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Magnetic excitations in the site-centered stripe phase: Spin-wave theory of coupled three-leg ladders
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The success of models of coupled two-leg spin ladders in describing the magnetic excitation spectrum of
La2−xBaxCuO4 had been interpreted previously as evidence for bond-centered stripes. In a recent article, however,
we determined the magnetic coupling induced by the charge stripes between bond- or site-centered spin stripes
modeled by two- or three-leg ladders, respectively. We found that only the site-centered models order, while the
coupling in bond-centered models is insufficient to trigger the quantum phase transition into the magnetically
ordered state. We further indicated excellent agreement of a fully consistent analysis of coupled three-leg ladders
using a spin wave theory of bond with the experimental data. Here, we provide a full and detailed account of this
analysis.
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I. INTRODUCTION

Twenty years after the discovery, the mechanism of high-
Tc superconductivity in the copper oxide materials is still
considered one of the most important outstanding problem in
contemporary physics.1,2 The materials are described by mo-
bile charge carriers (holes) doped into a quasi-two-dimensional
spin 1/2 antiferromagnet.3,4 Inelastic neutron scattering exper-
iments have revealed a magnetic resonance peak5,6 and, in
some compounds, periodic modulations in the spin and charge
density (stripes).7–14 Tranquada et al.15 found that the magnetic
excitation spectrum of stripe ordered La1.875Ba0.125CuO4 looks
similar to disordered YBa2Cu3O6+x

6 or Bi2Sr2CaCu2O8+δ ,16

and observed that the data are consistent with bond-centered
stripes modeled by two-leg ladders. This experiment is
considered of key importance for the field, as it it may provide
the decisive hint as to within which framework copper oxide
superconductors may be understood.

With regard to such a framework, there is no consensus at
present, but a fierce competition among different schools of
thought. One of these schools10,11,13,14 attributes the unusual
properties of the doped, two-dimensional antiferromagnets
to their propensity to form stripes, or their proximity to a
quantum critical point (QCP) at which stripe order sets in.
The resulting picture is highly appealing. Static stripes have
been observed9,12 only in certain compounds, most notably
La2−xSrxCuO4 at a hole doping concentration x = 1

8 , and
are known to suppress superconductivity. On the other hand,
the mere existence of stripes would impose an effective one
dimensionality, and hence provide a framework to formulate
fractionally quantized excitations. This one dimensionality
would be roughly consistent with an enormous body of exper-
imental data on the cuprates, including the electron spectral
functions seen in angle-resolved photoemission spectroscopy
(ARPES). The charge carriers, the holons, would predomi-
nantly reside in the charge stripes, as they could maximize
their kinetic energy in these antiferromagnetically disordered
regions. In the spin stripes, by contrast, the antiferromagnetic
exchange energy between the spins would be maximized,
at the price of infringing on the mobility of the charge
carriers. Most importantly, the spin stripes would impose
a coupling between the charge stripes, which would yield

an effective, pairwise confinement between the low-energy
spinon and holon excitations residing predominantly in the
charge stripes. The mechanism of confinement would be
similar to that of coupled spin chains or spin ladders.17–19

The holes would be described by spinon-holon bound states,
and the dominant contribution to the magnetic response
measured in Tranquada’s as well as all other neutron scattering
experiments would come from spinon-spinon bound states.

The similarity of the “hour-glass” spectrum shown in
Fig. 4(b) of Tranquada et al.15 (which is reproduced for com-
parison in Fig. 1(b)) with the “elephants trousers” observed by
Bourges et al.6 (which are reproduced for comparison in Fig. 2)
provides the most striking evidence in favor of the picture
advocated by this school, which attributes the anomalous
properties of generic, disordered CuO superconductors to
the formation of dynamic (rather than static) stripes, which
fluctuate on time scales which are slow compared to the
energy scales of most experimental probes. This picture is
considered to receive additional support by Xu et al.,20 who
observed that the magnetic response of La1.875Ba0.125CuO4

at higher energies is independent of temperature, while the
stripe order melts at about Tst ∼ 54 K. Measurements on
“untwinned” samples of YBa2Cu3O6.6, where one would
expect the dynamical stripes to orient themselves along one of
the axis, however, exhibit a strong anisotropy in the response
only at energies below the resonance,21 while the response
is fourfold rotationally symmetric at higher energies.22 We
believe, however, that this only indicates that the formation
of stripe correlations, be it static or dynamic, is a low energy
phenomenon, while the high energy response probes itinerant
antiferromagnets at length scales on which the stripes are
essentially invisible.

