indices are summed over and abc is the to-
tally antisymmetric tensor. The representations of SU�2� are
classified by the spin S, which takes integer or half-integer
values. The fundamental representation of SU�2� has spin S
= 1

2 ; it contains the two states �↑	 and �↓	. Higher-dimensional
representations can be constructed as tensor products of fun-
damental representations, which is conveniently accom-
plished using Young tableaux �see, e.g., Ref. 66�. These tab-
leaux are constructed as follows �see Figs. 1 and 2 for
examples�. For each of the N spins, draw a box numbered
consecutively from left to right. The representations of SU�2�
are obtained by putting the boxes together such that the num-
bers assigned to them increase in each row from left to right
and in each column from top to bottom. Each tableau indi-
cates symmetrization over all boxes in the same row and
antisymmetrization over all boxes in the same column. This
implies that we cannot have more than two boxes on top of
each other. If �i denotes the number of boxes in the ith row,
the spin is given by S= 1

2 ��1−�2�.
To be more explicit, let us consider the tensor product 1

2
�

1
2 �

1
2 depicted in Fig. 2 in detail. We start with the state

� 3
2 , 3

2 	= �↑ ↑ ↑ 	 and hence find

� 3
2 , 1

2	 =
1
�3

S−� 3
2 , 3

2	 =
1
�3

��↑↑↓	 + �↑↓↑	 + �↓↑↑	� . �15�

The two states with S=Sz= 1
2 must be orthogonal to Eq. �15�.

A convenient choice of basis is

� 1
2 , 1

2 , + 	 =
1
�3

��↑↑↓	 + ��↑↓↑	 + �2�↓↑↑	� ,

� 1
2 , 1

2 ,− 	 =
1
�3

��↑↑↓	 + �2�↑↓↑	 + ��↓↑↑	� , �16�

where �=exp�i 2

3

�. The tableaux tell us primarily that two
such basis states exist, and not what a convenient choice of
orthonormal basis states may be.

The irreducible representations of SU�2� can be classified
through the eigenvalues of the Casimir operator given by the
square of the total spin S2. The special feature of S2 is that it
commutes with all generators Sa and is, hence, by Schur’s
lemma67 proportional to the identity for any finite-
dimensional irreducible representation. The eigenvalues are
given by

S2 = CSU�2�
2 = S�S + 1� .

B. Representation theory of SU(3)

The group SU�3� has eight generators Ja, a=1, . . . ,8,
which obey the algebra

�Ja,Jb� = fabcJc, �17�

where the structure constants fabc are given in Appendix B.
For SU�3�, we have two diagonal generators, usually chosen
to be J3 and J8, and six generators which define the ladder
operators I±=J1± iJ2, U±=J6± iJ7, and V±=J4± iJ5, respec-
tively. An explicit realization of Eq. �17� is, for example,
given by the Ja’s as expressed in terms of the Gell-Mann
matrices in Eq. �9�. This realization defines the fundamental
representation 3 of SU�3� illustrated in Fig. 3�a�. It is three
dimensional, and we have chosen to label the basis states by
the colors blue �b�, red �r�, and green �g�. The weight dia-
gram depicted in Fig. 3�a� instructs us about the eigenvalues
of the diagonal generators as well as the actions of the ladder
operators on the basis states.

1

�

�

Sz

|↑〉
|↓〉

⊗ 2

�

�

Sz

|↑〉
|↓〉

= 1
2

�

Sz

1√
2

`|↑↓〉 − |↓↑〉´

⊕ 1 2

�

�

�

Sz

|↓↓〉

1√
2

`|↑↓〉 + |↓↑〉
|↑↑〉

FIG. 1. Tensor product of two S= 1
2 spins with Young tableaux

and weight diagrams of the occurring SU�2� representations. Sz is
the diagonal generator.

1 ⊗ 2

| {z }
1
2

S = 0

⊕ 1 2

S = 1

⊗ 3 = 1
2
3

⊕ 1 3
2

S = 1
2

⊕ 1
3

2

S = 1
2

⊕ 1 2 3

S = 3
2

�
�
��

�
�

FIG. 2. Tensor product of three S= 1
2 spins with Young tableaux.

For SU�n� with n�2, the tableau with three boxes on top of each
other exists as well.

3J

J

8

3

b

g

r I
+

U
+ +

V

3J

J 3

8

cy

m

UV

I
+

++

FIG. 3. �Color online� �a� Weight diagram of the fundamental
SU�3� representation 3= �1,0�. �b� Weight diagram of the complex

conjugate representation 3̄= �0,1�. J3 and J8 denote the diagonal
generators I+, U+, and V+ the raising operators.
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All other representations of SU�3� can be constructed by
taking tensor products of representations 3, which is again
most conveniently accomplished using Young tableaux �see
Fig. 4 for an example�. The antisymmetrization over all
boxes in the same column implies that we cannot have more
than three boxes on top of each other. Each tableau stands for
an irreducible representation of SU�3�, which can be
uniquely labeled by their highest weight or Dynkin coordi-
nates ��1 ,�2� Refs. 67 and 68 �see Fig. 5�. For example, the
fundamental representation 3 has Dynkin coordinates �1,0�.
Note that all columns containing three boxes are superfluous,
as the antisymmetrization of three colors yields only one
state. In particular, the SU�3� singlet has Dynkin coordinates
�0,0�. In general, the dimension of a representation ��1 ,�� is
given by 1

2 ��1+1���2+1���1+�2+2�. The labeling using
numbers in boldface refers to the dimensions of the repre-
sentations alone. Although this labeling is not unique, it will
mostly be sufficient for our purposes. A representation m and
its conjugated counterpart m̄ are related to each other by
interchange of their Dynkin coordinates.

C. Examples of representations of SU(3)

We now consider some specific representations of SU�3�
in detail. As starting point, we use the fundamental represen-
tation 3 spanned by the states �b	, �r	, and �g	. The second

three-dimensional representation 3̄ is obtained by antisym-
metrically coupling two representations 3. The Dynkin coor-

dinates of the representations 3̄ are �0,1�, i.e., the represen-

tations 3 and 3̄, are complex conjugate of each other. An

explicit basis of the representations 3̄ is given by the colors
yellow �y�, cyan �c�, and magenta �m� as follows:

�y	 =
1
�2

��rg	 − �gr	� ,

�c	 =
1
�2

��gb	 − �bg	� ,

�m	 =
1
�2

��br	 − �rb	� . �18�

The weight diagram is shown in Fig. 3�b�. The generators are
given by Eq. �9� with �a replaced by −��a�*, where
asterisk ��� denotes complex conjugation of the matrix
elements.68 In particular, we find I+�y	
=−�c	, U+�c	=−�m	, and V+�y	=−�m	.

The six-dimensional representation 6 has Dynkin coordi-
nates �2,0� and can, hence, be constructed by symmetrically
coupling two representations 3. The basis states of the rep-
resentations 6 are shown in Fig. 6. The conjugate represen-

tation 6̄ can be constructed by symmetrically coupling two

representations 3̄.

Let us now consider the tensor product 3 � 3̄=1 � 8. The
weight diagram of the so-called adjoint representation 8
= �1,1� is shown in Fig. 7. The states can be constructed
starting from the highest weight state �bm	, yielding I−�bm	
= �rm	, U−�bm	=−�bc	, V−�bm	= �gm	− �by	, and so on. This
procedure yields two linearly independent states with J3

=J8=0. The representation 8 can also be obtained by cou-

1 ⊗ 2
︸ ︷︷ ︸

1
2

3̄

⊕ 1 2

6

⊗ 3 = 1
2
3

1

⊕ 1 3
2

8

⊕ 1
3

2

8

⊕ 1 2 3

10

FIG. 4. Tensor product 3 � 3 � 3 with Young tableaux.

| {z }| {z }
µ1 boxesµ2 columns

FIG. 5. Dynkin coordinates ��1 ,�2� for a given Young tableau.
The columns containing three boxes represent additional SU�3� sin-
glet factors, which yield equivalent representations and hence leave
the Dynkin coordinates ��1 ,�2� unchanged.

� � �

� �

�

6J8

J3

|bb〉|rr〉
1√
2

`|br〉 + |rb〉´

1√
2

`|bg〉 + |gb〉1√
2

`|rg〉 + |gr〉´

|gg〉

FIG. 6. Weight diagram of the representation 6= �2,0�. The

weight diagram of the conjugate representation 6̄= �0,2� is obtained
by reflection at the origin �Ref. 67�.

� �

� � ��

� �

�
�

�
��

8J8

J3

|bm〉|rm〉

|bc〉|ry〉

|gc〉|gy〉
1√
2

`|by〉 − |rc〉´
1√
6

`|by〉 + |rc〉 − 2 |gm〉

FIG. 7. Weight diagram of the adjoint representation 8= �1,1�.
The state with J3=J8=0 is doubly degenerate �Ref. 67�. Note that
two representations 8 can be constructed by combining three fun-
damental representations 3 �colors�, just as two representations 1

2
can be constructed by combining three SU�2� spins �cf. Eq. �16��.
The states in the diagram span a basis for one of these
representations.
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pling of the representations 6 and 3, as can be seen from the
Young tableaux in Fig. 4. On a more abstract level, the ad-
joint representation is the representation we obtain if we con-
sider the generators Ja themselves basis vectors. In the
weight diagram shown in Fig. 7, the generators J3 and J8

correspond to the two states at the origin, whereas the ladder
operators I±, U±, and V± correspond to the states at the six
surrounding points. In the notation of Fig. 7, the singlet or-
thogonal to 8 is given by 1

�3
��by	+ �rc	+ �gm	�.

The weight diagrams of four other representations rel-
evant to our purposes below are shown in Figs. 8–10.

It is known that the physical properties of SU�2� spin
chains crucially depend on whether the lattice sites are inte-
ger or half-integer spins. A similar distinction can be made
for SU�3� chains, as elaborated in Sec. X. The distinction of
integer or half-integer spin for SU�2� is replaced by a dis-
tinction between three families of irreducible representations
of SU�3�: either the number of boxes in the Young tableau is
divisible by 3 without remainder �e.g., 1, 8, 10, and 27�, with

remainder 1 �e.g., 3, 6̄, 15, and 15��, or with remainder 2

�e.g., 3̄, 6, 15, and 15��.
While SU�2� has only one Casimir operator, SU�3� has

two. The quadratic Casimir operator is defined as

J2 = �
a=1

8

JaJa, �19�

where the Ja’s are the generators of the representation. As J2

commutes with all generators Ja, it is proportional to the
identity for any finite-dimensional irreducible representation.

The eigenvalue in a representation with Dynkin coordinates
��1 ,�2� is67

J2 = CSU�3�
2 ��1,�2� =

1

3
��1

2 + �1�2 + �2
2 + 3�1 + 3�2� .

�20�

We have chosen the normalization in Eq. �20� according to
the convention

CSU�n�
2 �adjoint representation� = n ,

which yields CSU�3�
2 �1,1�=3 for the representation 8. Note

that the quadratic Casimir operator cannot be used to distin-
guish between a representation and its conjugate. This dis-
tinction would require the cubic Casimir operator,67 which
we will not need for any of the models we propose below.

