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The Berry phase provides a powerful means to describe the 
topological character of band structures and single-particle 
systems1,2. It allows one to treat fermionic and bosonic quan-

tum systems on the same footing. Furthermore, the Berry phase 
concept is not restricted to Hilbert space, but applies to the con-
nectivity of any given coordinate space, and as such accounts for 
classical degrees of freedom as well3. It is thus intuitive that, with 
the discovery of various topological quantum states of matter such 
as the quantum Hall4 and quantum spin Hall effects5, classical sys-
tems with similar phenomenology could also be identified. This 
was first explored in the context of photonics6,7, and subsequently 
transferred to other fields such as mechanics8,9, acoustics10 and elec-
tronics11,12, among others. Even though the spectra and eigenstates 
of the single-particle problem, including edge modes, might look 
similar or even identical, it is the fundamental degrees of freedom 
that pose the central distinction between quantum systems and 
their designed classical analogues. First, quantization phenomena 
deriving from topological invariants usually necessitate non-com-
mutativity of phase space, and as such are often restricted to quan-
tum systems. Second, internal symmetries pivotal to the protection 
of a topological phase might not carry over to classical systems as 
the degrees of freedom are changed from fermionic to effectively 
bosonic at the single-particle level. For instance, this applies to 
time-reversal symmetry T, as the protecting symmetry of the quan-
tum spin Hall effect, where the half-integer spin of electrons implies 
Kramer’s degeneracy due to T2 =  − 1 in the quantum case, whereas it 
does not in the classical case (T2 =  1). Although the classical coun-
terpropagating edge modes might still be detectable, there is no spe-
cial topological protection left, rendering the classical system much 
more vulnerable to perturbations13.

From this perspective, at least two directions appear the most 
promising to develop classical topological band structure models that 
are universally stable beyond fine-tuning. The first is the realization 

of classical analogues to topological semimetals14–19, where the exten-
sive edge mode degeneracy suggests clear, persistent spectral edge 
features also in the presence of small perturbations. The second is 
to focus on topologically insulating quantum electronic states where 
either no protecting symmetries are needed, such as the quantum 
Hall effect6, or where the protecting symmetries obey the same alge-
braic relations in both the classical and quantum mechanical cases.

Electric quadrupole insulators20 fall into the latter category. 
Whereas the quantum case is most suitably constructed from the 
viewpoint of quantized multipole moments of an electronic crys-
tal, the complementary protecting-symmetry perspective is the 
most intuitive for classical system design. The symmetry group that 
protects quantization of the quadrupole moment includes two non-
commuting reflection symmetries Mx and My as well as a C4 rotation 
symmetry. In particular, they obey =M 1x y,

2 , and as such carry over 
directly to the classical degrees of freedom. In analogy to the rela-
tion between the quantization of the bulk dipole moment (which 
is quantized to half-integer values by inversion symmetry) and the 
appearance of protected end states in the topological Su–Schrieffer–
Heeger (SSH) model, an additional spectral symmetry, the chiral 
symmetry, is needed to pin the topological boundary modes in the 
middle of the bulk energy gap. All these symmetries are realized 
in the microscopic model given in ref. 20. Hence, the only task is to 
implement the hopping model given by a four-site unit cell and real, 
but sign-changing, hybridization elements. Due to recent progress 
in implementing waveguide elements that invert the sign of hybrid-
ization21, the complexity of this model has been captured by a pho-
tonic cavity lattice structure22. Here we will use topolectrical circuits 
to realize the quadrupole insulators in a classical environment.

Linear circuit theory and topology
We consider non-dissipative linear electric circuits—that is, circuits 
made of capacitors and inductors. Labelling the nodes of a circuit 
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by a =  1, 2, … , the response of the circuit at frequency ω is given by 
Kirchhoff ’s law

∑ω ω ω=
= ⋯

I J V( ) ( ) ( ) (1)a
b

ab b
1,2,

which relates the voltages Va to the currents Ia via the grounded cir-
cuit Laplacian

ω ω
ω

= −J i C i W( ) (2)ab ab ab

Here, the off-diagonal components of the matrix C contain the 
capacitances Cab between nodes a ≠  b, whereas the diagonal compo-
nents are given by the total node capacitance

∑= − −
= ⋯

C C C (3)aa a
b

ab0
1,2,

including the capacitance Ca0 between node a and the ground. 
Similarly, the off-diagonal components of the matrix W contain 

the inverse inductivity = −W Lab ab
1 between nodes a ≠  b, whereas the 

diagonal components are given by the total node inductivity

∑= − −−

= ⋯

−W L L (4)aa a
b

ab0
1

1,2,

1

including the inductivity La0 between node a and the ground.
At fixed frequency ω, Jab(ω) determines the linear response of 

the circuit, in that the impedance Zab between two nodes a and b is 
given by

ω ω ω ω ω= + − −Z G G G G( ) ( ) ( ) ( ) ( ) (5)ab aa bb ab ba

where G(ω) =  J−1(ω) is the circuit Green’s function. The impedance 
is thus dominated by the smallest eigenvalues jn(ω) of J(ω) at this 
given frequency, provided that the sites a and b are in the support of 
the corresponding eigenfunctions.