An extremely appealing feature of the experiment by
Tranquada et al.15 is that it immediately suggests a model
of ferromagnetically coupled two-leg ladders, as the upper
part of the measured spectrum agrees strikingly well with the
triplon (or spinon-spinon bound state) mode of isolated two-leg
ladders (see Fig. 1(b)). The experiment hence appeared to point
to bond-centered rather than site-centered stripes, (i.e., stripes
as depicted in Fig. 3(a) rather than Fig. 3(b)), and thereby to
resolve a long outstanding issue.
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FIG. 1. (Color online) (a) Superpositions of cuts along (kx, π )
and (π, ky) for the lowest mode ω(k) obtained with the bond operator
spin wave theory of coupled three-leg ladders presented here (red
line) superimposed with the experimental data obtained by inelastic
neutron scattering by Tranquada et al.15 (black). (b) The neutron data
as originally presented, with a triplon dispersion of a two-leg ladder
superimposed (red line) (reprinted by permission from Macmillian
Publishers Ltd., Nature (London) 429, 534 (2005).

This interpretation received support by theoretical
studies.23–25 Vojta and Ulbricht23 used a bond operator
formalism26 similar to ours to study a spin-only model
of stripes27 of coupled two-leg ladders (as depicted in
Fig. 3(a)) with J‖ = J , took into account a bond-boson
renormalization28 of J , and assumed a value J ′ for the
ferromagnetic coupling between the ladders which is large
enough to close the spin gap of the ladders, i.e., to induce
long-range magnetic order. Within their approximations, a
value of J ′ = −0.06J is sufficient. This value is not consistent
with previous studies,29–31 but as no method to calculate
or even estimate the true J ′ induced by charge stripes had
been available, it did not seem a problem at the time. The
spectrum they obtained agrees well with experimental data
measured by Tranquada et al.,15 and hence appeared to justify

FIG. 2. Overall momentum dependence of the magnetic response
of superconducting YBa2Cu3O6.85 as reported by Bourges et al.6

There is no stripe ordering in this compound (from Bourges et al.,
Ref. 6; reprinted by permission from AAAS).

JJ
J

JJ
J

(a)

(b)

FIG. 3. Spin model for (a) bond-centered and (b) site-centered
stripes in CuO superconductors.

their assumptions a posteriori. They concluded in favor of
bond-centered stripes. This conclusion was independently
strengthened by Uhrig, Schmidt, and Grüninger,24 who used
the method of continuous unitary transformations to study
a model of ferromagnetically coupled two-leg ladders, and
observed that the critical value of J ′

c can be significantly
reduced if a cyclic exchange term Jcyc on the ladders is
included.32 They likewise fine-tuned J ′ to the QCP where the
gap closes and long-range magnetic order ensues, and reported
good agreement with experiment.

On the other hand, Seibold and Lorenzana33,34 calculated
the magnetic response for a range of dopings within the
time-dependent Gutzwiller approximation, and found good
agreement with the measured data for both bond- and site-
centered stripe models. Konik, Essler, and Tsvelik35 studied
a model of alternating coupled doped and undoped two-leg
ladders, and found two distinct possible scenarios of magnetic
ordering, which are both consistent with the experimental data.

In a recent article,36 we investigated whether it is reasonable
to assume that the ferromagnetic coupling J ′ induced by the
charge stripe between the spin stripes modelled by two-leg
ladders is sufficiently to induce long range order. There are
several estimates for the critical value J ′

c required if the
coupling between isotropic ladders is antiferromagnetic in
the literature. Gopalan, Rice, and Sigrist29 find J ′

c ≈ 0.25J

in a simple mean-field treatment of bond bosons. Quantum
Monte Carlo (QMC) calculations by Tworzydło et al.30 yielded
J ′

c = 0.30(2)J , a value subsequently confirmed by Dalosto
and Riera.31 We redid the mean-field calculation of Gopalan
et al.29 for ferromagnetic (FM) couplings J ′

c < 0, and found
that within this approximation, the absolute value of J ′

c is
independent of the sign of the coupling. QMC calculations by
Dalosto et al.,31 however, indicate that the true value is at least
Jc = −0.4J (see Fig. 6(b) of their article). The physical reason
why a significant coupling between the ladders is required to
induce magnetic order is that the individual two-leg ladders
possess a gap of order � ≈ J/2. As a cyclic exchange term
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Jcyc ≈ 0.25J reduces this gap by a factor of two,32 we expected
that J ′

c would likewise be reduced by a factor of two. We hence
concluded that a FM coupling of at least somewhere between
J ′

c = −0.2J and −0.4J is required, depending on the strength
of a possible cyclic exchange term.

