
Interacting Surface States of Three-Dimensional Topological Insulators

Titus Neupert,1 Stephan Rachel,2 Ronny Thomale,3 and Martin Greiter3
1Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

2Institute for Theoretical Physics, Technische Universität Dresden, 01171 Dresden, Germany
3Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

(Received 16 December 2014; published 29 June 2015)

We numerically investigate the surface states of a strong topological insulator in the presence of strong
electron-electron interactions. We choose a spherical topological insulator geometry to make the surface
amenable to a finite size analysis. The single-particle problem maps to that of Landau orbitals on the sphere
with a magnetic monopole at the center that has unit strength and opposite sign for electrons with opposite
spin. Assuming density-density contact interactions, we find superconducting and anomalous (quantum)
Hall phases for attractive and repulsive interactions, respectively, as well as chiral fermion and chiral
Majorana fermion boundary modes between different phases. Our setup is preeminently adapted to the
search for topologically ordered surface terminations that could be microscopically stabilized by tailored
surface interaction profiles.
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Introduction.—Three-dimensional topological insulators
(3DTIs) [1–6] were predicted in 2007 and have been
discovered subsequently in various material classes
[7–11]. When viewed as a symmetry-protected topological
phase [12], 3DTIs exhibit a gapped bulk with two-
dimensional gapless edge states protected by U(1) electron
number conservation and time reversal symmetry (TRS),
forbidding any adiabatic deformation into a trivial insulator.
When the protecting U(1) particle number symmetry is

broken, such as by a superconducting proximity effect, the
3DTI surface yields an unconventional gapped s-wave
superconductor with Majorana modes in its vortex cores
[13]. Upon breaking TRS, such as by a magnetic coating on
the surface, the single surface Dirac cone gaps out, and the
Chern-Simons boundary term of the axion bulk action
manifests itselfasaν ¼ 1=2quantumHalleffect [14]without
fractionalized excitations. The axion term implies theWitten
effect [15] by which an odd-half integer charge binds to
magnetic monopoles in the bulk of a 3DTI (see also,
e.g., Ref. [16]).
The aforementioned properties of 3DTIs do not involve

interactions in the bulk or at the surface. Assuming that the
gapped3DTIbulk isnegligibly renormalizedby interactions,
it remains to be investigated how interactions could affect
the3DTIsurface.Tobeginwith, interactionscouldcontribute
to breaking the protecting symmetries explicitly or sponta-
neously. Transcending the mean-field picture, however,
interactions could also give rise to a gapped surface state
with intrinsic topological order, allowing anewkindof phase
to enter the realmof competing quantum states ofmatter on a
3DTI surface. Investigations of bosonic 3DTI surface states
established that such gapped surface states in the absence of
symmetry breaking are indeed possible for certain kinds of
topological order [16–20]. Soon thereafter, this idea was

formulated for the physically more relevant fermionic ana-
logue [21–24]. All these conceptually important works rely
on consistency arguments on the level of topological field
theories and constructions that employ contrived exactly
soluble models. What type of physically attainable
Hamiltonians would exhibit these exotic ground states
remains a challenging question [25].
From the viewpoint of Fermiology, the impact of

interactions on 3DTI surface states appears related to the
problem of interacting Dirac metals at charge neutrality in
two spatial dimensions such as graphene. (For an early
study, see e.g., Ref. [26].) With four Dirac cones in
graphene formed by spin and valley degrees of freedom
as opposed to one on 3DTI surfaces, however, several
instabilities for the former do not apply to the latter. For
instance, antiferromagnetism would be driven by intercone
scattering centered at different momenta, while an exciton
insulator [27] might not be excluded a priori.
Haldane [28] has recently pointed out that, as the

topological surface state only has support in a 2D k-space
region with an area Ak that may be much smaller that the
Brillouin zone, the surface electrons obey an “uncertainty
principle” where they cannot be localized within an area
smaller than ð2πÞ2=Ak, analogous to the “magnetic area”
h=jeBj for electrons confined to a 2D Landau level.
Reference [28] noted that this makes the surface dynamics
insensitive to the atomic-scale features of the surface,
rendering exact diagonalization (ED) studies of such
strongly interacting systems practicable.
In this Letter, we develop a microscopic setup for

numerical studies of interactions on 3DTI surfaces. We
employ a spherical geometry [29] and numerically
investigate the phase diagram for both attractive and
repulsive density-density contact interaction U. We find
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a superconducting phase for attractions, and ferromagnetic
phases of broken TRS for repulsions. These are the
ν ¼ 1=2 anomalous quantum Hall effect and the gapless
anomalous Hall effect for fillings at and away from the
Dirac point, respectively.
3DTI surface states on the sphere.—In the limit of long

wavelengths, the surface states of a strong 3DTI are
described by a two-dimensional Dirac equation given by