In turn, the frequencies ω for which an exact zero eigenvalue 
jn(ω) =  0 exists correspond to eigenmodes of the circuit. They are 
determined by the equations of motion satisfied by the electric 
potential ϕa(t) at node a

∑ ∑ϕ ϕ+ =
= ⋯ = ⋯

C
t

t W td
d

( ) ( ) 0 (6)
b

ab b
b

ab b
1,2,

2

2
1,2,

The spectrum ω2 of eigenmodes of the circuit is thus given by the 
spectrum of the dynamical matrix

= − ∕ − ∕D C WC (7)1 2 1 2

where matrix multiplication is implied.
We now explain why topological properties can be defined for 

the matrices J(ω) and D that describe the physics of the circuit. To 
define the topological properties of a physical system, the notions 
of locality and adiabaticity (enabled by spectral gaps) are of cen-
tral importance. Locality naturally arises when we consider cir-
cuits in which the nodes a are arranged in a (in the case at hand, 
two-dimensional) lattice. This also allows one to define spatial 
symmetry transformations. Adiabaticity in turn follows from the 
spectral continuity of J(ω) as a function of ω—that is, if a specific 
frequency ω0 lies in a gap in the spectrum of D then the spectrum 
of J(ω0) also has a gap around zero eigenvalues. Furthermore, a 
spectrally isolated eigenvalue (which may be a topological bound 

state) of D at frequency ω0 corresponds to a spectrally isolated 
zero mode of J(ω0).

Due to these relations between J(ω) and D, protected boundary 
modes of a circuit can arise from the topological properties of either 
matrix. In this work, we choose to build a two-dimensional circuit 
for which the topology of J(ω0) at a specific frequency ω0 protects 
corner modes. The topological protection of spectrally isolated zero 
modes always requires a spectral (chiral or particle–hole) symme-
try that relates eigenvalues of equal magnitude and opposite sign. 
Spectrally and locally isolated eigenstates of this symmetry, if pres-
ent, are protected in that they are pinned to an eigenvalue of zero. 
As an eigenstate of J(ω), such a state naturally dominates the linear 
response of the circuit.

Circuit with corner states
To realize a quadrupole insulator with topologically protected 
corner states, the system should have two anticommuting mirror 
symmetries, as well as a C4 rotation symmetry in the bulk. The 
fundamental mirror symmetries in classical systems commute. To 
build a classical analogue of a electric quadrupole insulator, we thus 
devise a circuit that has an emergent pair of anticommuting mir-
ror symmetries Mx and My for modes near a specific frequency ω0. 
This means that J(ω0) commutes exactly with Mx and My and the 
eigenspaces of D are approximately invariant under Mx and My for 
frequencies near ω0.

We first discuss the bulk properties of a periodically repeat-
ing circuit unit cell, depicted in Fig. 1, before considering bound-
ary modes. The circuit unit cell contains four sites denoted by 
labels a =  1 ... 4. We use two pairs of capacitors and inductors 
(C1, L1) and (C2, L2), which have the same resonance frequency 
ω0 =  ∕ L C1 1 1 =  ∕ L C1 2 2 , to couple these sites. The latter equal-
ity is automatically satisfied if we set C2 =  λC1, L2 =  L1/λ for some real 
positive parameter λ. Sites 1 and 4 are connected to the ground via 
an LC circuit with =C C1

g
1 and =L L1

g
1 such that it has the same 

resonance frequency ω0. Sites 2 and 3 are connected to the ground 
via an inductivity λ= ∕ +L L [2(1 )]2

g
1 . In this set-up, the circuit is 

parametrized by the parameters ω0 and λ.
We now describe the circuit with periodic boundary conditions 

in momentum space. The Fourier components of the matrix Jλ(ω), 
denoted by ∼ ωλJ k( , ), are 4 ×  4 matrices that satisfy

∼ ∼

∼ ∼

∼ ∼

ω ω

ω ω

ω ω

= −

= −

= −

λ λ

λ λ

λ λ

−

−

−

M J k k M J k k

M J k k M J k k

C J k k C J k k

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

(8)
x x y x x y

y x y y x y

x y y x

0
1

0

0
1

0

4 0 4
1

0

where Mx =  σ1τ3, My =  σ1τ1 and 2C4 =  (σ1 +  iσ2)τ0 +  (σ1 −  iσ2)(iτ2) are 
the representations of the symmetries satisfying MxMy =  − MyMx 
and =−C M C Mx y4 4

1 . Here, σμ and τμ, with μ =  0, 1, 2, 3, are the 2 ×  2 
identity matrix and the three Pauli matrices. Note that the circuit is 
then also invariant under the combined symmetries =̄M C Mxy x4  and 