V. TRIMER MODEL (CONTINUED)

A. Verification of the model

We will now proceed with the verification of the trimer
Hamiltonian �Eq. �12��. Since the spins on the individual
sites transform under the fundamental representation 3, the
SU�3� content of the four sites is

3 � 3 � 3 � 3 = 3 · 3 � 2 · 6̄ � 3 · 15 � 15�, �21�

i.e., we obtain representations 3 and 6̄ and two nonequivalent
15-dimensional representations with Dynkin coordinates �2,
1� and �4, 0�, respectively. All these representations can be
distinguished by their eigenvalues of the quadratic Casimir
operator, which is given by �Ji

�4��2 if the four spins reside on
the four neighboring lattice sites i , . . . , i+3.

For the trimer states �Eq. �6��, the situation simplifies as
we only have the two possibilities

� � � � =̂ 1 ⊗ 3 = 3,
� � � � =̂ 3̄ ⊗ 3̄ = 3 ⊕ 6̄,

which implies that the total SU�3� spin on four neighboring

sites can only transform under representations 3 or 6̄. The
eigenvalues of the quadratic Casimir operator for these rep-
resentations are 4/3 and 10/3, respectively. The auxiliary
operators

� � � �

� � �

� �

�

10J8

J3

|bbb〉|rrr〉

1√
3

`|bgg〉 + |gbg〉 + |ggb〉

|ggg〉

FIG. 8. Weight diagram of the representation 10= �3,0�. The
weight diagram of the conjugate representation 10= �0,3� is ob-
tained by reflection at the origin �Ref. 67�.

� � �

� � � �� �

� � ��

� �

15
� � � � �

� � � �

� � �

� �

�

15’

FIG. 9. Weight diagram of the representations 15= �2,1� and
15�= �4,0�.

� � �

� � � �

� � � � �

� � � �

� � �

� �

� � �

� �

�

27

FIG. 10. Weight diagram of the self-conjugate representation
27= �2,2�. The state with J3=J8=0 is threefold degenerate �Ref.
67�.
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Hi = ��Ji
�4��2

−
4

3
���Ji

�4��2
−

10

3
� �22�

hence annihilate the trimer states for all values of i, while
they yield positive eigenvalues for 15 or 15�, i.e., all other
states. Summing Hi over all lattice sites i yields Eq. �12�. We
have numerically confirmed by exact diagonalization of Eq.
�12� for chains with N=9 and 12 lattice sites that the three
states �Eq. �7�� are the only ground states.

Note that the representation content of five neighboring
sites in the trimer chains is just the conjugate of the above, as

� � � � � =̂ 1 ⊗ 3̄ = 3̄ ,
� � � � � =̂ 3 ⊗ 1 ⊗ 3 = 3̄ ⊕ 6.

Since the quadratic Casimirs of conjugate representations
have identical eigenvalues, CSU�3�

2 ��1 ,�2�=CSU�3�
2 ��2 ,�1�, we

can construct another parent Hamiltonian for the trimer
states Eq. �7� by simply replacing Ji

�4� with Ji
�5� in Eq. �12�.

This Hamiltonian will have a different spectrum. In compari-
son with the four-site interaction Hamiltonian �Eq. �12��,
however, it is more complicated while bearing no advan-
tages. We will not consider it further.

B. Elementary excitations

Let us now turn to the low-lying excitations of Eq. �12�.
In analogy with the MG model, it is evident that the SU�3�
spinon or “coloron” excitations correspond to domain walls
between the degenerate ground states. For the trimer model,
however, there are two different kinds of domain walls, as
illustrated by

� � � �
3

� � � �23�

� � � �
3̄

� � � � �24�

The first domain wall �Eq. �23�� connects ground state � to
the left to ground state �+1 to the right, where � is defined
modulo of 3 �see Eq. �7��, and consists of an individual
SU�3� spin, which transforms under representation 3. The
second domain wall �Eq. �24�� connects ground state � with
ground state �+2. It consists of two antisymmetrically
coupled spins on two neighboring sites and, hence, trans-

forms under representation 3̄. As we take momentum super-
positions of the localized domain walls illustrated above, we
expect one of them, but not both, to constitute an approxi-
mate eigenstate of the trimer model. The reason we do not
expect both of them to yield a valid excitation is that they
can decay into each other, i.e., if the representation 3 excita-

tion is valid, the representation 3̄ domain wall would decay
into two representation 3 excitations and vice versa. The
question which of the two excitations is the valid one, i.e.,

whether the elementary excitations transform under 3 or 3̄
under SU�3� rotations, can be resolved through numerical
studies. We will now discuss the results of these studies.

The representation 3 and the representation 3̄ trial states

require chains with N=3� integer+1 and N=3� integer+2
sites, respectively; we chose N=13 and N=14 for our nu-
merical studies. To create the localized domain walls �Eqs.
�23� and �24��, we numerically diagonalized auxiliary Hamil-
tonians with appropriate couplings, as illustrated in Fig. 11.
From these localized excitations, we constructed momentum
eigenstates by superposition and compared them to the exact
eigenstates of our model Hamiltonian �Eq. �12�� for chains
with the same number of sites. The results are shown in
Table I and Fig. 12 for the representation 3 trial state and in

Table II and Fig. 13 for the representation 3̄ trial state.
The numerical results clearly indicate that the representa-

tion 3̄ trial states �Eq. �24�� are valid approximations to the
elementary excitations of the trimer chain, while the repre-
sentation 3 trial states �Eq. �23�� are not. We deduce that the
elementary excitations of the trimer chain �Eq. �12�� trans-

form under 3̄, that is, under the representation conjugated to
the original SU�3� spins localized at the sites of the chain.
Using the language of colors, one may say that if a basis for
the original spins is spanned by blue, red, and green, a basis
for the excitations is spanned by the complementary colors
yellow, cyan, and magenta. This result appears to be a gen-
eral feature of SU�3� spin chains, as it was recently shown
explicitly to hold for the Haldane-Shastry model as well.30–32

Note that the elementary excitations of the trimer chain
are deconfined, meaning that the energy of two localized

representation 3̄ domain walls or colorons �Eq. �24�� does
not depend on the distance between them. The reason is sim-
ply that domain walls connect one ground state with another,
without introducing costly correlations in the region between

TABLE I. Energies of the representation 3 trial states �Eq. �23��
in comparison to the exact excitation energies of the trimer model
�Eq. �12�� and their overlaps for an SU�3� spin chain with N=13
sites.

Momentum
�2
 /N�

Etot

%
off OverlapExact Trial

0 2.9735 4.5860 54.2 0.9221

1, 12 6.0345 10.2804 70.4 0.5845

2, 11 9.0164 17.2991 91.9 0.0

3, 10 6.6863 13.1536 96.7 0.0

4, 9 3.0896 5.0529 63.5 0.8864

5, 8 4.8744 7.5033 53.9 0.8625

6, 7 8.5618 16.6841 94.9 0.1095

J J

J J J

J J J J

(a)

J J

J J

J J J

J

J J

(b)

FIG. 11. Couplings used in the numerical studies to create �a�
the localized representation 3 trial state and �b� the localized repre-

sentation 3̄ trial state.
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the domain walls. In the case of the MG model and the
trimer model introduced here, however, there is still an en-
ergy gap associated with the creation of each coloron, which
is simply the energy cost associated with the domain wall.

In most of the remainder of this paper, we will introduce
a family of exactly soluble valence bond models for SU�3�
chains of various spin representations of the SU�3� spins at
each lattice site. To formulate these models, we will first
review Schwinger bosons for both SU�2� and SU�3� and the
AKLT model.

VI. SCHWINGER BOSONS

Schwinger bosons69,70 constitute a way to formulate spin-
S representations of an SU�2� algebra. The spin operators

Sx + iSy = S+ = a†b ,

Sx − iSy = S− = b†a ,

Sz = 1
2 �a†a − b†b� �25�

are given in terms of boson creation and annihilation opera-
tors which obey the usual commutation relations

�a,a†� = �b,b†� = 1,

�a,b� = �a,b†� = �a†,b� = �a†,b†� = 0. �26�

It is readily verified with Eq. �26� that Sx, Sy, and Sz satisfy
Eq. �14�. The spin quantum number S is given by half the
number of bosons,

2S = a†a + b†b , �27�

and the usual spin states �simultaneous eigenstates of S2 and
Sz� are given by

�S,m	 =
�a†�S+m

��S + m�!
�b†�S−m

��S − m�!
�0	 . �28�

In particular, the spin-1
2 states are given by

�↑	 = c↑
†�0	 = a†�0	, �↓	 = c↓

†�0	 = b†�0	 , �29�

i.e., a† and b† act just like the fermion creation operators c↑
†

and c↓
† in this case. The difference shows up only when two

�or more� creation operators act on the same site or orbital.
The fermion operators create an antisymmetric or singlet
configuration �in accordance with the Pauli principle�,

�0,0	 = c↑
†c↓

†�0	 , �30�

while the Schwinger bosons create a totally symmetric or
triplet �or higher spin if we create more than two bosons�
configuration,

TABLE II. Energies of the representation 3̄ trial states �Eq. �24��
in comparison with the exact excitation energies of the trimer model
�Eq. �12�� and their overlaps for an SU�3� spin chain with N=14
sites.

Momentum
�2
 /N�

Etot

%
off OverlapExact Trial

0 2.1013 2.3077 9.8 0.9953

1, 13 4.3677 4.8683 11.5 0.9864

2, 12 7.7322 8.7072 12.6 0.9716

3, 11 6.8964 7.7858 12.9 0.9696

4, 10 3.2244 3.5415 9.8 0.9934

5, 9 2.2494 2.4690 9.7 0.9950

6, 8 5.4903 6.1016 11.1 0.9827

7 7.4965 8.5714 14.3 0.9562

0

5

10

15

20

0 2 4 6 8 10 12

en
er

gy

momenta [2 pi/N]

exact energy state for N=13
trial state

FIG. 12. Dispersion of the representation 3 trial states �Eq. �23��
in comparison with the exact excitation energies of Eq. �12� for a
chain with N=13. The lines are a guide for the eyes.

0

5

10

15

20

0 2 4 6 8 10 12 14

en
er

gy

momenta [2 pi/N]

exact energy state for N=14
trial state

FIG. 13. Dispersion of the representation 3̄ trial states �Eq. �24��
in comparison with the exact excitation energies of Eq. �12� for a
chain with N=14. The lines are a guide for the eyes.
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�1,1	 = 1
�2

�a†�2�0	 ,

�1,0	 = a†b†�0	 ,

�1,− 1	 = 1
�2

�b†�2�0	 . �31�

.
The generalization to SU�n� proceeds without incident.

We content ourselves here by writing out explicitly the for-
malism for SU�3�. In analogy to Eq. �25�, we write the SU�3�
spin operators �Eq. �9��,

J1 + iJ2 = I+ = b†r ,

J1 − iJ2 = I− = r†b ,

J3 = 1
2 �b†b − r†r� ,

J4 + iJ5 = V+ = b†g ,

J4 − iJ5 = V− = g†b ,

J6 + iJ7 = U+ = r†g ,

J6 − iJ7 = U− = g†r ,

J8 = 1
2�3

�b†b + r†r − 2g†g� , �32�

in terms of the boson annihilation and creation operators
b ,b† �blue�, r ,r† �red�, and g ,g† �green� satisfying

�b,b†� = �r,r†� = �g,g†� = 1 �33�

while all other commutators vanish. Again, it is readily veri-
fied with Eq. �33� that the operators Ja satisfy Eq. �17�. The
basis states spanning the fundamental representation 3 may,
in analogy to Eq. �29�, be written using either fermion or
boson creation operators:

�b	 = cb
†�0	 = b†�0	 ,

�r	 = cr
†�0	 = r†�0	 ,

�g	 = cg
†�0	 = g†�0	 . �34�

We write this abbreviated

3 = �1,0� = �=̂c�
† �0	 = �†�0	 . �35�

The fermion operators can be used to combine spins trans-
forming under the fundamental representation 3 antisym-
metrically and, hence, to construct the representations

3̄ = (0, 1) = =̂ c†αc†β | 0 〉 ,

1 = (0, 0) = =̂ c†bc†rc
†
g | 0 〉 .