The value we obtained for the ferromagnetic coupling
induced by the charge stripes between the spin stripes
through exact diagonalization of small clusters with and
without charge stripes, however, is J ′ = −0.05J .36 The
details of this calculation are given in Appendix C.
The coupling is hence insufficient to induce order in a model of
coupled two-leg ladders describing bond-centered stripes. This
does not imply that the stripes cannot be bond-centered, but
rather implies that it is not sensible to describe bond-centered
stripes through spin-only models of coupled two-leg ladders.

For a model of site-centered stripes described by antiferro-
magnetically coupled three-leg ladders, as shown in Fig. 3(b),
the critical coupling required for long range order to set in
is by contrast J ′

c = 0. The reason is simply that there is no
need to close a gap, as the three-leg ladders are individually
gapless.17 A conventional spin wave analysis for such a
spin-only model of three- and four-leg ladders was performed
by Yao, Carlson, and Campbell,37 who found that their
approximation agrees reasonable well with the experimental
data if they take J ′ = 0.05J and J ′ = −0.09J for coupled
three- and four-leg ladders, respectively. The calculation we
present in Appendix B, however, singles out J ′ = 0.07J for
the antiferromagnetic coupling between spin stripes modeled
by three-leg ladders. In our previous work,36 we announced
that a fully consistent spin wave theory of bond operators
representing the eight-dimensional Hilbert spaces on each rung
of the three-leg ladders agrees perfectly with the experimental
data if and only if the correct, calculated value J ′ = 0.07J is
used for the coupling.

In this context, one may ask whether it might be possible to
obtain an equally valid description in terms of bond-centered
stripes modelled by four-leg ladders. We believe the answer
is no, as the width of the charge stripes in between the
ladders would be zero, and one would have to assume that
the antiferromagnetic coupling J between neighboring sites of
the original t-J model, would turn into a weak ferromagnetic
coupling between the four-leg ladders. There would be no
foundation for such an assumption. Furthermore, since the
four-leg ladders are gapped, just as the two-leg ladders are,
one would need to fine tune this ferromagnetic coupling to
exactly the point where the gap closes and magnetic order
with k = π ± π/4 emerges. So regardless of the agreement
with the measured spectrum one might be able to obtain, we
believe that a spin-only model of four-leg ladders would not
constitute a valid theory.

In this paper, we provide a full and detailed account of our
analysis of our spin-only model of coupled three-leg ladders.
The paper is organized as follows. In Sec. II, we introduce a
basis as well as a set of bosonic creation and annihilation
operators for the three-site rungs of the ladders, in terms
of which we write both the rung Hamiltonian and the spin
operators on the individual sites. In Sec. III, we couple the
rungs both along the ladders and across neighboring ladders,
and self-consistently determine the fiducial state such that all
the terms linear in a single creation or annihilation operator

in the resulting Hamiltonian vanish. In Sec. IV, we rewrite
this Hamiltonian in terms of momentum space operators, and
expand it to bi-linear order in term of those. We then solve for
the low energy spectrum using a multidimensional Bogoliubov
transformation in Sec. V. In Sec. VI, we compare our results
to the experimental data obtained by Tranquada et al.,15 and
investigate the dependence of the spectrum we obtain on the
value of the interladder coupling J ′. Finally, we present our
conclusions in Sec. VII.

II. BASIS STATES FOR THREE-SITE RUNGS

To begin with, consider a single rung of a three-leg ladder,
consisting of spins which are antiferromagnetically coupled
with a coupling J we set to unity (see Fig. 4).