=M C Mxy y4  that map (x, y) →  (− y, − x) and (x, y) →  (y, x), respec-
tively. In addition, ∼ ωλJ k( , )0  has a chiral symmetry C σ τ= 3 0, which by 
C C

∼ ωλ
−J k( , )0

1 =  ∼ ω− λJ k( , )0  implies a spectral symmetry. Up to an overall 
factor of i, the circuit Laplacian ∼ ωλJ k( , )0  takes exactly the same form as 
the Bloch Hamiltonian matrix of the quadrupole insulator introduced 
in ref. 20 (see the section ‘Impedance response and circuit Green’s func-
tion’ in the Methods). For λ ≠  1 the spectrum of ∼ ωJ k( , )0  is gapped, and 
the gapless point λ =  1 corresponds to a topological phase transition 
between a quadrupole circuit for λ >  1 and a trivial circuit for λ <  1.

We now turn to a circuit with open boundary conditions to realize 
topologically protected corner modes. In general, two criteria must 
be met to realize a topological bulk–boundary correspondence. 
First, the symmetries that protect the topological character must 
not be broken by the boundary. Second, the system termination  
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must be compatible with the choice of bulk unit cell for which a 
topological invariant has been defined—that is, the boundary 
should not cut through unit cells. We demonstrate all of these 
properties on a single circuit by choosing different boundary ter-
minations as follows. For the open system to obey the chiral sym-
metry C , the diagonal elements of J(ω) need to vanish at ω0. This 
holds for all bulk sites by the construction of the model. Imposing 
this symmetry also for edge and corner sites in an open geometry 
fixes the circuit elements (capacitor and/or inductor) that connect 
each site to the ground. (See Supplementary Information section 
D for the specific grounding at the edge termination that was used 
for the open circuit.)

With this condition imposed on the boundary sites, we termi-
nate the upper left edge of the circuit in a way compatible with the 
choice of bulk unit cell denoted as (I) in Fig. 1b. The lower right 
circuit termination is chosen to be compatible with the unit cell 
denoted as (II) in Fig. 1b. This edge termination preserves the mir-
ror symmetry =̄M C Mxy x4  and breaks all other spatial symmetries 
mentioned above. Topological corner modes could thus potentially 
be protected at the upper left and the lower right corners, which are 
invariant under ̄Mxy, but not at the other two corners. However, the 
bulk circuit Laplacians that correspond to the two choices of unit 
cell (I) and (II) satisfy ∼ ωλJ k( , )

(II)
0  =  ∼λ ωλ∕J k( , )1

(I)
0  for an appropriate label-

ling of unit cell sites. Recalling that the topological phase transition 
occurs at λ =  1, this implies that when ∼ ωJ k( , )

(I)
0

 is in a topological 
phase, ∼ ωJ k( , )

(II)
0  is trivial and vice versa. As a result, our choice of 

boundary termination renders one corner topologically non-trivial 
(the upper left one for λ >  1) and the opposite corner trivial.

We thus expect that for λ >  1 at eigenfrequency ω0, the circuit 
depicted in Fig. 1b supports a localized topological corner state 
at the upper left corner, and none at the lower right or any other 
corner. We further note that the corner mode should be an exact 

eigenstate of the ̄Mxy symmetry. We will now present impedance 
measurements that support this expectation.

experimental results
For the experimental realization of topological corner modes a circuit 
board with 4.5 ×  4.5 unit cells was designed. The line spacing on the 
board was chosen such that spurious inductive coupling between the cir-
cuit elements was below the resolution of our measurements. All imped-
ance measurements were performed with a HP 4194A Impedance/
Gain-Phase Analyzer in a full differential configuration. To achieve a 
clearly resolvable corner state resonance on the superimposed resistive 
background of the bulk states—that is, the combined impedance con-
tribution of our RLC circuit, which is of the order of a few hundreds 
of milliohms at the resonance—the values of the circuit elements were 
chosen to give a resonance frequency of 2.8 MHz. The ratio λ between 
the capacitors/inductors was set to 3.3, so that the spatially decaying 
corner state resonance could be observed over three unit cells in each 
spatial direction (see also Supplementary Information Section B).