�36�

The Schwinger bosons, by contrast, combine fundamental
representations 3 symmetrically and, hence, yield represen-

tations labeled by Young tableaux in which the boxes are
arranged in a horizontal row, like

6 = (2, 0) = =̂ α†β† | 0 〉 ,

10 = (3, 0) = =̂ α†β†γ† | 0 〉 ,

15′ = (4, 0) = =̂ α†β†γ†δ† | 0 〉 , �37�

where � ,� ,	 , . . . , � �b ,r ,g. Unfortunately, it is not pos-
sible to construct representations such as

8 = (1, 1) =

by simply taking products of anticommuting or commuting
creation or annihilation operators.

VII. AKLT MODEL

Using the SU�2� Schwinger bosons introduced in the pre-
vious section, we may rewrite the Majumdar-Ghosh states
�Eq. �1�� as

∣∣ψ even
(odd)

MG

〉
=

∏
i even
(i odd)

(
a†

ib
†
i+1 − b†ia

†
i+1

)

︸ ︷︷ ︸
≡ Ψ

even
(odd)
MG

[
a†, b†

]

| 0 〉

�38�

This formulation was used by Affleck et al.15,16 to propose a
family of states for higher spin representations of SU�2�. In
particular, they showed that the valance bond solid �VBS�
state

|ψAKLT〉 =
∏

i

(
a†

i b
†
i+1 − b†ia

†
i+1

)
| 0 〉

= Ψeven
MG

[
a†, b†

] · Ψodd
MG

[
a†, b†

] | 0 〉

=
∣∣∣ � � � � � � � � �

� � � � � � � � �

projection onto spin S = 1

〉

�39�

is the exact zero-energy ground state of the spin-1 extended
Heisenberg Hamiltonian

HAKLT = �
i
�SiSi+1 +

1

3
�SiSi+1�2 +

2

3
� �40�

with periodic boundary conditions. Each term in the sum of
Eq. �40� projects onto the subspace in which the total spin of
a pair of neighboring sites is S=2. The Hamiltonian �Eq.
�40�� thereby lifts all states except Eq. �39� to positive ener-
gies. The VBS state �Eq. �39�� is a generic paradigm as it
shares all the symmetries, but, in particular, the Haldane spin
gap,8,9,34 of the spin-1 Heisenberg chain. It even offers a
particularly simple understanding of this gap, or of the linear
confinement potential between spinons responsible for it, as
illustrated by the diagram
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� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� �

� �
energy cost ∝ distance

Our understanding71,72 of the connection between the con-
finement force and the Haldane gap is that the confinement
effectively imposes an oscillator potential for the relative
motion of the spinons. We then interpret the zero-point en-
ergy of this oscillator as the Haldane gap in the excitation
spectrum.

The AKLT state can also be written as a matrix
product.42,44,45 We first rewrite the valence bonds

�ai
†bi+1

† − bi
†ai+1

† � = �ai
†,bi

†�� bi+1
†

− ai+1
† � ,

and then use the outer product to combine the two vectors at
each site into a matrix

Mi � � bi
†

− ai
† ��ai

†,bi
†��0	i = � �1,0	i �2�1,− 1	i

− �2�1,1	i − �1,0	i
� .

�41�

Assuming PBCs, Eq. �39� may then be written as the trace of
the matrix product

��AKLT	 = tr�

i

Mi� . �42�

.
In the following section, we will propose several exact

models of VBSs for SU�3�.

VIII. SU(3) VALENCE BOND SOLIDS

To begin with, we use SU�3� Schwinger bosons intro-
duced in Sec. VI to rewrite the trimer states �Eq. �7�� as

��trimer
��� 	 = 


i

��i−��/3 integer�

� �
��,�,	�=
�b,r,g�

sgn�
��i
†�i+1

† 	i+2
† ��0	

� ���b†,r†,g†��0	 , �43�

where, as in Eq. �7�, �=1,2 ,3 labels the three degenerate
ground states, i runs over the lattice sites subject to the con-
straint that i−�

3 is integer, and the sum extends over all six
permutations 
 of the three colors b, r, and g. This formula-
tion can be used directly to construct VBSs for SU�3� spin
chains with spins transforming under representations 6 and
10 on each site.

A. Representation 6 VBS

We obtain a representations 6 VBS from two trimer states
by projecting the tensor product of two fundamental repre-
sentations 3 onto the symmetric subspace, i.e., onto the 6 in

the decomposition 3 � 3= 3̄ � 6. Graphically, this is illus-
trated as follows:

� � � � � � � � �

� � � � � � � � �

projection onto rep. 6 = (2, 0)

one site

�44�

This construction yields three linearly independent 6 VBS
states, as there are three ways to choose two different trimer
states out of a total of three. These three VBS states are
readily written out using Eq. �43�,

��6VBS
��� 	 = ���b†,r†,g†� · ��+1�b†,r†,g†��0	 �45�

for �=1, 2, or 3. If we pick four neighboring sites on a chain
with any of these states, the total SU�3� spin of those may
contain the representations

� � � �

� � � � =̂ 3 ⊗ 3 = 3̄ ⊕ 6

or the representations

� � � �

� � � � =̂ 3̄ ⊗ 3̄ ⊗ 3 = 2 · 3̄ ⊕ 6 ⊕ 15,

i.e., the total spin transforms under 3̄, 6, or 15= �1,2�, all of
which are contained in the product

6 � 6 � 6 � 6

= 3 · 3̄ � 6 · 6 � 7 · 15 � 3 · 15� � 3 · 21 � 8 · 24

� 6 · 42 � 45 � 6 · 60 � 3 · 63 �46�

and hence possible for a representation 6 spin chain in gen-
eral. The corresponding Casimirs are given by CSU�3�

2 �0,1�
= 4

3 , CSU�3�
2 �2,0�= 10

3 , and CSU�3�
2 �1,2�= 16

3 . This leads us to
propose the parent Hamiltonian

H6VBS = �
i=1

N

Hi, �47�

with

Hi = ��Ji
�4��2

−
4

3
���Ji

�4��2
−

10

3
���Ji

�4��2
−

16

3
� .

�48�

Note that the operators Ji
a, a=1, . . . ,8, are now given by

6�6 matrices, as the Gell-Mann matrices only provide the
generators �Eq. �9�� of the fundamental representation 3.

Since the representations 3̄, 6, and 15 possess the smallest
Casimirs in the expansion �Eq. �46��, Hi and, hence, also
H6VBS are positive semidefinite �i.e., have only non-negative
eigenvalues�. The three linearly independent states �Eq. �45��
are zero-energy eigenstates of �Eq. �47��.

To verify that these are the only ground states, we have
numerically diagonalized Eq. �47� for N=6 and N=9 sites.
For N=9, we find zero-energy ground states at momenta k
=0, 3, and 6 �in units of 2


N with the lattice constant set to
unity�. Since the dimension of the Hilbert space required the
use of a Lanczos algorithm, we cannot be certain that there
are no further ground states. We therefore diagonalized Eq.
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�47� for N=6 as well, where we were able to obtain the full
spectrum. We obtained five zero-energy ground states, two at
momentum k=0 and one each at k=2,3 ,4. One of the
ground states at k=0 and the k=2,4 ground states constitute
the space of momentum eigenstates obtained by Fourier
transform of the space spanned by the three 6 VBS states
�Eq. �45�. The remaining two states at k=0,3 are the mo-
mentum eigenstates formed by superposition of the state

�

�

�

�� � � � � �

� � � � � �� � �

i = 6 1 2 3 4 5 6 1 �49�

and the same translated by one lattice spacing. It is readily
seen that these two states are likewise zero-energy eigen-
states of Eq. �47� for N=6 sites. The crucial difference, how-
ever, is that the 6 VBS states �Eq. �45�� remain zero-energy
eigenstates of Eq. �47� for all N’s divisible by 3, while the
equivalent of Eq. �49� for larger N do not. We hence attribute
these two additional ground states for N=6 to the finite size
and conclude that the three states �Eq. �45�� are the only
zero-energy ground states of Eq. �47� for general N’s divis-
ible by 3.

Excitations of the 6 VBS model are given by domain
walls between two of the ground states �Eq. �45��. As in the
trimer model, two distinct types of domain walls exist, which

transform according to representations 3̄ and 3:

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

Ψ1 ·Ψ2 Ψ2 ·Ψ3 Ψ1 ·Ψ2

3̄ 3

�50�
It is not clear which excitation has the lower energy, and it
appears likely that both of them are stable against decay. Let

us first look at the representation. 3̄ excitation. The four-site
Hamiltonian �Eq. �48�� annihilates the state for all i’s except
the four sites in the dashed box in Eq. �50�, which contains
the representations

3̄ � 3̄ � 3̄ � 3 � 3

= 6 · 3̄ � 5 · 6 � 6 · 15 � 15� � 2 · 24 � 42,

i.e., the representations 15�= �0,4�, 24= �3,1� twice, and 42̄
= �2,3� with Casimirs 28

3 , 25
3 , and 34

3 , respectively, in addition
to representations annihilated by Hi. For the representation 3
excitation sketched on the right in Eq. �50�, there are two sets
of four neighboring sites not annihilated by Hi as indicated
by the dashed and the dotted box. Each set contains the rep-
resentations

3̄ � 3 � 3 � 3 = 3 · 3̄ � 3 · 6 � 2 · 15 � 24,

i.e., only the representation 24 in addition to representations
annihilated by Hi. For our parent Hamiltonian �Eq. �47��, it
hence may well be that the representation 3 anticoloron has
the lower energy, but it is all but clear that the representation

3̄ has sufficiently higher energy to decay. For general repre-
sentation 6 spin chains, it may depend on the specifics of the
model which excitation is lower in energy and whether the
conjugate excitation decays or not.

Since the excitations of the representation 6 VBS chain
are merely domain walls between different ground states,
there is no confinement between them. We expect the generic
antiferromagnetic representation 6 chain to be gapless, even
though the model we proposed here has a gap associated
with the energy cost of creating a domain wall.

B. Representation 10 VBS

Let us now turn to the 10 VBS chain, which is a direct
generalization of the AKLT chain to SU�3�. By combining
the three different trimer states �Eq. �43�� for �=1, 2, and 3
symmetrically,

��10VBS	 = �1�b†,r†,g†� · �2�b†,r†,g†� · �3�b†,r†,g†��0	

= 

i
� �

��,�,	�=
�b,r,g�
sgn�
��i

†�i+1
† 	i+2

† ��0	 , �51�

we automatically project out the representation 10 in the de-
composition 3 � 3 � 3=1 � 2·8 � 10 generated on each lat-
tice site by the three trimer chains. This construction yields a
unique state, as illustrated by

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

projection onto 10 = (3, 0)

one site

�52�

In order to construct a parent Hamiltonian, note first that the
total spin on two �neighboring� sites of a representation 10
chain is given by

10 � 10 = 10 � 27 � 28 � 35. �53�

On the other hand, the total spin of two neighboring sites for
the 10 VBS state can contain only the representations

3̄ � 3̄ � 3 � 3 = 2 · 1 � 4 · 8 � 10 � 10 � 27, �54�

as can be seen easily from the dashed box in the diagram
above. �Note that this result is independent of how many
sites we include in the dashed box.� After the projection onto
representation 10 on each lattice site, we find that only rep-
resentations 10= �0,3� and 27= �2,2� occur for the total spin
of two neighboring sites for the 10 VBS state. With the Ca-
simirs CSU�3�

2 �0,3�=6 and CSU�3�
2 �2,2�=8, we obtain the par-

ent Hamiltonian
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H10VBS = �
i=1

N

��JiJi+1�2 + 5JiJi+1 + 6� , �55�

where the operators Ji
a, a=1, . . . ,8, are now 10�10 matri-

ces, and we have used Ji
2=6. H10 VBS is positive semidefinite

and annihilates the 10 VBS state �Eq. �51��. We assume that
Eq. �51� is the only ground state of Eq. �55�.