H ¼ vn̂ð−i∇ × σÞ ð1Þ

where v denotes the Dirac velocity of the surface states, n̂ is
the surface normal, and σ ¼ ðσx; σy; σzÞ twice the physical
electron spin vector. For a spherical TI with radius R, Imura
et al. [29] derived that Eq. (1) becomes

H0 ¼
v
R
ðσxΛθ þ σyΛφÞ ð2Þ

where

Λ ¼ −i
�
eφ

∂
∂θ − eθ

1

sin θ

� ∂
∂φ −

i
2
σz cos θ

��
ð3Þ

is the dynamical angular momentum of an electron in the
presence of a magnetic monopole with strength 2πσz, and
(r; θ;φ) are spherical coordinates. The monopole strength
or Berry flux through the sphere is hence 2π for ↑ spins
(i.e., spins pointing in er direction) and −2π for ↓ spins
(i.e., spins pointing in −er direction) [30]. The origin of this
Berry phase is easily understood. Since the coordinate
system for our spins (to which our Pauli matrices σx; σy; σz
refer to) is given by eφ;−eθ; er, it will rotate as the electron
is taken around the sphere. For general trajectories, the
Berry phase generated by this rotation is given by 1

2
times

the solid angle subtended by the trajectory. Formally, this
phase is generated by a monopole with strength 2π at the
origin. Since the model preserves time reversal invariance,
the monopole must be of opposite sign for opposite spins.
Substitution of Eq. (3) into Eq. (2) yields H0 ¼ ðv=RÞh0

with

h0 ¼
�

0 hþ

h− 0

�
; h� ¼ ∓

�
∂θ þ

1

2
cot θ

�
þ i∂φ

sin θ
:

ð4Þ

Equation (4) describes a Dirac Hamiltonian in the sense
that

h20 ¼
�
hþh− 0

0 h−hþ

�
¼

�Λ2
s0¼þð1=2Þ 0

0 Λ2
s0¼−ð1=2Þ

�
þ 1

2

ð5Þ

is diagonal. Apart from an overall numerical factor,

Λ2
s0 ¼ −

1

sin θ
∂θðsin θ∂θÞ −

1

sin2θ
ð∂φ − i s0 cos θÞ2 ð6Þ

is the Hamiltonian of an electron moving on a sphere with a
monopole of strength 4πs0 in the center [31,32]. The
Landau levels on the sphere are spanned by two mutually
commuting SU(2) algebras, one for the cyclotron momen-
tum (S) and one for the guiding center momentum (L). The
Casimir of both is given by L2 ¼ S2 ¼ sðsþ 1Þ, where s ¼
js0j þ n and n ¼ 0; 1;… is the Landau level index. With
Λ2 ¼ L2 − s20 ¼ ðnþ 1Þ2 − 1

2
for js0j ¼ 1

2
, we see that the

eigenvalues of h20 are given by ϵ2 ¼ ðnþ 1Þ2.
In terms of the spinor coordinates u ¼ cosðθ=2Þeiðφ=2Þ,

v ¼ sinðθ=2Þe−iðφ=2Þ introduced by Haldane [31], and their
complex conjugates ū, v̄,

Sþ ¼ u∂ v̄ − v∂ ū; S− ¼ v̄∂u − ū∂v;

Sz ¼ 1

2
ðu∂u þ v∂v − ū∂ ū − v̄∂ v̄Þ; ð7Þ

Lþ ¼ u∂v − v̄∂ ū; L− ¼ v∂u − ū∂ v̄;

Lz ¼ 1

2
ðu∂u − v∂v − ū∂ ū þ v̄∂ v̄Þ: ð8Þ

The physical Hilbert space is restricted to states with Sz

eigenvalue s0, Szϕ ¼ s0ϕ [32]. With the ↑ and ↓ spin
components of the eigenstates of h0 thus restricted,
respectively (i.e., Szϕ↑ ¼ 1