Figure 2 compares the experimental data with the theoretical 
predictions, showing excellent agreement between the two. It dem-
onstrates the existence of a spectrally and spatially localized topo-
logical corner state. In Fig. 2a the frequency-dependent spectrum 
of the circuit Laplacian shows the isolated corner mode and illus-
trates the connection between a (bulk and edge) spectral gap of J(ω) 
at fixed frequency ω and a gap in the spectrum of the dynamical 
matrix D, which corresponds to a range of frequencies without zero 
modes of J(ω). In Fig. 2b, c the corner mode at ω =  ω0 is mapped out 
with single-site resolution. The exponential decay of the measured 
impedance is in excellent agreement with the theoretical expectation

ϕ λ ϕ= − − +x y( , ) ( ) (0, 0) (9)x y
c

( )
c

C2

C2

L1

C1

C1
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Fig. 1 | electrical circuit exhibiting a topological corner state with nodes of the circuit indicated by black dots. a, Unit cell of the circuit. Blue and black 
circuit elements correspond to weak and strong bonds in a tight-binding or mechanical analogue of the circuit. Red circuit elements connect to the ground. 
All capacitor–inductor pairs have the same resonance frequency ω0 =   ∕ L C1 1 1 =   ∕ L C1 2 2  =   ∕ L C1 1

g
1
g . b, Layout of the full circuit that has been realized 

experimentally. Double bars denote capacitors and screws denote inductors. The corners (i) and (iii) are invariant under the mirror symmetry that leaves 
the dashed grey line invariant. They are compatible with the bulk unit cell choices (I) and (II), respectively, indicated by the coloured squares, which 
correspond to an interchange of strong and weak bonds. As a consequence we expect a topological bound state at corner (i), but not at corner (iii). c, Unit 
cell of the experimentally realized circuit. The unit cell boundary is marked in blue.
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where ϕc is the zero-eigenvalue eigenstate of the circuit Laplacian, 
and λ =  C2/C1 according to Fig. 1 and N∈x y,  label the absolute 
distance from the upper left edge in both spatial directions in 
units of the circuit lattice constant. The experimental demon-
stration that the corner mode is indeed spectrally isolated, and 
as such not due to a bulk or edge effect, is shown in Fig. 2d via 
a comparison between measurement and simulation. The theo-
retical impedance corner peak is normalized to unity, with the 
corresponding impedance corner peak in the actual measurement 
reaching 800 Ω .

Physical interpretation of corner modes
Along the x and y directions, the circuit corresponds to a collection 
of connected pairs of linear circuits with alternating capacitors and 
inductors, respectively. With the appropriate boundary conditions 
discussed previously, the electric charge on the capacitors forms 
‘dimerized’, isolated oscillators, as described in refs. 19,23. Note that 
the capacitances alternate between C1 and C2, with C1 <  C2, consti-
tuting in each direction a one-dimensional SSH model. Such mod-
els possess well-known eigenmodes—that is, potential and current 
profiles where every second node exhibits no current, and accord-
ingly no potential difference19, which occurs here since a fixed 
amount of charge Q between each pair of capacitors gives rise to a 
potential difference V1 >  V2, since Q =  V1C1 =  V2C2. With appropri-
ate boundary conditions, we can thus infer the existence of a bound-
ary mode of anti-phase currents that is decaying exponentially by a 
factor of 1/λ =  C1/C2 per unit cell.

A novel feature of our measured corner mode is that this mode 
is not the result of edge polarization—that is, even though the 
Laplacian eigenstate of the corner mode (equation (9)) suggests a 

similar form in the x and y directions, it cannot be arrived at by 
combining SSH models along the different edges. This implies the 
presence of topological quadrupole polarization in the given circuit, 
as opposed to dipole polarization in the SSH case. It is instructive 
to decompose the given circuit in terms of pairs of vertical and 
horizontal SSH-type circuit chains, where we see both SSH chains 
built by capacitors as well as their dual form built by inductors in 
each unit cell chain along the x or y axis. The alternating L-type 
and C-type SSH chains within the unit cell are then arranged such 
that their edge charge polarizations cancel. To see this more clearly, 
we turn to frequency space, where the voltage difference equals 
Q/C across a capacitor C, but takes the form ω¨ → −LQ LQ2  across 
an inductor L. By identifying 1/C ≡  − ω2L, we notice that the L-type 
dual chain possesses effective ‘negative couplings’ in the Laplacian 
compared to the C-type chain. For ω →  ω0 this then gives the same 
absolute but sign-reversed effective coupling, and the dipolar SSH-
type polarization cancels out in each unit cell. Physically, the sign 
difference between the effective couplings of capacitors and induc-
tors results from their opposite quarter-period phase shifts, which 
add up to a sign reversal.