The Hamiltonian �Eq. �55�� provides the equivalent of the
AKLT model,15,16 whose unique ground state is constructed
from dimer states by projection onto spin 1, for SU�3� spin
chains. Note that as in the case of SU�2�, it is sufficient to
consider linear and quadratic powers of the total spin of only
two neighboring sites. This is a general feature of the corre-
sponding SU�n� models, as we will elaborate in the follow-
ing section.

Since the 10 VBS state �Eq. �51�� is unique, we cannot
have domain walls connecting different ground states. We
hence expect the coloron and anticoloron excitations to be
confined in pairs, as illustrated below. The state between the
excitations is no longer annihilated by Eq. �55�, as there are
pairs of neighboring sites containing higher-dimensional rep-
resentations, as indicated by the dotted box below. As the
number of such pairs increases linearly with the distance
between the excitations, the confinement potential depends
linearly on this distance,

� � � � � � � � � � � � � � �� � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �� � �

� �
energy cost ∝ distance

3̄ 3
coloron anti-coloron

�56�

In principle, it would also be possible to create three col-
orons �or three anticolorons� rather than a coloron-
anticoloron pair, but as all three excitations would feel strong
confinement forces, we expect the coloron-anticoloron pair
to constitute the dominant low-energy excitation. The con-
finement force between the pair induces a linear oscillator
potential for the relative motion of the constituents. The
zero-point energy of this oscillator gives rise to a Haldane-
type energy gap �see Refs. 71 and 72 for a similar discussion
in the two-leg Heisenberg ladder�, which is independent of
the model specifics. We expect this gap to be a generic fea-
ture of representation 10 spin chains with short-range anti-
ferromagnetic interactions.

C. Representation 8 VBS

To construct a representation 8 VBS state, consider first a

chain with alternating representations 3 and 3̄ on neighboring
sites, which we combine into singlets. This can be done in
two ways, yielding the two states

� � �� � � � � �� � �and .
3 3̄

We then combine a 3-3̄ state with an identical one shifted by

one lattice spacing. This yields representations 3 � 3̄=1 � 8
at each site. The 8 VBS state is obtained by projecting onto

representation 8. Corresponding to the two 3-3̄ states illus-
trated above, we obtain two linearly independent 8 VBS
states, �L and �R, which may be visualized as

� � �� � � � � �� � �

� � �� � � � � �� � �and .

projection onto 8 = (1, 1)

one site

�57�

These states transform into each other under space reflection

or color conjugation �interchange of 3 and 3̄�.
It is convenient to formulate the corresponding state vec-

tors as a matrix product. Taking �b,r,g� and �y,c,m� as bases

for the representations 3 and 3̄, respectively, the singlet
bonds in �L above can be written as

��b	i�y	i+1 + �r	i�c	i+1 + �g	i�m	i+1� = ��b	i, �r	i, �g	i�� �y	i+1

�c	i+1

�m	i+1
� .

We are hence led to consider matrices composed of the outer
product of these vectors on each lattice site,

Mi
1�8 = � �y	i

�c	i

�m	i
���b	i, �r	i, �g	i� .

In the case of the AKLT model reviewed above, the
Schwinger bosons take care of the projection automatically,
and we can simply assemble these matrices into a product
state. For the 8 VBS, however, we need to enforce the pro-
jection explicitly. This is most elegantly accomplished using
the Gell-Mann matrices, yielding the projected matrix

Mi =
1

2�
a=1

8

�a tr��aMi
1�8� . �58�

Here, we have simply used the fact that the eight Gell-Mann
matrices, supplemented by the unitary matrix, constitute a
complete basis for the space of all complex 3�3 matrices.
By omitting the unit matrix in the expansion �Eq. �58��, we
effectively project out the singlet state. Written out explicitly,
we obtain
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Mi = �
2
3 �by	i − 1

3 �rc	i − 1
3 �gm	i �ry	i �gy	i

�bc	i − 1
3 �by	i + 2

3 �rc	i − 1
3 �gm	i �gc	i

�bm	i �rm	i − 1
3 �by	i − 1

3 �rc	i + 2
3 �gm	i

� . �59�

Assuming PBCs, the 8 VBS state �L �illustrated in on the
left of Eq. �57�� is hence given by the trace of the matrix
product

��8VBS
L 	 = tr�


i

Mi� . �60�

To obtain the state �R �illustrated on the right of Eq. �57��,
we simply have to transpose the matrices in the product,

��8VBS
R 	 = tr�


i

Mi
T� . �61�

Let us now formulate a parent Hamiltonian for these
states. If we consider two lattice sites on an SU�3� chain with
a representation 8 on each lattice site in general, we find the
full SU�3� content

8 � 8 = 1 � 2 · 8 � 10 � 10 � 27, �62�

with 10= �3,0�, 10= �0,3�, and 27= �2,2�. On the other hand,

for the 8 VBS states, only the representations 3 � 3̄=1 � 8
can occur for the total spin of two neighboring sites, as the
two sites always contain one singlet �see dashed box in Eq.
�57� on the right above�. With the Casimirs CSU�3�

2 �0,0�=0
and CSU�3�

2 �1,1�=3 for representations 1 and 8, respectively,
we construct the parent Hamiltonian

H8VBS = �
i=1

N ��JiJi+1�2 +
9

2
JiJi+1 +

9

2
� , �63�

where the operators Ji
a, a=1, . . . ,8, are now 8�8 matrices,

and we have used the Casimir Ji
2=3 on each site. H8 VBS is

positive semidefinite and annihilates the states �L and �R.
We have numerically verified for chains with N=3, 4, 5, and
6 lattice sites that �L and �R are the only ground states of
Eq. �63�.

Naively, one might assume the 8 VBS model to support
deconfined spinons or colorons, which correspond to domain
walls between the two ground states �L and �R. A closer
look at the domain walls, however, shows that this is highly
unlikely, as each domain wall is a bound state of either two
anticolorons or two colorons, as illustrated below,

� � � � � � �� � � � � � �

� � � � � � �� � � � � � �

�

�

�

�

ΨL ΨR ΨL

3 3 3̄ 3̄

anti-colorons colorons

�64�
There is no reason to assume that the domain wall depicted
above as two anticolorons, in fact, corresponds to a single
coloron, as it appears to be the case for the trimer chain.

There we created a domain wall corresponding to a single
coloron by removing one of the representation 3 spins from a
trimer, leaving the remaining representation 3 spins coupled
antisymmetrically as in the ground state. If we were to com-

bine the two representations 3 into a representation 3̄ in Eq.
�64�, we would not reproduce a correlation present in the
ground state but enforce a new correlation. The correct inter-
pretation of the domain wall between �L and �R is hence
that of a bound state between two linearly confined anticol-
orons. The origin of the confining potential is illustrated be-
low,

� � � � � �� � � � �

� � � � �� � � � � �

�

�

ΨL ΨR

3 3
anti-coloron anti-coloron

� �
energy cost ∝ distance �65�

As in the 10 VBS, the confinement induces a linear oscillator
potential for the relative motion of the anti-colorons. The
zero-point energy of this oscillator corresponds to a Haldane-
type gap in the spectrum. The ground-state wave function of
the oscillator is symmetric and, hence, corresponds to a sym-
metric combination of 3 � 3, i.e., representation 6. The anti-

symmetric combination 3̄ corresponds to the first excited
state of the oscillator, which we expect to cost more than
twice the energy of the symmetric state.72 This statement
holds for the pair of colorons in Eq. �64� as well.

The domain walls, however, are not the only low-energy
excitations. In either of the ground states, we can create
coloron-anticoloron bound states, which make no reference
to the other ground state, as illustrated below,

� � � � � �� � � � � �

� � � � �� � � � ���

ΨL ΨL

3 3̄

anti-coloron coloron

� �
energy cost ∝ distance �66�

The oscillator model tells us again that the “symmetric”

combination of 3 � 3̄, i.e., representation 8, has the lowest
energy, which we expect to be comparable, if not identical,
to the energy required to create each of the domain walls
above. The singlet 1 will have an energy comparable to that

of a domain wall transforming under either 3̄ or 3. In any
event, we expect the 8 VBS model to display a Haldane gap
due to coloron confinement.
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The excitation spectrum of Eq. �63� for a chain with N
=8 sites and PBCs is shown in Fig. 14. The spectrum shows
that the lowest excitation transforms under representation 8,
as expected from Eq. �66�, with a singlet and then another
representation 8 following at slightly higher energies. It is
tempting to interpret those three levels as the lowest levels of
the coloron-anticoloron oscillator �Eq. �66��, but then there
should be another singlet at a comparable spacing above. The
fact that the spacings between these excitations are signifi-
cantly smaller than the energy of the first exited state, how-
ever, would be consistent with such an interpretation, as the
spinons in VBS models always have a local energy cost as-
sociated with their creation, which is specific to these models
and not related to the universal Haldane gap stemming from
confinement forces.

Most importantly, the spectrum provides strong evidence
in favor of our assumption that the domain walls are not
elementary excitations, but bound states of either two col-
orons or two anticolorons, and hence that the lowest-energy
excitations of finite chains are coloron-anticoloron bound
states as illustrated in Eq. �66�. The assumption is crucial for
our conclusion that the model exhibits a Haldane gap. If the
low-energy sector of the model was determined by two de-
confined domain walls, we would see a continuum of states
in the spectrum, similar to the spectrum seen in spin S= 1

2
chains of SU�2�. The well-defined low-energy modes in Fig.
14, however, look much more like the spinon-spinon bound
state excitations seen in S=1 chains or two-leg S= 1

2 Heisen-
berg ladders. In particular, if we assume that the individual

domain walls transform under reps. 6 and 6̄, we expect ex-
citations transforming under the representations contained in

6 � 6̄=1 � 8 � 27 to be approximately degenerate. Fig. 14
shows clearly that such a multiplet is not present a the lowest
energies.

IX. SU„n… MODELS

In this section, we generalize three of the models pro-
posed for SU�3� spin chains, the trimer model, the symmetric
representation 10 VBS, and the matrix product state 8 VBS
to the case of SU�n� spin chains.