For later purposes, let us consider a rung belonging to
sublattice A, i.e., set-up conventions, the rungs belonging to
sublattice A will inherit in the following sections. Denoting
the SU(2) spin operators for the three spin 1

2 ’s on the sites by
s1,s2, and s3, the Hamiltonian for the rung reads

ĤA = ŝ1 ŝ2 + ŝ2 ŝ3. (1)

Diagonalization yields the following eigenvalues and eigen-
vectors:

E = −1

{
|b−1/2〉 = − 1√

6

(|↑↓↓〉 − 2|↓↑↓〉 + |↓↓↑〉)
|b1/2〉 = − 1√

6

(|↓↑↑〉 − 2|↑↓↑〉 + |↑↑↓〉) ,

E = 0

{
|a−1/2〉 = 1√

2

(|↑↓↓〉 − |↓↓↑〉)
|a1/2〉 = 1√

2

(|↓↑↑〉 − |↑↑↓〉) , (2)

E = 1
2

⎧⎪⎪⎨
⎪⎪⎩

|c−3/2〉 = |↓↓↓〉
|c−1/2〉 = 1√

3

(|↓↓↑〉 + |↓↑↓〉 + |↑↓↓〉)
|c1/2〉 = 1√

3

(|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉)
|c3/2〉 = |↑↑↑〉

.

Note that the two states |a−1/2〉 and |a−1/2〉 are antisymmetric
under spacial reflections interchanging sites 1 and 3 on the
rung, while all other states are symmetric. This distinction will
prove useful when expanding the Hamiltonian for the coupled
ladders in Sec. IV below.

We denote the orthonormal basis formed by these eight
states by

M = {|b−1/2〉,|b1/2〉,|a−1/2〉,|a1/2〉,
|c−3/2〉,|c−1/2〉,|c1/2〉,|c3/2〉}. (3)

In this basis, the Hamiltonian matrix is trivially given by

ĤA = −(|b−1/2〉〈b−1/2| + |b1/2〉〈b1/2|
)

+ 1
2

(|c−3/2〉〈c−3/2| + |c−1/2〉〈c−1/2|
+ |c−1/2〉〈c−1/2| + |c3/2〉〈c3/2|

)
. (4)

ŝ1 ŝ2 ŝ3

FIG. 4. Single rung on sublattice A.
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Neither of these exact eigenstates, however, is suited as a
fiducial state for spin wave theory. We are hence led to define
a vacuum state

|b̃−1/2〉 ≡ |b−1/2〉 cos φ + |c−1/2〉 sin φ

= (|↑↓↓〉 + |↓↓↑〉)(− 1√
6

cos φ + 1√
3

sin φ
)

+ |↓↑↓〉(√
2
3 cos φ + 1√

3
sin φ

)
, (5)

which interpolates between the quantum ground state |b−1/2〉
of the isolated rung with Sz = − 1

2 for φ = 0 and the classically
Néel ordered state |↓↑↓〉 for φ = arctan( 1√

2
) = 0.6155. The

parameter φ will depend on the coupling between the rungs
and the ladders. The motivation for introducing the state
|b̃−1/2〉 will become clear as we determine φ self-consistently
below.

Since we wish |b̃−1/2〉 to be one of our basis states, we
replace (3) by

MA = {|μ〉A ; μ = 1, . . . ,8}
= {|b̃−1/2〉,|b1/2〉,|a−1/2〉,|a1/2〉,

|c−3/2〉,|c̃−1/2〉,|c1/2〉,|c3/2〉}, (6)

with

( |b−1/2〉
|c−1/2〉

)
=

(
u −v

v u

)( |b̃−1/2〉
|c̃−1/2〉

)
(7)

and u = cos φ, v = sin φ. The relevant terms in the
Hamiltonian (4) transform into

( |b−1/2〉 ,|c−1/2〉
)( −1 0

0 1
2

)( 〈b−1/2|
〈c−1/2|

)

= ( |b̃−1/2〉, |c̃−1/2〉
)(

1
2 − 3

2u2 3
2uv

3
2uv −1 + 3

2u2

)( 〈b̃−1/2|
〈c̃−1/2|

)
.

(8)

As a next step, we introduce bosonic creation and anni-
hilation operators a

†
0 ≡ |a−1/2〉〈b̃−1/2|, etc., as indicated in

Fig. 5. The subscripts of these operators refer to the change
in the z component of the total spin on the rung. Note
that these operators do not obey the commutation relations
of independent ladder operators, as we can create only one
“particle” with either a

†
0 or a

†
1 or any other creation operator

from the “vacuum” state |b̃−1/2〉.
Completeness and orthonormality of the basis (6)

implies

|b̃−1/2〉〈b̃−1/2| = (
1 − b

†
1b1 − a

†
0a0 − a

†
1a1

− c
†
−1c−1 − c

†
0c0 − c

†
1c1 − c

†
2c2

)
. (9)

|c−3/2

|a−1/2 |b̃−1/2 |c̃−1/2

|a1/2 b1/2 c1/2

|c3/2

−3
2

−1
2

+1
2

+3
2

a†0 c†0

b†1
a†1

c†1

c†−1

c†2

S = 1
2

S = 1
2

S = 3
2

antisym. sym. sym.
Sz

FIG. 5. Bosonic operator for sublattice A.