Discussion
A fundamental difference between classical topological systems (for 
example, of mechanical degrees of freedom, electrical circuits and 
photonic metamaterials) and topological insulators made of fermi-
ons is that the topology is exhibited in the excitations of classical 
systems, but not as directly in their bulk response functions as in 
fermionic systems (see the section ‘Dipole and quadrupole polariza-
tion’ in the Methods for a more detailed discussion.) Consequences 
of topology in the former case are found in the excitations, whereas 
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Fig. 2 | Comparison of experimental and theoretical results for the circuit spectrum and corner mode. a, Theoretical spectrum of the circuit Laplacian 
J(ω) as a function of the driving frequency. All frequency scales are normalized to the resonance frequency ω0. An isolated mode crossing the gap, which 
corresponds to a zero-energy eigenvalue of J(ω) at ω =  ω0, is clearly visible. It corresponds to the topological corner mode. The calculation includes a 
random disorder of 1% for all capacitors and 2% for all inductors. b, Theoretical weight distribution of the eigenstate of J(ω0) that corresponds to the 
corner mode (equation (9)), where only the circuit nodes near the corner are shown. c, Comparison between the experimental corner mode impedance 
at ω =  ω0, measured between nearest-neighbour nodes along the horizontal and vertical edges and along the diagonal, and the theoretically computed 
weight of the corner mode eigenstate. Both decay with the decay constant λ =  3.3 set by the ratio of alternating capacitors/inductors. d, Frequency scan 
(normalized with respect to ω0) of the impedance between two nearest-neighbour sites at the corner, at the edge and in the bulk. Both the experimental 
and theoretical curves show the corner state resonance isolated in the gap of bulk and edge states.
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in the latter case, thanks to the Fermi sea that results from the Pauli 
principle, it is the ground state which is non-trivial. For example, 
a fermionic electric quantum quadrupole insulator has a quan-
tized bulk quadrupole moment that is an—in principle measur-
able—characteristic of its (zero-temperature) ground state. (A more 
canonical example is the bulk Hall conductivity of the integer quan-
tum Hall effect.) In contrast, topological boundary modes are in 
principle as accessible for measurements in classical as in fermionic 
quantum systems, since they correspond to spectrally isolated exci-
tations. For this reason, we have focused on the boundary charac-
teristics of the topological circuit in this work.

Note added in proof. During the resubmission process for this 
work, after our posting on arXiv, two works that report observations 
of topological corner modes in a mechanical24 and a microwave 
photonic25 system have been published. Furthermore, platforms 
for bulk measurements of the topological characteristics of classical 
systems have been suggested in photonic systems26.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0246-1.

Received: 7 September 2017; Accepted: 6 July 2018;  
Published online: 4 September 2018
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Methods
Impedance response and circuit Green’s function. The signature of a non-
trivial topological phase often lies in its response to an external perturbation. 
In electronic topological systems, for instance, a non-trivial Chern number 
corresponds to a non-vanishing quantized Hall response, as epitomized by the 
Kubo formula. In circuits, however, the Kubo formula does not apply, as there is 
no quantum excitation from a Fermi sea. Below, we shall derive the appropriate 
analogue of the Kubo formula for circuits, which is used to characterize the so-
called topolectrical response.

Define Va and Ia to be the voltage and external input current on node a of a 
circuit. By Kirchhoff ’s law,

̇ = ¨ +I C V W V (10)a ab b ab b

where Cab and Wab are the Laplacian matrices of capacitances and inverse 
inductances, and the summation over repeated indices is implied. For a mode 
V(t) ~ V(0)eiωt at frequency ω, equation (10) takes the form







ω

ω
ω= − =I i C i W V J V( ) (11)a ab ab b ab b

where Jab(ω) is the (grounded) circuit Laplacian.
The most natural measurement on a circuit is the impedance response Zab(ω), 

which is the ratio of the voltage between two nodes a and b due to a current 
Ij =  I0(δj,a −  δj,b), where δ is the Kronecker delta, that enters through a and exits at b. 
Mathematically, Zab(ω) simply involves the inversion of equation (11):
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where Jab(ω) =  ω ϕ ϕ∑ ∣ ⟩ ⟨ ∣j a b( ) ( ) ( )n n n n  is the expansion of the Laplacian into its 
eigenmodes (the ω dependence of the eigenmodes is left implicit), with the Green’s 
function Gab(ω) =  ϕ ϕ∑ ∣ ⟩ ⟨ ∣

ω
a b( ) ( )n j n n

1
( )n

 being its inverse. When the circuit is ungrounded, 
an overall shift of the potential cannot be detected, and the corresponding zero 
eigenspace should be excluded in the definition of the Green’s function.

Equation (12) describes the impedance between any two nodes purely in terms 
of the eigenmodes and eigenvalues of the Laplacian. Most notably, it suggests 
that circuit resonances (divergences of the impedance) occur whenever there are 
non-trivial zero eigenvalues jn. In a realistic circuit with unavoidable disorder, the 
strength of such resonances depends on the density of such zero eigenmodes, as 
well as whether there is any mechanism that pins them to zero.

A quintessential example of a strong protected resonance is a topolectrical 
resonance, which occurs due to topologically protected zero modes of the 
circuit Laplacian. Due to the localization of these modes at the boundary, such 
resonances can be easily identified through extremely large resonances at the 
boundary but not the interior of the circuit lattice. In this Article, the corner 
modes are such an example.

The circuit Laplacian in momentum space ∼ ωλJ k( , )0  is given by
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where an are the unit cell lattice vectors of the model defined in equation (11) with 
a ≡  0 as the reference point and b ≡  an, where intra-unit-cell degrees of freedom 
remain implicit in the first line. It has, up to an overall factor of i, the same form as 
the model for an electric quadrupole insulator defined in ref. 20.