2
ϕ↑ and Szϕ↓ ¼ − 1

2
ϕ↓), it is

easy to show that h−ϕ↑ ¼ −S−ϕ↑ and hþϕ↓ ¼ −Sþϕ↓,
and hence that

h0 ¼
�

0 −Sþ
−S− 0

�
: ð9Þ

The Dirac property of h0 and the eigenvalues of h20 imply
that the eigenstates take the form

h0ψλ
nm ¼ λðnþ 1Þψλ

nm; ψλ
nm ¼

�
ϕ↑
nm

λϕ↓
nm

�
; ð10Þ

where λ ¼ �1 distinguishes positive and negative energy
solutions, and m is the eigenvalue of Lz. With
hþh− ¼ S−Sþ þ 1, we find [32]

ϕ↑
nm ¼ ðL−Þs−mðS−Þnu2s ¼ ðL−Þs−mv̄nunþ1; ð11Þ

where s ¼ nþ 1
2
and m ¼ −s;−sþ 1;…; s. With Eq. (10),

ϕ↓
nm ¼ −

S−

nþ 1
ϕ↑
nm ¼ −ðL−Þs−munv̄nþ1: ð12Þ

The number of degenerate states in the (nþ 1)th Landau
level with energy ϵ ¼ λðnþ 1Þ is hence 2ðnþ 1Þ, and

PRL 115, 017001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
3 JULY 2015

017001-2



grows linearly with jϵj, as required for a Dirac cone [see
Fig. 1(a)].
H0 is invariant under both time reversal T ≡ −iσyK

(where K denotes complex conjugation) and parity
P≡ σxPθ (where Pθ takes θ → π − θ). The basis states
[Eq. (10)] transform according to

Tψλ
nm ¼ λð−1Þm−ð1=2Þψλ

n;−m; ð13Þ

Pψλ
nm ¼ λð−1Þnþmþð1=2Þψλ

n;m: ð14Þ

Momentum space cutoff.—The Dirac HamiltonianH0 (or
h0) governs the behavior of the surface states of a
topological insulator for energies close to the Dirac nodal
point. At higher and lower energies, the surface states
merge with the bulk conduction and valence bands,
respectively, and their weight on the surface diminishes.
Consequently, even strong electron-electron interactions of
the order of the bulk gap will only induce small matrix
elements between bulk and surface states. It is hence
sensible to study the effects of strong interactions on the
surface states alone, when working in the Fock space
constructed from the single-particle eigenstates of H0 with
ð1þ nÞv=R < Λ, where Λ is a cut-off energy imposed by
the bulk energy gap. Importantly, it is impossible to build
orbitals in position space that are localized on length scales

smaller than 2πv=Λ in this restricted Hilbert space. Thus
even if the interaction energy scales are much larger than Λ,
the problem does not reduce to a classical limit [28]. This is
somewhat reminiscent of the Landau level problem, with
the important difference that single-particle states are
exponentially localizable on long enough distances on
the topological insulator surface while they are power-
law decaying in a Landau level on a compact manifold.
Interactions.—On this restricted single particle Hilbert

space, we consider a contact interaction

Hint ¼ U
Z
S2

d2rρ↓ðrÞρ↑ðrÞ; ð15Þ

where ρsðrÞ is the density operator of electrons with spin s
at position r. This interaction preserves T; P, the number of
particles Np, and the total angular momentum

M ¼ PNp

i¼1 mi. We have studied the phase diagram of this
model as a function of U=Λ and electron filling via exact
diagonalization up to n ¼ 2 (Λ ¼ 3.5v=R, 24 single par-
ticle states) (see Fig. 2).
Magnetic phases.—At half filling and for U=Λ > 3, the

ground state is a ferromagnet. In the finite system, we find
two quasidegenerate ground states jFM�i with P ¼ �1 in
the M ¼ 0 sector. The magnetization operator in er
direction, Σ3 ≡ R

S2
d2r½ρ↑ðrÞ − ρ↓ðrÞ�, anticommutes with

the parity operator P, since Σ3ψ
λ
nm ¼ ψ−λ

nm. This implies that
hFMþjΣ3jFMþi ¼ hFM−jΣ3jFM−i ¼ 0. The magnetiza-
tion of the ferromagnetic ground states with spontaneously

(a) (c)

(b)

FIG. 1 (color online). (a) Single-particle spectrum of the surface
states of a spherical topological insulator for n ≤ 2. (b),(c) Exact
diagonalization spectra for the topological insulator surface states
subject to the contact interaction [Eq. (15)] for a Hilbert space
restriction n ≤ 2 as a function of interaction strength U=Λ for
(b) Np ¼ 12 and (c) Np ¼ 9. We find an s-wave superconductor
(SC, blue), an anomalous Hall effect (AHE, red) coinciding with
ferromagnetism that becomes a gapped anomalous quantum Hall
phase (AQHE) at half filling. Two gapless phases include the
semimetal (SM, green) at half filling and a Fermi liquid (FL,
yellow). The FL is the region in phase space where we do not
observe an ordered or gapped ground state. Together with the
numerical results for the spin polarization, these spectra lead to
the phase diagram Fig. 2.