With (7) and (9), the rung Hamiltonian (4) may be rewritten
in terms of the bosonic operators:

ĤA =
(

1

2
− 3

2
u2

)
+

(
−1

2
+ 3

2
u2

) (
a
†
0a0 + a

†
1a1

)
+ 3

2uv
(
c
†
0 + c0

) + 3
2

(
u2 − v2

)
c
†
0c0

− 3
2v2b

†
1b1 + 3

2u2
(
c
†
−1c−1 + c

†
1c1 + c

†
2c2

)
. (10)

On sublattice B, we introduce a similar basis MB, with the
only difference that the fiducial state |b̃1/2〉 has Sz = 1

2 instead
of sz = − 1

2 for |b̃−1/2〉 on sublattice A:

MB = {|μ〉B ; μ = 1, . . . ,8}
= {|b̃1/2〉,|b−1/2〉,|a1/2〉,|a−1/2〉,

|c3/2〉,|c̃1/2〉,|c−1/2〉,|c−3/2〉}, (11)

with ( |b1/2〉
|c1/2〉

)
=

(
u −v

v u

)( |b̃1/2〉
|c̃1/2〉

)
. (12)

We introduce a second set of bosonic creation and annihilation
operators A

†
0 ≡ |a1/2〉〈b̃1/2| etc., as indicated in Fig. 6.

The Hamiltonian HB for a single rung belonging to
sublattice B is in analogy to (10) given by

ĤB =
(

1

2
− 3

2
u2

)
+

(
−1

2
+ 3

2
u2

) (
A

†
−1A−1 + A

†
0A0

)
+ 3

2uv
(
C

†
0 + C0

) + 3
2

(
u2 − v2

)
C

†
0C0 − 3

2v2B
†
−1B−1

+ 3
2u2

(
C

†
−2C−2 + C

†
−1C−1 + C

†
1C1

)
. (13)

For later purposes, we write the spin operators ŝ±
α =

ŝx
α ± iŝ

y
α and ŝz

α for the individual sites α = 1,2,3 on rungs
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|c3/2

|a1/2 |b̃1/2 |c̃1/2

|a−1/2 b−1/2 c−1/2

|c−3/2

+3
2

+1
2

−1
2

−3
2

A†
0 C†

0

B†
−1

A†
−1

C†
−1

C†
1

C†
−2

S = 1
2

S = 1
2

S = 3
2

antisym. sym. sym.
Sz

FIG. 6. Bosonic operator for sublattice B.

belonging to sublattice A in terms of our bosonic creation and
annihilation operators:

ŝ+
α = s+

α,21b
†
1 + s+

α,41a
†
1 + s+

α,71c
†
1 + s+

α,15c−1 + s+
α,82c

†
2b1

+s+
α,23b

†
1a0 + s+

α,43a
†
1a0 + s+

α,73c
†
1a0 + s+

α,84c
†
2a1

+s+
α,35a

†
0c−1 + s+

α,65c
†
0c−1 + s+

α,26b
†
1c0

+ s+
α,46a

†
1c0 + s+

α,76c
†
1c0 + s+

α,87c
†
2c1,

ŝ−
α = (

ŝ+
α

)†
, (14)

ŝz
α = sz

α,11

(
1 − b

†
1b1 − a

†
0a0 − a

†
1a1

− c
†
0c0 − c

†
1c1 − c

†
−1c−1 − c

†
2c2

)
+ sz

α,22b
†
1b1 + sz

α,55c
†
−1c−1 + sz

α,66c
†
0c0

+sz
α,77c

†
1c1 + sz

α,88c
†
2c2

+ sz
α,13

(
a
†
0 + a0

) + sz
α,16

(
c
†
0 + c0

)
+ sz

α,27

(
b
†
1c1 + c

†
1b1

) + sz
α,24

(
b
†
1a1 + a

†
1b1

)
+ sz

α,36

(
a
†
0c0 + c

†
0a0

) + sz
α,47

(
a
†
1c1 + c

†
1a1

)
.