Mapping to an effective Dirac problem and boundary modes. In the main text, 
we showed that the admittance matrix J(ω0) possesses the required symmetries to 
define the topological characteristics of a quadrupole insulator. In this section we 
demonstrate that in the corresponding dynamical matrix D, the same symmetry 
properties emerge for frequencies near ω0, but are realized globally. We derive 
the effective Dirac form of the matrix D and show explicitly that it implies the 
existence of corner modes.

We denote by ∼C k k( , )x y  and �W k k( , )x y  the Fourier components of the matrices 
C and W defined in the main text for a circuit with periodic boundary conditions. 
To show that Mx and My defined in equation (8) are emergent symmetries of the 
dynamical matrix ∼D k k( , )x y  =  �∼ ∼− ∕ − ∕

C k k W k k C k k( , ) ( , ) ( , )x y x y x y
1 2 1 2 , we note that the 

spectrum of ∼D k k( , )x y  is gapless for λ =  1, with a linear band-touching point near 
(kx, ky) =  (π , π ), but is gapped for λ ≠  1. This motivated us to expand ∼D k k( , )x y  to 
linear order in (1 −  λ) and the deviations (px, py) of k from =  (π , π ). The resulting 
effective dynamical matrix D(px, py) takes the Dirac form

ω σ τ
ω

σ τ σ τ

ω
λ σ τ σ τ

= + −

+ − +
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4
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4
(1 )( )

(14)
x y x y0
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2 3 2 1

0
2

1 0 2 2

where the term proportional to (1 −  λ) is a mass term. The spectrum of D(px, py) 
is symmetric about ω0

2. This is a result of the chiral symmetry C σ τ= 3 0, which 
anticommutes with D(px, py). If this symmetry is not broken by a boundary in 
the range of frequencies near ω0, topological boundary modes will be pinned to 
the frequency ω0.

We then search for an explicit analytical solution to the localized corner state 
within the respective Dirac equation. Without loss of generality we consider a 
corner to the upper right of the sample. To implement this in our formalism, we 
have to consider a real-space dependence of the Dirac mass term in equation (14). 
For simplicity, we set ω0 =  2 and remove the overall energy shift ω0

2 from the Dirac 
operator. Furthermore, we substitute (1 −  λ)σ1τ0 by Δ sin ϕσ1τ0 and (1 −  λ)σ2τ2 by  
Δ cos ϕσ2τ2 so that the operator reads

σ τ σ τ ϕσ τ ϕσ τ= − + Δ +D p p (sin cos ) (15)x y2 3 2 1 1 0 2 2

where ϕ =  π /4 and ϕ =  − 3π /4 holds inside and outside of the material, respectively. 
With these values for ϕ, we have merely implemented the sign change in the Dirac 
mass term across the sample boundary. We now give ϕ a position dependence 
to model a corner. A corner geometry requires that ϕ varies continuously from 
ϕ =  π /4 to ϕ =  − 3π /4 and back again as we go once around the corner in real space 
(starting from within the sample). The form of this interpolation is constrained 
by symmetry arguments. Note that the bulk symmetries Mx, My and C4 are all 
broken locally by the corner. The only symmetry that leaves the corner invariant 
is the diagonal mirror symmetry ̄Mxy =  C4Mx, which sends (x, y) →  (–y, –x) and is 
represented by

σ σ τ σ σ τ= + + −̄M 1
2

( ) 1
2

( ) (16)xy 0 3 3 0 3 1

The system respects chiral symmetry for any choice of ϕ.

Topological index: Mirror-graded winding number. Here we define the bulk 
topological invariant for a topological quadrupole insulator as a mirror-symmetry 
graded winding number. This index is valid if the model has diagonal mirror 
symmetry (for example, ̄Mxy) and chiral symmetry C. The latter is in any case 
required to pin topological corner modes to eigenvalue zero. Our topological 
invariant, which has already been employed27 to characterize crystalline topological 
superconductors, is complementary to the characterization of multipole insulators 
in terms of Wilson loops that was given in ref. 20.