A. n-mer model

Consider an SU�n� spin chain with N sites, where N is a
multiple of n, with a spin transforming according to the fun-
damental representation n of SU�n� at each lattice site,

n = �1,0, . . . ,0� = �=̂c�
† �0	 , �67�

where � denotes a “flavor,” �� �f1 , . . . , fn, and c�
† creates a

fermion of flavor �.
The SU�n� generators at site i are in analogy to Eq. �3�

and �9� defined as

Ji
a =

1

2 �
�,��=f1,. . .,fn

ci�
† V���

a ci��, a = 1, . . . ,n2 − 1, �68�

where the Va denote the n2−1 SU�n� Gell-Mann matrices.73

The generators are normalized through the eigenvalue the
quadratic Casimir operator takes in the adjoint representa-
tion, J2=CSU�n�

2 �1,0 , . . . ,0 ,1�=n.
To determine the eigenvalues of the quadratic Casimir for

general representations of SU�n�, a significant amount of
representation theory is required.74 We content ourselves
here by providing the formulas up to n=6 in Appendix C.

In analogy to the trimer states �Eq. �7��, we construct the
n-mer states of an SU�n� spin chain by combining sets of n
neighboring spins into a singlet,

��n-mer
��� 	 = 


i

��i−��/n integer�

� �
��1,. . .,�n�=
�f1,. . .,fn�

sgn�
�

�=1

n

ci−1+�,��

† ��0	 , �69�

where �=1, . . . ,n labels the n degenerate ground states, and
i runs over the lattice sites subject to the constraint that i−�

n is
integer. The sum extends over all n! permutations 
 of the n
flavors f1 , . . . , fn.

In order to identify a parent Hamiltonian, consider the
total SU�n� spin on n+1 neighboring sites for the n-mer
states. Following the rules of combining representations la-
beled by Young tableaux �see, e.g., Refs. 67 and 68�, it is not
difficult to see that the total spin will only contain represen-
tations given by tableaux with n+1 boxes and two columns,
i.e., tableaux of the form

ff
ν rows

with 1���
n+1

2 . The eigenvalues of the quadratic Casimir
operator for these representations are
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fn��� =
1

2n
�n2�2� − 1� − 2n�� − 1�2 − 1� . �70�

An educated guess for a parent Hamiltonian for the n-mer
chain hence appears to be

Htrial = �
i=1

N

Hi, �71�

with

Hi = 

�=1

��n+1�/2�
��Ji

�n+1��2 − fn���� , �72�

where � � denotes the floor function, i.e., �x� is the largest
integer l�x, and we use the notation introduced in Eq. �11�.

This construction yields the MG model14 for SU�2�, the
trimer model �Eq. �12�� for SU�3�, and a valid parent Hamil-
tonian for the four degenerate quadramer states for SU�4�.
For n�5, however, the decomposition of the tensor product
n��n+1� contains irreducible representations corresponding to
Young tableaux with more than two columns, whose Ca-
simirs are equal or smaller than a number of Casimirs in-
cluded in the list fn���, �=1,2 , . . . , � n+1

2 �. If the Casimir of
such an “undesired” representation not included in the list is
smaller than an odd number of Casimirs included in the list,
we obtain negative eigenvalues for Hi, and it is not a priori
clear anymore that the Hamiltonian �Eq. �71�� is positive
semidefinite. An obvious cure to this problem is to write

Hn-mer = �
i=1

N

Hi
2, �73�

with Hi as in Eq. �72�. However, this does not cure potential
problems arising from undesired representations which share
the eigenvalues of the Casimir with one of the representa-
tions from the list, as it happens to be the case for n=5. The
Hamiltonian �Eq. �73�� likewise annihilates these representa-
tions, giving rise to a remote possibility that the n-mer states
�Eq. �69�� are not the only ground states of Eq. �73�. The
potential relevance of these problems has to be investigated
for each n separately.

B. Representation „n ,0 , . . . ,0… VBS

As a generalization of the AKLT model for SU�2� and the
10 VBS model for SU�3� discussed above, we now consider
a VBS for an SU�n� chain of spins transforming under the
symmetric representation

(n, 0, . . . , 0) =
︸ ︷︷ ︸

n boxes

=̂ b†σ1
b†σ2

. . . b†σn
| 0 〉 ,

where each b�
† , �� �f1 , . . . , fn, is an SU�n� Schwinger bo-

son. The VBS state is obtained by combining n n-mer states
�Eq. �69�� one for each �=1, . . . ,n, in that the total spin on
each lattice site is projected onto the symmetric representa-
tion �n ,0 , . . . ,0�. This yields

���n,0,. . .,0�VBS	

= 

i
� �

��1,. . .,�n�=
�f1,. . .,fn�
sgn�
�


�=1

n

bi−1+�,��

† ��0	 .

�74�

Let us now construct a parent Hamiltonian for the symmetric
VBS �Eq. �74��. The total SU�n� spin of two neighboring
sites of a representation �n ,0 , . . . ,0� spin chain, in general,
contains all the representations corresponding to Young tab-
leaux with 2n boxes and at most two rows, i.e., all tableaux
of the form

| {z }
n − ν columns

| {z }
2ν boxes

The eigenvalues of the quadratic Casimir operator for these
representations are given by

gn��� � CSU�n�
2 �2�,n − �,0, . . . ,0� = 2n2 − 4n + ��� + 1� .

�75�

On the other hand, the total SU�n� spin of two neighboring
sites of the representation �n ,0 , . . . ,0� VBS �Eq. �74�� has to
be contained in the product

⊗n−1

⊗ ⊗
�76�

0
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7

-4 -3 -2 -1 0 1 2 3 4

k [2π/N ]
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singlet
rep.8

rep.10
rep.27

FIG. 14. Spectrum of the 8 VBS Hamiltonian �Eq. �63�� for N
=8 sites obtained by exact diagonalization. �The lines are merely
guides for the eyes.� The “magnon” excitation transforming under
representation 8 of SU�3� has the lowest energy, followed by a
singlet excitation, as expected from the discussion in the text. The
well-defined modes at low energies provide strong evidence of
coloron-anticoloron bound states as compared to deconfined do-
main walls and, hence, support our conclusion that the 8 VBS ex-
hibits a Haldane gap due to spinon confinement.

VALENCE BOND SOLIDS FOR SU�n� SPIN CHAINS: … PHYSICAL REVIEW B 75, 184441 �2007�

184441-15



As we project the spin on each lattice site onto the represen-
tation �n ,0 , . . . ,0�, only two these representations remain:

and

The eigenvalues of the quadratic Casimir operator are given
by gn�0�=2n�n−2� and gn�1�=2�n−1�2, respectively. Hence,
using Ji

2=n�n−1�, we obtain the parent Hamiltonian

H�n,0,. . .,0�VBS = �
i=1

N

��JiJi+1�2 + �2n − 1�JiJi+1 + n�n − 1�� .

�77�

Since gn�0��0 for n�2 and gn��� is a strictly increasing
function of �, the Hamiltonian �Eq. �77�� is positive
semidefinite. For n=2, we recover the AKLT model �Eq.
�40�� for n=3, we recover the 10 VBS model �Eq. �55��.

C. Example of a matrix product state

In principle, a matrix product VBS can be formulated on
all SU�n� chains with spins transforming under the symmet-
ric combination of any representation m and its conjugate
representation m̄. Unless the representation m is self-
conjugate, we obtain two inequivalent states, which trans-
form into each other under space reflection. The construction
of these is analogous to the 8 VBS introduced above, and
likewise best illustrated as

m m mm m m

m m mm m m

m mm

m mm
and .

projection onto the symmetric
combination in m ⊗ m

one site

�78�

The thick lines indicate that we combine pairs of neighboring
representations m and m̄ into singlets. On each lattice site,
we project onto the symmetric combination of m and m̄, as
indicated. By “symmetric combination” we mean that if rep-
resentations m and m̄ of SU�n� have Dynkin coordinates
��1 ,�2 , . . . ,�n−1� and ��n−1 ,�n−2 , . . . ,�1�, respectively, we
combine them into the representation with Dynkin coordi-
nates ��1+�n−1 ,�2−�n−2 , . . . ,�n−1+�1�. In other words, we
align the columns of both tableaux horizontally and, hence,
obtain a tableau with twice the width, without ever adding a
single box vertically to a column of the tableaux we started
with. The states �Eq. �78�� we obtain are translationally in-
variant and we expect the parent Hamiltonians to involve
nearest-neighbor interactions only.

In this section, we will formulate the simplest SU�n�
model of this general family. We take m to be the represen-
tation formed by antisymmetrically combining ��

n
2 funda-

mental representations,

m = [κ] ≡ (0, . . . , 0, 1, 0, . . . , 0) =
}

κ boxes ,

κ-th entry

which implies that we consider a model with the representa-
tion corresponding to a Young tableaux with a column with
n−� boxes to the left of a column with � boxes at each
lattice site:

[κ, n−κ] ≡

}
κ rows

The construction of the parent Hamiltonian is similar to the
n-mer model above. The total spin on two neighboring lattice
sites can only assume representations contained in m � m̄,
i.e., representations corresponding to tableaux of the form

[ν, n − ν] =

}
ν rows

with 0����. The eigenvalues of the quadratic Casimir op-
erator for these representations are

hn��� = ��n − � + 1� . �79�

The obvious proposal for a parent Hamiltonian is hence

H = �
i=1

N

Hi, Hi = 

�=0

�

��Ji
�2��2 − hn���� , �80�

where �x� denotes again the floor function. This Hamiltonian
singles out the matrix product state �Eq. �78�� as unique
ground states for n�5 but suffers from the same shortcom-
ings as Eq. �71� with Eq. �72� for n�6.

X. SPINON CONFINEMENT AND THE HALDANE GAP

A. Affleck-Lieb theorem

For the generic SU�2� spin chain, Haldane8,9 identified the
O�3� nonlinear sigma model as the effective low-energy field
theory of SU�2� spin chains and argued that chains with in-
teger spin possess a gap in the excitation spectrum, while a
topological term renders half-integer spin chains gapless.10,11

The exact models for SU�2� spin chains we reviewed above,
the MG and the AKLT chain, serve a paradigms to illustrate
the general principle. Unfortunately, the effective field theory
description of Haldane yielding the distinction between gap-
less half-integer spin chains with deconfined spinons and
gapped integer spin chains with confined spinons cannot be
directly generalized to SU�n� chains, as there is no direct
equivalent of the CP1 representation used in Haldane’s
analysis.

MARTIN GREITER AND STEPHAN RACHEL PHYSICAL REVIEW B 75, 184441 �2007�

184441-16



Nonetheless, there is a rigorous and rather general result
for antiferromagnetic chains of SU�n� spins transforming un-
der a representation corresponding to a Young tableau with a
number of boxes not divisible by n: Affleck and Lieb63

showed that if the ground state is nondegenerate and the
Hamiltonian consists nearest-neighbor interactions only, then
the gap in the excitation spectrum vanishes as 1/N �where N
is the number of sites� in the thermodynamic limit. This re-
sult is fully consistent with the picture suggested by the mod-
els introduced above. Like the MG model, the trimer model
and the representation 6 VBS have degenerate ground states
and interactions which extend beyond the nearest neighbor,
which implies that the theorem is not directly applicable.

On physical grounds, however, the statement that a given
model is gapless �i.e., the excitation gap vanishes in the ther-
modynamic limit� implies that the spinons are deconfined.
The reason is simply that if there was a confinement force
between them, the zero-point energy associated with the
quantum-mechanical oscillator of the relative motion be-
tween the spinons would inevitably yield an energy gap. The
MG, the trimer, and the 6 VBS model constitute pedagogi-
cally valuable paradigms of deconfined spinons. Since the
excitations in these models are literally domain walls be-
tween different ground states, no long-range forces can exist
between them.