The matrix elements

sτ
α,μν = 〈μ|ŝτ

α |ν〉A with τ = +, − , z, (15)

and |μ〉A as defined in (6) are written out explicitly in
Appendix A.

Similarly, the individual spin-operators Ŝ±
α on rungs be-

longing to sublattice B are given by

Ŝ−
α = S−

α,21B
†
−1 + S−

α,41A
†
−1 + S−

α,71C
†
−1 + S−

α,15C1

+ S−
α,82C

†
−2B−1 + S−

α,23B
†
−1A0 + S−

α,43A
†
−1A0

+ S−
α,73C

†
−1A0 + S−

α,84C
†
−2A−1 + S−

α,35A
†
0C1

+ S−
α,65C

†
0C1 + S−

α,26B
†
−1C0 + S−

α,46A
†
−1C0

+ S−
α,76C

†
−1C0 + S−

α,87C
†
−2C−1,

Ŝ+
α = (

Ŝ−
α

)†
, (16)

Ŝz
α = Sz

α,11

(
1 − B

†
−1B−1 − A

†
0A0 − A

†
−1A−1

−C
†
0C0 − C

†
−1C−1 − C

†
1C1 − C

†
−2C−2

)
+ Sz

α,22B
†
−1B−1 + Sz

α,55C
†
1C1 + Sz

α,66C
†
0C0

+ Sz
α,77C

†
−1C−1 + Sz

α,88C
†
−2C−2

+ Sz
α,13

(
A

†
0 + A0

) + Sz
α,16

(
C

†
0 + C0

)
+ Sz

α,27

(
B

†
−1C−1 + C

†
−1B−1

)
+ Sz

α,24

(
B

†
−1A−1 + A

†
−1B−1

)
+ Sz

α,36

(
A

†
0C0 + C

†
0A0

)
+ Sz

α,47

(
A

†
−1C−1 + C

†
−1A−1

)
,

with Sτ
α,μν = 〈μ|Ŝτ

α |ν〉B likewise given in Appendix A.

III. COUPLING THE RUNGS

As a microscopic model for site centered spin stripes, we
couple the three-site rungs into three-leg ladders, with the spins
coupled antiferromagnetically with J along the ladders and
with J ′ between neighboring ladders, as shown in Fig. 7. The
sublattice indices assigned to each rung alternate in both di-
rections, i.e., under translation by either of the primitive lattice
vectors x̂ = (4a,0) or ŷ = (0,a), where a is the lattice constant
we herewith set to unity. The microscopic model is hence given

A

B

A

B

B

A

B

A

JJ J J

Ri+ŷ

Ri Ri+x̂
x̂

ŷ

ŝ1 ŝ2 ŝ3

FIG. 7. The microscopic model for site centered spin stripes, with
intrarung couplings set to unity, inter-rung–intraladder couplings J ,
and interladder couplings J ′. The real space unit cell contains two
rungs and is indicated by the shaded area in gray.
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by the Hamiltonian

Ĥ =
∑
i∈A

(
ĤA

i + J

3∑
α=1

ŝαi Ŝαi+ ŷ + J ′ ŝ3i Ŝ1i+x̂

)

+
∑
j∈B

(
ĤB

j + J

3∑
α=1

Ŝαj ŝαj+ ŷ + J ′ Ŝ3j ŝ1j+x̂

)
. (17)

When evaluating the spectrum of (17) below, we will set J = 1
(and thereby equal to the intrarung couplings). The interladder
coupling J ′ is determined numerically by comparing the
energy difference of a t-J model with a charge stripe with and
without frustrated boundary conditions to the corresponding
difference in a Heisenberg model, in which the charge stripe
has been replaced by an antiferromagnetic coupling J ′ (see
Appendix B); we find J ′ = 0.07. For the moment, however,
we keep the inter-rung and inter-ladder couplings J and J ′ as
free parameter, as this makes it easier to trace the individual
terms in the expansion below.