Consider a k-dependent matrix (for example, a Bloch Hamiltonian, or an 
admittance matrix) R(k) that both obeys C (that is, C C = −−R Rk k( ) ( )1 ) and ̄Mxy 
(that is, ̄ ̄

−M R k k M( , )xy x y xy
1 =  R(–ky, –kx)) and let C =̄M[ , ] 0xy . The occupied bands of 

R(k, k) can then be divided into subspaces with mirror eigenvalues ± 1 (or ± i for 
spinful mirror symmetry). Using this grading, we can bring R(k, k) to the form













=

+

+
†

−

−
†

R k k

q k

q k

q k

q k

( , )

0 ( ) 0 0

( ) 0 0 0

0 0 0 ( )

0 0 ( ) 0

(17)

where the first half acts on the + 1 mirror subspace, whereas the second half  
acts on the − 1 mirror subspace. For R(k, k) to be gapped, all eigenvalues of q±(k) 
need to be nonzero. We can thus define a ‘spectrally flattened’ pair of unitary 
matrices ∼±q k( ) which share the eigenstates and phase of the eigenvalues  
with q±(k), but have eigenvalues of absolute value 1. We can now define the  
winding numbers

∼ ∼∫ν
π

= ∂
π

± ±
†

±
i k q k q k:

2
d tr ( ) ( ) (18)k

0

2

which are quantized to be integers († denotes the conjugate transpose). For a 
system with vanishing dipole moment, the net winding number ν+ +  ν− must vanish 
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in any direction of momentum space. Hence, for the systems of interest to us ν+ =  − 
ν−, and we can use

Zν
ν ν

=
−

∈+ −:
2

(19)

as a topological invariant. The number of topological corner modes is equal to the 
parity of ν.

We now demonstrate this topological invariant for the admittance matrix 
realized in our electrical circuit. Up to prefactors, the matrix takes the form
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and C σ τ= 3 0, with ̄Mxy =  σ σ τ+( )1
2 0 3 3 +  σ σ τ−( )1

2 0 3 1. The mirror-eigenvalue graded 
off-diagonal components of R(k, k) are scalars in this case and can be computed as

λ= +±
∓q k( ) 2 (1 e ) (21)ik

Clearly, for λ >  1, they have winding number ν± =  ± 1 and thus ν =  + 1, corresponding 
to the topologically non-trivial phase with corner modes. In contrast, for λ <  1 we find 
ν± =  0 and thus ν =  0, corresponding to the topologically trivial phase.

Dipole and quadrupole polarization. In this section, we present how the dipole 
and quadrupole topological polarization can be expressed in terms of Bloch 
eigenfunctions and the Berry connection.

Dipole polarization, Wannier functions and projected density operator. In the 
continuum, the dipole polarization pa =  ∫ ρx x x( )da  gives us the expectation value 
of the centre of mass with respect to a density operator ρ. On a two-dimensional 
lattice, its definition should be modified in two ways. First, ρ should be replaced by 
the band projector P =  ∑ ∣ ⟩ ⟨ ∣u un

n n
k k k, , where ∣ ⟩ = ∣ ⟩u u kn n

k k  is the nth occupied Bloch 
eigenstate with quasimomentum k =  (kx, ky). Second, considering only the x direction 
and omitting the component index a, x should be replaced by the periodic position 
operator �X  =  �π ∕e ix L2 x =  ∑ ∣ ⟩ ⟨ ∣π ∕ x xex

ix L2 x , where ∣ ⟩x  denotes a state at site x and Lx is 
the total number of sites. We can thus rewrite the polarization operator as

�
�

∼ρ =
=

PXP
P Pe

(22)
iQx

which may also be interpreted as the projected density operator at momentum 
= πQ

L
2

x
. When P trivially projects onto all bands, �∼ρ = X  simply gives the periodic 

position. When P is non-trivial, the eigenvalues and eigenvectors of ∼ρ , respectively, 
give the polarization spectrum and Wannier functions. It is well known that 
the polarization spectral flow tells us the net number of edge modes leaving the 
band(s). Note that these edge modes exist even in classical lattice systems, where 
band projectors cannot be physically realized as filled Fermi seas.

Since the density operator satisfies

� ∑= ∣ + ⟩ ⟨ ∣Qk ke ê (23)
iQx

x
k

the projected density operator takes the form
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with equality in the Lx →  ∞  limit. In this limit, the matrix Unm(k) =  ⟨ ∣ ⟩+u uQ
n m
k kêx  

is unitary and tends towards [e ]iQA
nm

k( )x , where Ax(k) =  − ⟨ ∣∂ ⟩i u un m
k k kx  is the 

non-Abelian Berry connection. In this form, it is easy to guess the form of 
eigenvectors ∣ ⟩Wk

s
y

 of ∼ρ , which are also known as the Wannier functions. Note 
that kx no longer enters as an index, since ∼ρ  is not diagonal in it. As ∼ρ  implements 
both the momentum translation k →  k +  Qêx and the internal rotation Unm(k), an 
eigenvector must contain compensatory factors such that it transforms covariantly 
under simultaneous translation and rotation. For this, it should be proportional to 
the Wilson line Φ (kx, ky) =  … −U k U k Q k U k k(0, ) ( ê , ) ( , )y x x y x y  =  P ∫ei A p k p( , )dkx x x y x0 , 
where P  is the path-ordering operator, as well as a power of −e ki x:
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Since the right-hand side of equation (26) should be invariant under 
kx →  kx +  2π , it follows that θei k( )s y  and ∣ ⟩W k( )s y

0  are, respectively, the eigenvalues 
and eigenvectors of the Wilson loop operator