B. General criterion for spinon confinement

More importantly, however, the exact models we intro-
duced above provide information about the models of SU�n�
spin chains with representations corresponding to Young tab-
leaux with a number of boxes divisible by n, i.e., models for
which the Affleck-Lieb theorem is not applicable. We have
studied two SU�3� models belonging to this family in Sec.
VIII, the representation 10 VBS and the representation 8
VBS, and found that both have confined spinons or colorons
and hence display a Haldane-type gap in the spectrum.

In this section, we will argue that models of antiferromag-
netic chains of SU�n� spins transforming under a representa-
tion corresponding to a Young tableau consisting of a num-
ber of boxes � divisible by n generally possess a Haldane-
type gap due to spinon confinement forces.

We should caution immediately that our argument is
based on several assumptions, which we consider reasonable,
but which we are ultimately unable to prove.

The first, and also the most crucial, is the assumption that
the question of whether a given model supports free spinon
excitations can be resolved through study of the correspond-
ing VBS state. This assumption definitely holds for SU�2�
spin chains, where the MG model for S= 1

2 indicates that the
spinons are free, while the AKLT model for S=1 serves as a
paradigm for spinon confinement and hence the Haldane gap.
The general conclusions we derived from our studies of the
SU�3� VBSs above rely on this assumption. The numerical
results we reported on the representation 8 VBS provide evi-
dence that this assumption holds at least for this model.

Let us consider an SU�n� spin chain with spins transform-
ing under a representation corresponding to Young tableau
consisting of L columns with �1��2� ¯ ��L�n boxes
each,

[κ1, κ2, . . . , κL] ≡

κL

κ3
κ2κ1

�81�

with a total number of boxes

� = �
l=1

L

�l

divisible by n. We denote the Dynkin coordinates of this
representation by ��1 ,�2 , . . . ,�n−1�, which implies

�
i=1

n−1

�i = L .

Note that this representation is, by definition, given by the
maximally symmetric component of the tensor product of the
individual columns,

��1,�2, . . . ,�L� = S���1� � ��2� � ¯ � ��L�� . �82�

For convenience, we denote the � n
�

� dimensional representa-
tion ��� in this section as �l���l�= �l .

Since � is divisible by n, it will always be possible to
obtain a singlet from the complete sequence of representa-
tions �1 ,�2 , . . . ,�L by combining them antisymmetrically.
To be precise, when we write that we combine representa-
tions �1 and �2 antisymmetrically, we mean we obtain a new
representation ��1+�2� by stacking the two columns with �1

and �2 boxes on top of each other if �1+�2�n and a new
representation ��1+�2−n� if �1+�2�n. In equations, we
write this as

A���1� � ��2�� � ���1 + �2� for �1 + �2 � n

��1 + �2 − n� for �1 + �2 � n .
�

�83�

Following the notation used above, we indicate the antisym-
metric combination of representations �l by a line connect-
ing them. In particular, we depict the singlet formed by com-
bining �1 ,�2 , . . . ,�L on different lattice sites as

� � � �1 2 3 . . . L
�84�

The understanding here is that we combine them in the order
indicated by the line, i.e., in Eq. �84� we first combine �1 and
�2, and then we combine the result with �3, and so on. De-
pending on the order of the representations �l on the line, we
obtain different, but not necessarily orthogonal, singlets. We
assume that it is irrelevant whether we combine the repre-
sentations starting from the left or from the right of the line,
as the resulting state will not depend on it.

In general, it will be possible to construct a number �� /n
of singlets out of various combinations of the �’s, one for
each block of �’s for which the values of � add up to n as we
combine the representation in the order described above. In
this case, we will be able to construct one VBS for each
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singlet and subsequently combine them at each site sym-
metrically to obtain the desired representation �Eq. �81��. The
argument for spinon confinement we construct below will
hold for each of the individual VBSs and, hence, for the
combined VBS as well. It is, hence, sufficient for our pur-
poses to consider situations where the entire sequence
�1 ,�2 , . . . ,�L is needed to construct a singlet.

A possible VBS “ground state” for a representation corre-
sponding to a Young tableau with L=4 columns is depicted
below,

� � � � � � � � �1 1 1 1 1 1 1 1 1
� � � � � � � � �2 2 2 2 2 2 2 2 2
� � � � � � � � �3 3 3 3 3 3 3 3 3
� � � � � � � � �4 4 4 4 4 4 4 4 4

�� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� ��

projection onto representation
[κ1, κ2, κ3, κ4]

one site

�85�

In general, there are as many inequivalent VBS “ground
states” as there are inequivalent ways to order the represen-
tations �1 ,�2 , . . . ,�L, i.e., the number of inequivalent VBS
“ground states” is given by

L!

�1! · �2! · . . . · �n−1!
.

To give an example, the following VBS

� � � � � � � � �2 2 2 2 2 2 2 2 2
� � � � � � � � �1 1 1 1 1 1 1 1 1
� � � � � � � � �3 3 3 3 3 3 3 3 3
� � � � � � � � �4 4 4 4 4 4 4 4 4

�� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� ��
�� �� �� �� �� �� �� ��

projection onto representation
[κ1, κ2, κ3, κ4]

one site

�86�

is inequivalent to the one above if and only if �1��2. Note
that all these VBS “ground states” states are translationally
invariant. We expect some of these states, but not all of them
to be degenerate in energy for the appropriate parent Hamil-
tonian and have accordingly written ground states in quota-
tion marks. For example, if we form an SU�4� VBS with
representation ��1 ,�2 ,�3�= �1,1 ,2�, the combination

� � �1 3 2

might yield a state with a lower energy for the appropriate
Hamiltonian than the state formed by combining

� � �1 2 3

Simple examples where we have only two inequivalent VBS
ground states are provided by the matrix product states dis-
cussed in Secs. VIII C and IX C.

We will now argue that the elementary excitations of the
corresponding VBS models are always confined. To this end,
we first observe that any domain wall between translationally
invariant “ground states” consists of a total of m ·n represen-
tations �l �m integer�. To illustrate this, consider a domain
wall between the “ground states” depicted in Eqs. �86� and
�85�:

� �2 2 � � � � � �1 1 1 1 1 1
� � �1 1 1 � � � � �2 2 2 2 2
� � � �3 3 3 3 � � � �3 3 3 3
� � � � �4 4 4 4 4 � � �4 4 4

�

�

�

�

2

2

3

4

�� ��
�� ��
�� ��

��
��

�� �� �� �� ��
�� �� �� �� ��
�� �� �� �� ��

In the example, the domain wall consists of representations
�2, �2, �3, and �4. If the translationally invariant states on
both sites are true ground states, the domain wall is likely to
correspond to two elementary excitations: a representation
�̄1 spinon consisting of an antisymmetric combination of a
�2, a �3, and a �4, as indicated by the line in the drawing,
and another representation �2 spinon. The reason we assume
that �2, �3, and �4 form a representation �̄1 is simply that
this combination is present in both ground states on either
side and, hence, bound to be the energetically most favorable
combination. The second �2, however, is not part of this
elementary excitation, as combining it antisymmetrically
with the others �i.e., the �̄1� would induce correlations which
are not present in the ground state. We hence conclude that
the second �2 is an elementary excitation as well. The do-
main wall depicted above consists of a spinon transforming
under representation �̄1 and an antispinon transforming un-
der representation �2.

The next step in our argument is to note that the spinon
and the complementary particle created simultaneously,
which may either be its antiparticle or some other spinon, are
confined through a linear potential. To see this, we pull them
apart and look at the state in-between �color online�:

�2 � � � � � � � �1 1 1 1 1 1 1 1
� �1 1 � � � �2 2 2 2 � � �2 2 2
� � � � � � �3 3 3 3 3 3 3 � �3 3
� � � � � � � �4 4 4 4 4 4 4 4 �4

�

�

�

�

2

2

3

4

��
��

��
�� ��
�� ��

�� �� ��
�� �� �� ��
�� �� �� ���

�
�

�� �� ��
�� �� ��
�� �� ��

κ2-spinon κ̄1-spinon

� �
energy cost ∝ distance �87�

The state between spinon and antispinon is not translation-
ally invariant. In the example, the unit cell of this state is
depicted in red and consists of two regular bonds with three
“singlet lines” between the sites, one stronger bond with four
lines �which cross in the diagram� and one weaker bond with
only two lines. If we assume that the two states �Eqs. �86�
and �85�� on both sides are true ground states, it is clear that
the irregularities in the strength of the bond correlations will
cause the state between the spinon and antispinon to have a
higher energy than either of them. This additional energy
cost will induce a linear confinement potential between the
spinons and, hence, a linear oscillator potential for the rela-
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tive motion of the particles. As in the models studied above,
the Haldane gap corresponds to the zero-point energy of this
oscillator.

If one of the “ground states” to the left or to the right of
the domain wall is not a true ground state but a translation-
ally invariant state corresponding to a higher energy than the
ground state, there will be a confining force between this
domain wall and another domain wall which transforms the
intermediate “ground state” with a higher energy back into a
true ground state. This force will be sufficient to account for
a Haldane gap, regardless of the strength or existence of a
confinement force between the constituent particles of each
domain wall.

The lowest-lying excitations of a representation
��1 ,�2 , . . . ,�L� spin chain, however, will, in general, not be
domain walls but spinons created by breaking up one of the
singlets �Eq. �84�� in a ground state. This is illustrated below
for the ground state �Eq. �85��:

� �1 1 � � � � � �1 1 1 1 1 1
� � �2 2 2 � � � � �2 2 2 2 2
� � � �3 3 3 3 � � � �3 3 3 3
� � � � �4 4 4 4 4 � � �4 4 4

�

�

�

�

1

2

3

4

�� ��
�� ��
�� ��

��
��

�� �� �� �� ��
�� �� �� �� ��
�� �� �� �� ��

In the example, we have created a spinon transforming under
representation �̄1 and its antiparticle, a spinon transforming
under representation �1. This is, however, irrelevant to the
argument—we may break the singlet in any way we like. The
important feature is that we obtain, by construction, at least
two excitations and that these are confined. In our specific
example, the confining potential is equivalent to the confin-
ing potential in Eq. �87� above �color online�:

�1 � � � � � � � �1 1 1 1 1 1 1 1
� �2 2 � � � �2 2 2 2 � � �2 2 2
� � � � � � �3 3 3 3 3 3 3 � �3 3
� � � � � � � �4 4 4 4 4 4 4 4 �4

�

�

�

�

1

2

3

4

��
��

��
�� ��
�� ��

�� �� ��
�� �� �� ��
�� �� �� ���

�
�

�� �� ��
�� �� ��
�� �� ��

κ1-spinon κ̄1-spinon

� �
energy cost ∝ distance

We leave it to the reader to convince himself or herself that
the conclusions regarding confinement drawn from the
simple examples studied here hold in general.

C. Models with confinement through interactions extending
beyond nearest neighbors

Let us briefly summarize the results obtained. The SU�n�
models we have studied so far fall into two categories. The
models belonging to the first—the trimer chain, the 6 VBS,
and the n-mer chain—have n degenerate ground states,
which break translational invariance up to translations by n
lattice spacings. The Young tableaux describing the represen-
tations of SU�n� at each site consist of a number of boxes �
which is smaller than n and, hence, obviously not divisible
by n. The models support deconfined spinon excitations and,
hence, do not possess a Haldane gap in the spectrum. The
Hamiltonians of these models require interactions between

n+1 neighboring sites along the chain. Even though the
Affleck-Lieb theorem is not directly applicable to the models
we constructed above, it is applicable to SU�n� spin chains
with spins transforming under the same representations. Like
the VBS models, the theorem suggests that there is no
Haldane gap in this family of models.