AHE
FLSC

AQHE

FIG. 2 (color online). Phase diagram for the same model as in
Fig. 1 as a function of interaction strength U=Λ and filling
ν ¼ Np=½2ðn0 þ 1Þðn0 þ 2Þ�, with the same color code for the
phases. Left panel: Lower end of the energy spectrum in the limit
U=Λ → −∞ as a function of the particle number Np. The
superconducting ground state is evidenced by the degeneracy
of the ground states in all sectors of even Np. Right panel:
Magnetization M of the twofold (fourfold) quasidegenerate
ground state manifold in the limit U=Λ → ∞ as a function of
the even (odd) Np. It evidences spontaneously broken TRS in the
thermodynamic limit.
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broken TRS, which emerge in the thermodynamic limit, is
hence given byM≡ hFMþjΣ3jFM−i. A ferromagnetically
ordered gapped surface termination of a 3D topological
insulator features a half-integer Hall effect—a phase that
would not be possible in a pure 2D system without intrinsic
topological order. Thus, the ferromagnetic phase also
constitutes an anomalous quantum Hall phase. Between
two domains of opposite magnetization, there exists a
chiral boundary state [see Fig. 3(a)]. Upon hole or electron
doping the anomalous quantum Hall phase, the system
enters an anomalous Hall phase without a quantized Hall
conductance. This phase can be distinguished from the
anomalous quantum Hall phase by the scaling of its (finite
size) gap with U: It converges to a constant for large U,
while in the incompressible phase the gap does not saturate
as U is increased. At high doping, the ground state is a
Fermi liquid which does not violate any symmetry. We
distinguish these two phases by the different quasidege-
neracies of the ground state and by computing the
magnetization M in this quasidegenerate subspace [see
Figs. 1(b) and 1(c)] [33].
While the small number of numerically amenable system

sizes (possible values for the cutoff) does not allow for a
proper extrapolation to the thermodynamic limit, a com-
parison of data for n < 3 not shown here indicates that the
onset of the ferromagnetic phase should remain atU=Λ ∼ 3
in this limit. Unfortunately, our finite size studies cannot
preclude the appearance of new phases in larger systems, a

concern which may be of particular validity near the
quantum critical point.
Superfluid phase.—At negative U, the system enters a

superfluid phase. We see this from even-odd oscillations of
the ground state energy as a function of particle number
found in the entire range of negative U as well as a
quadratically dispersing mode in the even Np sectors
noticeable for U=Λ≲ −1, that is the precursor of the
superfluid’s Goldstone mode in the thermodynamic limit.
For U=Λ → −∞, this mode becomes exactly flat; i.e., we
observe a set of degenerate states at M ¼ 0, one in each
sector of even Np (see Fig. 2). The low energy excitations
above the ground state in each sector of even Np show the
same structure as the spectrum of two electrons subject to
an infinite repulsive interaction, which consists of three
quasidegenerate states with M ¼ −1; 0; 1. This suggests
that the low-energy excitations in the superfluid phase are
obtained by breaking up an individual Cooper pair into two
electrons which do not interact with the condensate. An
s-wave superconducting termination of a 3D topological
insulator is a topological superconductor in the sense that it
supports Majorana zero energy states in vortex cores
and a chiral Majorana mode at the boundary with, e.g.,
a ferromagnetic region of the surface [see Fig. 3(b)]. That
we obtain a gapped superconducting state in the limit
U=Λ → −∞ is a direct manifestation of the localization
properties of the single-particle states. If the single particle
states were fully localizable in real space, pairs of electrons
could bind into pointlike particles and the ground state
would be exponentially degenerate.
Conclusions.—We have developed a formalism to study

interaction effects on fermionic 3DTI surface states numeri-
cally. From the analysis of a two-body contact interaction,
we found both ferromagnetic and topologically nontrivial
superconducting phases, as well as chiral fermion and
chiral Majorana fermion boundary modes between different
phases. Several branches of future investigation can be
anticipated, such as the application to bosons and studies of
more sophisticated interaction profiles. The formalism
establishes an ideal testing ground for topologically
ordered TI surface state scenarios.
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