P ∮πΦ =k(2 , ) e (26)
y

i A p k dp( , )x x y x0

Through direct substitution of equation (26) into equation (24) it may then be 
verified that the eigenvalues of ∣ ⟩W k( )s

y  are given by θ ∕ei k L( )y x.
To summarize, the Wilson loop operator Φ (2π , ky) is closely related to the 

projected density operator ∼ρ , which is also diagonal in ky. Their eigenvalues are 
given by θei k( )y  and θ ∕ei k L( )y x, respectively. Given an eigenvector ∣ ⟩W k( )s

y0  of  
Φ (2π , ky), one can construct the eigenvector ∣ ⟩W k( )s

y  of ∼ρ  via equation (26). 
However, to do so, knowledge of the Wilson line Φ (kx, ky) at all kx is required.  
In this sense, the physical polarization eigenvectors (Wannier functions) carry 
‘more’ information than can be obtained from the Wilson loop alone.

Nested Wilson loop and quadrupolar polarization. If the Wannier polarization (∼ρ) 
spectrum is gapped, one can perform a nested Wilson loop computation to reveal a 
possible quadrupole moment.

In general, the total polarization is given by − i log trΦ , where Φ  is the Wilson 
loop operator. In the nested Wilson loop computed over the eigenstates ∣ ⟩W k( )s

y  
of ∼ρ , the gapped cases allow evaluation of the polarization of one sector at a time, 
where the total polarization simplifies to
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where BZ denotes the Brillouin zone and A k( )y
s  is the Berry connection of 

∣ ⟩W k( )s
y . To express ps explicitly in terms of the Berry connections Ax,Ay of the 

original Bloch eigenstates ∣ ⟩u m
k , one notes that if ∣ ⟩W k( )s
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where, from equation (26),
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with Φ (kx, ky) =  P ∫ei A p k p( , )dkx x x y x0 , and θei k( )s y  and ∣ ⟩W k( )s
y0  being the sth eigenvalue 

and eigenvector of Φ (2π , ky).

Multipolar polarizations in a classical environment. As seen above, the 
topological nature of a band system is fundamentally encoded in its band 
projectors. But unlike fermionic quantum systems with occupied Fermi seas, 
there is no Pauli principle for classical excitations in a circuit (but see ref. 28 
for a demonstration of wavepacket pumping in optical systems) and the band 
projector does not have a direct physical interpretation. To understand how 
bulk topological polarization is indirectly but faithfully manifested in a classical 
circuit, we first connect topological boundary modes with band projectors by 
observing that they, by virtue of residing within the bulk gap, are necessarily 
properties of projectors that demarcate a set of negative eigenvalue bands of the 
impedance operator Ĵ  from its complement. Indeed, the electric polarization 
in the x direction of a crystal is given by the spectral flow of the eigenspectrum 
of the density operator29,30 � ��∼ρ = π ∕P Pei x L2 x , with �P  the projector onto the filled 
subspace of bulk bands. To identify this spectral flow with physical quantities, 
we consider the adiabatic deformation

�� →π ∕ Re (30)i x L2 x

where �R  is the projector onto a real-space region R. Under this deformation to 
the operator �� �P RP , the initially equally spaced polarization bands adiabatically 
accumulate near 1 and 0, the eigenvalues of �R , with the exception of those that 
traverse this interval due to non-trivial spectral flow.

The next observation is that, since �P  and �R  are projectors, �� �P RP  and � ��RP R  
have identical non-trivial eigenvalues and eigenmodes30. Now, � ��RP R  is the band 
projector �P  projected onto region R (that is, with open boundary conditions). A 
further adiabatic interpolation

� �� � �Ĵ→RP R R R (31)
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completes the deformation to the Laplacian with open boundary conditions � �ĴR R
. Importantly, midgap states in the polarization spectrum are adiabatically mapped 
to midgap states in the Laplacian spectrum. Since midgap states exist within a bulk 
gap they must necessarily be boundary states.

Through this series of deformations, we can re-interpret real-space polarization 
as polarization in ‘admittance-space’ (that is, along the axis where eigenvalues 
of the Laplacian J reside). This re-interpretation involves fundamentally 
interchanging the roles of position and momentum, which exchanges the 
projectors �R  and �P . In this way, the mathematical operation of projection onto the 
Fermi sea is replaced by that of implementing open boundary conditions, hence 
allowing the topological properties of classical systems to be studied on the same 
footing as those of quantum systems.

Hence, to summarize, the ‘dipole moment’ for dipole polarization is classically 
manifested as the existence of midgap states that, by definition, are necessarily 
‘polarized’ at the boundary. This holds analogously for quadrupole moments, as 
detailed in the section ‘Nested Wilson loop and quadrupolar polarization’.

Data availability. The data that support the plots within this paper and  
other findings of this study are available from the corresponding author upon 
reasonable request.
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