The models belonging to the second category—the 10
VBS, the 8 VBS, the representation �n ,0 , . . . ,0� VBS, and
the m-m̄ matrix product state—have translationally invariant
ground states. The ground states are unique for some models,
such as the 10 and the �n ,0 , . . . ,0� VBS, and degenerate for
others, such as the 8 VBS. The Young tableaux describing
the representations of SU�n� at each site consist of a number
of boxes � which is divisible by n. The Affleck-Lieb theorem
is not applicable to models of this category. The spinon ex-
citations for this category of models are subject to confine-
ment forces, which give rise to a Haldane gap. The parent
Hamiltonians for these models require interactions between
nearest-neighbor sites only.

At first glance, this classification might appear complete.
Further possibilities arise, however, in SU�n� spin chains
where the number of boxes � the Young tableau consists of
and n have a common divisor different from n, which obvi-
ously requires that n is not a prime number. In this case, it is
possible to construct VBS models in which the ground state
breaks translational invariance only up to translations by n /q
lattice spacings, where q denotes the largest common divisor
of � and n such that q�n. This implies that the ground state
of the appropriate, translationally invariant Hamiltonian will
be �n /q�-fold degenerate. In the examples we will elaborate
on below, the parent Hamiltonians for these models require
interactions between n

q +1 sites, a feature we conjecture to
hold in general. The spinon excitations of these models are
confined, even though the Affleck-Lieb theorem states that
the nearest-neighbor Heisenberg chain of SU�n� spins trans-
forming under these representations is gapless. �We implic-
itly assume here that the ground states of the SU�n� nearest-
neighbor Heisenberg chains are nondegenerate.� Let us
illustrate the general features of this third category of models
with a few simple examples.

As a first example, consider an SU�4� chain with spins
transforming under the ten-dimensional representation

(2, 0, 0) = .

Following the construction principle of the 6 VBS of SU�3�,
we find that the two degenerate VBS states illustrated
through

� � � � � � � � � � � �

� � � � � � � � � � � �

projection onto rep. (2, 0, 0)

one site

�88�

are exact zero-energy ground states of

H�2,0,0�VBS = �
i=1

N ��Ji
�3��4

− 12�Ji
�3��2

+
135

4
� , �89�

which contains next-nearest-neighbor interactions.
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The example illustrates the general rule stated above. The
largest common divisor of n=4 and �=2 is q=2. This im-
plies n

q =2 and hence two degenerate VBS states which break
translational invariance up to translations by two lattice spac-
ings. The parent Hamiltonian requires interaction between
three neighboring sites.

According to the Affleck-Lieb theorem, the models of an-
tiferromagnetic SU�4� chains of representation �2,0,0� with
nearest-neighbor Heisenberg interactions and nondegenerate
ground states are gapless in the thermodynamic limit, which
implies that the spinons are deconfined. In all the models we
have studied in previous sections, the conclusions drawn
from the Affleck-Lieb theorem were consistent with those
drawn from our exact models. For the present model, how-
ever, they are not consistent.

Specifically, we strongly conjecture that the spinons in the
�2,0,0� VBS are confined. This conjecture is based on the
reasonable assumption that the elementary excitations of the
model transform as either the fundamental representation 4
= �1,0 ,0� of SU�4� or its conjugate representation 4̄
= �0,0 ,1�. This assumption implies that a single domain wall
in one of the 4-mer chains used to construct the VBS state
�Eq. �88�� shifts this chain by one lattice spacing. If we as-
sume a ground state to the left of the spinon, the state on to
the right will have a higher energy for the next-nearest-
neighbor Hamiltonian �Eq. �89��, as illustrated below,

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � �

� � �

� �
energy cost ∝ distance

4̄
spinon

4̄
spinon

�90�

To recover the ground state, a second domain wall is re-
quired nearby, which is bound to the first by a linear poten-
tial.

Our conclusion is not in contradiction with the rigorous
result of Affleck and Lieb, as they explicitly restrict them-
selves to models with nearest-neighbor interactions. If we
had only nearest-neighbor interactions, the energy expecta-
tion value in the region between the domain walls would not
be higher than in the ground state, as one can see easily from
the diagram above—the sequence of alternating links would
merely shift from �strong, weak, strong, weak� to �strong,
strong, weak, weak�.

As a second example, the situation is similar for an SU�6�
chain with spins transforming under the 56-dimensional rep-
resentation

(3, 0, 0, 0, 0) = .

With n=6 and �=3, we have again n
q =2. Accordingly, we

find that the two VBS states illustrated through

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

projection onto rep. (3, 0, 0, 0, 0)

one site

�91�

are exact ground states of a parent Hamiltonian containing
up to next-nearest-neighbor interactions only and that the
spinon excitations are confined.

As a third example, consider an SU�6� spin chain with
spins transforming under the 21-dimensional representation

(2, 0, 0, 0, 0) = .

This implies n
q =3. We find that the three VBS states illus-

trated by

� � � � � � � � � � � �

� � � � � � � � � � � �

projection onto rep. (2, 0, 0, 0, 0)

one site

�92�

are exact ground states of a parent Hamiltonian involving the
quadratic Casimir of total spin of four neighboring sites,

H�2,0,0,0,0�VBS = �
i=1

N

Hi, �93�

with

Hi = ��Ji
�4��2

−
32

3
���Ji

�4��2
−

44

3
���Ji

�4��2
−

50

3
� .

�94�

These VBS states break translational symmetry only up to
translations by three lattice spacings. The spinons of this
model are again confined through a linear potential, as illus-
trated below,

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � �

� � � � �

� �
energy cost ∝ distance

6̄
spinon

6̄
spinon

�95�

The conclusions we have drawn for this VBS model rest on
the assumption that the quadratic Casimirs of the representa-
tions contained in the tensor product shown in the dashed
box in Eq. �92� as well as in the tensor product one obtains if
one shifts this box by one lattice spacing to the left or to the
right are smaller than the largest Casimir contained in the
tensor product shown in the dotted box in Eq. �95�. We have
verified the validity of this assumption for the �2,0,0,0,0�
VBS model we considered here, but not shown it to hold for
similar models with larger n or �.

Finally, consider an SU�6� spin chain with spins trans-
forming under the 70-dimensional representation

(1, 1, 0, 0, 0) = .

Thus, we have once again n
q =2. In a notation similar to the

one introduced for the 8 VBS,
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=̂ �, =̂ �,

the two degenerate VBSs are illustrated by

� � �� � �

� � �� � �

� � �� � �

� � �� � �

projection onto rep. (1, 1, 0, 0, 0)

one site

�96�

are exact ground states of a parent Hamiltonian involving the
quadratic Casimir of the total spin of three neighboring sites,

H�1,1,0,0,0�VBS = �
i=1

N

Hi �97�

with

Hi = ��Ji
�3��2 − 20���Ji

�3��2 − 70���Ji
�3��2 − 540� . �98�

The states �Eq. �96�� are not the only VBSs one can form.
Other possibilities such as

� � �� � �

� � �� � �

� � �� � �

� � �� � �

or

� � � � � �� � � � � �

� � � � � �� � � � � � ,

however, contain additional representations for the total
SU�6� spin of three neighboring sites and are, hence, ex-
pected to possess higher energies.

Spinon excitations transforming under the six-
dimensional representation �0,0,0,0,1� are linearly confined
to spinons transforming under the 15-dimensional represen-
tation �0,0,0,1,0�:

� � �� � �

� � �� � �

� � �� � � �

� � �� � �

� � �

�� �

(0, 0, 0, 0, 1)
spinon

(0, 0, 0, 1, 0)
spinon

� �
energy cost ∝ distance �99�

The VBS configuration we have drawn between the two
spinons in Eq. �99� constitutes just one of several possibili-
ties. We expect, however, that this possibility corresponds to
the lowest energy among them for the Hamiltonian �Eq.
�97��. This concludes our list of examples.

The models introduced in this section are interesting in
that they provide us with examples where spinon confine-
ment, and with the confinement the existence of a Haldane
gap, is caused by interactions extending beyond nearest
neighbors. The conclusion drawn from the Affleck-Lieb
theorem for SU�n� models with spins transforming under
representations we have labeled here as the “third category”
hence appear to hold for models with nearest-neighbor inter-
actions only, to which the theorem is applicable. For these

models, the theorem states that the spectrum is gapless,
which according to our understanding implies that the mod-
els support deconfined spinon excitations. The examples we
have studied, by contrast, suggest that models with longer-
ranged interactions belonging to this category exhibit con-
finement forces between the spinon excitations and hence
possess a Haldane gap.

It is worth noting that even though in the examples we
elaborated here ��n, we expect our conclusions to hold for
models with ��n as well. To see this, let m�0 be an integer
such that nm���n�m+1�. We can now construct a first
VBS with spinon confinement using nm boxes of the Young
tableau and combine it with a second by projection on each
side with a second VBS constructed from the remaining ��
=�−nm boxes. Since the spinons of the first VBS are always
confined and hence gapped, the final VBS will support de-
confined spinons if and only if the second VBS will support
them, which, in turn, will depend on the largest common
divisor q� of �� and n as well as the range of the interaction.
Since the largest common divisor q of n and � is equal to q�,
there is no need to think in terms of �� and q�. The conclu-
sions regarding confinement and the Haldane gap will not
depend on the distinction between � and ��.

D. Different categories of models

In this section, we used the rules emerging from the nu-
merous examples we studied to argue that models of SU�n�
spin chains, in general, fall into three categories. The classi-
fication depends on the number of boxes � the Young tableau
corresponding to the representation of the individual spins
consists off, as follows:

�1� If � and n have no common divisor, the models will
support free spin excitations and, hence, not exhibit a
Haldane gap. The general reasoning here is simply that the
VBS states in this category break translational invariance up
to translations by n lattice spacings and that there are �at
least� n degenerate VBS ground states to each model.
Spinons transforming under representations of Young tab-
leaux with an arbitrary number of boxes can be accommo-
dated in domain walls between these different ground states.
Consequently, the spinons are deconfined.

�2� If � is divisible by n, the general argument we have
constructed in Sec. X B indicates that the model will exhibit
spinon confinement and, hence, a Haldane gap.

�3� If � and n have a common divisor different from n,
the examples studied in Sec. X C suggest that the question of
whether the spinons are confined or not depends on the de-
tails of the interactions. If q is the largest common divisor of
� and n, interactions ranging to the �n /q�th neighbor were
required for spinon confinement in the models we studied.
The Affleck-Lieb theorem,63 on the other hand, tells us that
SU�n� chains with nearest-neighbor Heisenberg interactions
belonging to this category are gapless if the ground states are
nondegenerate.

Note that the second category is really just the special
case q=n of the third: with n

q =1, nearest-neighbor interac-
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tions are already sufficient for spinon confinement and a
Haldane gap.

The conclusion that interactions ranging to the �n /q�th
neighbor are required for spinon confinement and a Haldane
gap, however, is not universally valid. A counterexample is
provided by the extended VBSs �XVBSs� introduced by Af-
fleck, et al.75 In this model, each site effectively takes the
role of two neighboring sites when a VBS is constructed, and
nearest-neighbor interactions are already sufficient to cause
spinon confinement. We briefly review this model in the fol-
lowing section.

E. Counterexample: The SU(4) representation 6 extended VBS

In an article devoted to quantum antiferromagnets with
spins transforming under the self-conjugate representations
of SU�2n�, Affleck et al.75 introduced an extended VBS for
the six-dimensional SU�4� representation �0, 1, 0�. This rep-
resentation is, with regard to the number of boxes the corre-
sponding Young tableau consists of, not distinguishable from
the symmetric representation 10 considered in Sec. X C, as
both tableaux consist of two boxes:

⊗ = ⊕
4 4 10 6 �100�

Since the two boxes are combined antisymmetrically for rep-
resentation 6, a VBS constructed along the lines of Sec. X C
would no longer provide a paradigm for antiferromagnetic
spin chains of the corresponding representation in general.
Affleck et al.75 have constructed an extended VBS, which is
illustrated in the following diagram:

� � � � � �� � � � � ���
��

��
��

��
��

��
��

��
��

��
��

�101�

Here, each small circle represents a fundamental representa-
tion 4 of SU�4� �a box in the Young tableau�, and each large
circle a lattice site. The lines connecting four small circles
indicate that these four fundamental representations are com-
bined into an SU�4� singlet. The total spin of two neighbor-
ing sites in this state may assume the representations

4 � 4̄ = 1 � 15, �102�

while combining two representation 6 on neighboring sites,
in general, yields

6 � 6 = 1 � 15 � 20. �103�

To construct a parent Hamiltonian for the XVBS �Eq. �101��,
it is hence sufficient to sum over projectors onto representa-
tion 20 on all pairs of neighboring sites. Using our conven-
tions �Affleck et al.75 have normalized the eigenvalues of the
quadratic Casimir operator to CSU�4�

2 �adjoint representation�
=8�, the parent Hamiltonian takes the form

HXVBS = �
i=1

N �JiJi+1 +
1

3
�JiJi+1�2 +

5

12
� , �104�

where the operators Ji
a, a=1, . . . ,15, are given by 6�6 ma-

trices. Note that the ground state is twofold degenerate, as it
breaks translational symmetry modulo translations by two
lattice spacings.

We conjecture that the lowest-lying excitation is a bound
state consisting of two fundamental representations 4, which
most likely are combined antisymmetrically into a represen-
tation 6:

� � � � � �� � � � � �� ���
��

��
��

��
��

��
��

��
��

��
��

The SU�4� representation 6 XVBS provides us with an ex-
ample where a nearest-neighbor Hamiltonian is sufficient to
induce spinon confinement and a Haldane gap, even though
the largest common divisor of n=4 and �=2 is q=2, i.e.,
interactions including n

q =2 neighbors would be required fol-
lowing the rules derived from the examples in Sec. X C. The
reason for this discrepancy is that in the XVBS model con-
sidered here, each site effectively takes the role of two neigh-
boring sites. Affleck et al.75,76 conjecture that the ground
state of the SU�4� representation 6 nearest-neighbor Heisen-
berg model is, like the XVBS reviewed here, twofold degen-
erate, which implies that the Affleck-Lieb theorem is not
applicable.

This example is valuable in showing that it is advisable to
explicitly construct the VBS for a given representation of
SU�n� in order to verify the applicability of the general rules
motivated above.

XI. CONCLUSION

In the first part of this paper, we have formulated several
exact models of SU�3� spin chains. We introduced a trimer
model and presented evidence that the elementary excitations
of the model transform under the SU�3� representations con-
jugate to the representation of the original spin on the chain.
We then introduced three SU�3� valence bond solid chains
with spins transforming under representations 6, 10, and 8,
respectively. We argued that of these four models, the col-
oron excitations are confined only in the 10 and the 8 VBS
models, and that only those models with confined spinons
exhibit a Haldane gap. We subsequently generalized three of
our models to SU�n� and investigated again which models
exhibit spinon confinement.

Finally, we used the rules emerging from the numerous
examples we studied to argue that models of SU�n� spin
chains, in general, fall into three categories with regard to
spinon confinement and the Haldane gap. These are summa-
rized in the previous section. The results rely crucially on the
assumption that the conclusions we obtained for the VBS
models we studied are of general validity. This assumption
certainly holds for the corresponding SU�2� models and ap-
pears reasonable on physical grounds. Ultimately, however,
it is only an assumption, or at best a hypotheses.

On a broader perspective, we believe that the models we
have studied provide further indication that SU�n� spin
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chains are an equally rich and rewarding subject of study as
SU�2� spin chains have been since Bethe.
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APPENDIX A: PROPOSAL FOR AN EXPERIMENTAL
REALIZATION OF SU(3) SPIN CHAINS

IN AN OPTICAL LATTICE

In this appendix, we wish to describe a proposal for an
experimental realization of SU�3� spin chains. The most eli-
gible candidate for such experiments are ultracold gases in
optical lattices. Recently, these systems have become an in-
teresting playground for the realization of various problems
of condensed-matter physics, such as the phase transition
from a superfluid to a Mott insulator,77,78 the fermionic Hub-
bard model,79–81 and SU�2� spin chains.82,83 In particular, the
Hamiltonians for spin-lattice models may be engineered with
polar molecules stored in optical lattices, where the spin is
represented by a single-valence electron of a heteronuclear
molecule.84,85

In a most naive approach, one might expect to realize an
SU�3� spin �at a site in an optical lattice� by using atoms with
three internal states, such as an atom with spin S=1. If now
we were to interpret the Sz= +1 state as SU�3� spin “blue,”
the Sz=0 state as ”red,” and the Sz=−1 state as “green,”
however, the SU�3� spin would not be conserved. The SU�2�
algebra would allow for the process �+1,−1	→ �0,0	, which
in SU�3� language corresponds to the forbidden process
�b,g	→ �r , r	.

A more sophisticated approach is hence required. One
way to obtain a system with three internal states in which the
number of particles in each state �i.e., of each color� is con-
served is to manipulate an atomic system with total angular
momentum F=3/2 �where F=Sel+Lorb+Snuc includes the
internal spin of the electrons, the orbital angular momentum,
and the spin of the nucleus� to simulate an SU�3� spin. The
important feature here is that the atoms have four internal
states, corresponding to Fz=− 3

2 ,− 1
2 , + 1

2 , + 3
2 . For such atoms,

one has to suppress the occupation of one of the “middle”
states, say, the Fz=− 1

2 state, by effectively lifting it to a
higher energy while keeping the other states approximately
degenerate. This can be accomplished through a combination
of an external magnetic field and two carefully tuned lasers,
which effectively push down the energies of the Fz=− 3

2 and
the Fz= + 1

2 states by coupling these states to states of �say�
the energetically higher F=5/2 multiplet �see Fig. 15�. At
sufficiently low temperatures, we are hence left with a sys-
tem with three internal states Fz=− 3

2 , + 1
2 , + 3

2 , which we may
identify with the colors blue, red, and green of an SU�3�
spin. In leading order, the number of particles of each color
is now conserved, as required by SU�3� symmetry. For ex-

ample, conservation of Fz forbids processes in which a blue
and a green particle turn into two red ones, �b,g	→ �r , r	.
Higher-order processes of the kind �b,g ,g	→ �r , r , r	 are still
possible but negligible if the experiment is conducted at suf-
ficiently short time scales.

If one places fermionic atoms with an artificial SU�3� spin
engineered along the lines of this or a related proposal in an
optical lattice and allows for a weak hopping of the atoms on
the lattice, one has developed an experimental realization of
an SU�3� Hubbard model. If the energy cost U of having two
atoms on the same lattice site is significantly larger than the
hopping t and the density is one atom per site, the system
will effectively constitute an SU�3� antiferromagnet. The di-
mension of this antiferromagnet will depend on the optical
lattice, which can be one, two, or three dimensional.

In principle, the above proposal can be generalized to
SU�n�, even though the experimental obstacles are likely to
grow “exponentially” with n. Besides, it is far from clear that
such an endeavor is worthwhile, as all the nontrivial proper-
ties of SU�n� are already present in SU�3� chains �while
SU�2� constitutes a special case�.

APPENDIX B: GELL-MANN MATRICES

The Gell-Mann matrices are given by67,68

�1 = �0 1 0

1 0 0

0 0 0
�, �2 = �0 − i 0

i 0 0

0 0 0
�, �3 = �1 0 0

0 − 1 0

0 0 0
� ,

�4 = �0 0 1

0 0 0

1 0 0
�, �5 = �0 0 − i

0 0 0

i 0 0
�, �6 = �0 0 0

0 0 1

0 1 0
� ,

�7 = �0 0 0

0 0 − i

0 i 0
�, �8 =

1
�3�1 0 0

0 1 0

0 0 − 2
� .

They are normalized as tr��a�b�=2�ab and satisfy the com-
mutation relations ��a ,�b�=2fabc�c. The structure constants
fabc are totally antisymmetric and obey Jacobi’s identity

F = 5
2

F = 3
2

Ω1 Ω2

−3
2

−1
2

1
2

3
2

“blue” “red” “green”

F z =

FIG. 15. Effective lifting of the Fz=− 1
2 state.
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fabcfcde + fbdcfcae + fdacfcbe = 0.

Explicitly, the nonvanishing structure constants are given by
f123= i, f147= f246= f257= f345=−f156=−f367= i /2, f458= f678

= i�3/2, and 45 others obtained by permutations of the indi-
ces.

APPENDIX C: EIGENVALUES OF THE QUADRATIC
CASIMIR OPERATOR

The eigenvalues of the quadratic Casimir operator for rep-
resentations CSU�n�

2 ��1 ,�2 , . . . ,�n−1� of SU�n� up to n=6 are
given by

CSU�2�
2 ��� = 1

4 ��2 + 2�� =
�

2
��

2
+ 1� ,

CSU�3�
2 ��1,�2� = 1

3 ��1
2 + �1�2 + �2

2 + 3�1 + 3�2� ,

CSU�4�
2 ��1,�2,�3� = 1

8 �3�1
2 + 4�2

2 + 3�3
2 + 4�1�2 + 2�1�3

+ 4�2�3 + 12�1 + 16�2 + 12�3� ,

CSU�5�
2 ��1,�2,�3,�4� = 1

5 �2�1
2 + 3�2

2 + 3�3
2 + 2�4

2 + 3�1�2

+ 4�2�3 + 3�3�4 + 2�1�3 + �1�4

+ 2�2�4 + 10�1 + 15�2 + 15�3

+ 10�4� ,

CSU�6�
2 ��1,�2,�3,�4,�5� = 1

12�5�1
2 + 8�2

2 + 9�3
2 + 8�4

2 + 5�5
2

+ 8�1�2 + 12�2�3 + 12�3�4

+ 8�4�5 + 4�1�4 + 6�1�3

+ 8�2�4 + 6�3�5 + 4�2�5

+ 2�1�5 + 30�1 + 48�2 + 54�3

+ 48�4 + 30�5� .

The general method to obtain these and further eigenvalues
for n�6 requires a discussion of representation theory74 at a
level which is beyond the scope of this paper.

The dimensionality of a representation ��1 ,�2 , . . . ,�n−1�
is determined by the so-called Hook formula67

dim =



i�j

n

��i − � j + j − i�



i�j

n

�j − i�

, �C1�

where �i=� j=i
n−1� j for i=1, . . . ,n. In particular, it yields for

n=2,3 ,4 the following:

dimSU�2���� = � + 1,

dimSU�3���1,�2� = 1
2 ��1 + 1���2 + 1���1 + �2 + 2� ,

dimSU�4���1,�2,�3� = 1
12��1 + 1���2 + 1���3 + 1�

���1 + �2 + 2���2 + �3 + 2���1 + �2

+ �3 + 3� .
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