The next step is to expand (17) in terms of our
bosonic creation and annihilation operators, using (14), (16),
and

sα Sβ = 1

2

(
ŝ+
α Ŝ−

β + ŝ−
α Ŝ+

β

)
+ ŝz

αŜz
β . (18)

We keep only terms up to second order in the operators. Since
ŝz
α (and Ŝz

α) contains a constant term with coefficient sz
α,11 as

well as the linear terms

sz
α,13

(
a
†
0 + a0

) + sz
α,16

(
c
†
0 + c0

)
,

the expanded Hamiltonian will contain the linear term[
2J

3∑
α=1

Sz
α,11s

z
α,16 + J ′(Sz

1,11s
z
3,16 + Sz

3,11s
z
1,16

])(
c
†
0 + c0

)
(19)

in addition to the linear term
3

2
uv

(
c
†
0 + c0

)
(20)

already contained in (10) for each rung i on sublattice A. The
terms proportional to (

a
†
0 + a0

)
cancel since sz

1,13 = −sz
3,13 and sz

2,13 = 0. This cancellation can
also be inferred from symmetry considerations, as elaborated
in the following section.

We eliminate the linear terms (19) and (20) by adjusting the
parameter φ, i.e., by solving

3

2
uv + 2J

3∑
α=1

Sz
α,11s

z
α,16 + 2J ′Sz

1,11s
z
3,16 = 0 (21)

with J = 1, J ′ = 0.07, u = cos φ, v = sin φ, and the matrix
elements sz

α,μν as given in Appendix A in terms of u and v.
This yields

√
2
v

u
≈ 0.5019 or φ = 0.3410. (22)

On a formal level, the reason for rotating our basis states via
(5), (7), and (12) to begin with was that this created the linear

term (20) in HA. Without this term, there would have been
no way to eliminate (19), and the basis set would have been
highly impractical for further analysis. On a physical level, the
spontaneous breakdown of the SU(2) spin rotation symmetry
leads us to expect that the fiducial state of the rungs is much
closer to the classically ordered Néel state |↑↓↑〉 than |b−1/2〉.
Not surprisingly, the spectrum evaluated below is gapless at
some point in the Brillouin zone, as required by Goldstone’s
theorem for a state with a spontaneously broken continuous
symmetry, if and only if φ assumes the value (22).

IV. EXPANDING THE HAMILTONIAN

To evaluate the spectrum of (17), we first define momentum
space operators on sublattice A according to

a0,k =
√

2

N

∑
i∈A

eikRi a0,i ,

a0,i =
√

2

N

∑
k

e−ikRi a0,k, (23)

where where N denotes the number of rungs and the sums over
k are taken over the reduced Brillouin zone indicated in gray
in Fig. 8. Similarly, for the creation and annihilation operators
on sublattice B we introduce

A0,k =
√

2

N

∑
j∈B

e−ikRj A0,j ,

A0,j =
√

2

N

∑
k

eikRj A0,k, (24)

which differ from (23) only in that the sign of the phases
is reversed. Since we are only interested in the one-particle
spin wave spectrum, we neglect the effect of the Hilbert
space restrictions for the real space creation and annihilation
operators (i.e., that we could create only one “particle” per
rung) on the momentum space operators.

As mentioned above, we only keep terms up to second order
in the creation and annihilation operators in the Hamiltonian.
When substituting the explicit expressions (14) and (16) into

π/2

π

kx20 π

ky

2π

0

FIG. 8. The reduced Brillouin zone corresponding to the real
space unit cell indicated in Fig. 7 contains only one-eighth of the
full Brillouin zone and is indicated by the shaded area.
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(17), we see immediately that many terms yield only higher
orders, while others cancel. To begin with, since the spin flip
operators only contain terms of first and second order in the
creation and annihilation operators and are always multiplied
with another spin-flip operator, we only need to keep terms of
first order in the expressions for ŝ+

α and Ŝ−
α . The expansions

of the ŝz
αŜz

β terms are slightly more complicated, as ŝz
α and

Ŝz
β contain constant terms in addition to terms of first and

second order in the creation and annihilation operators. We
have adjusted the parameter φ such that the linear terms in
the expansion cancel. Most of the quadratic terms result from
multiplying the constant term Sz

α,11 in the expansion of Ŝz
α

with the quadratic terms in ŝz
α and multiplying sz

α,11 with
quadratic terms in Ŝz

α . This yields seven diagonal terms (like
b
†
1b1) and four off-diagonal terms (like b

†
1c1 + c

†
1b1) for each

sublattice. Three of the off-diagonal terms, those linear in the
antisymmetric operators a

†
1 or a1, vanish. This can be seen

either from the explicit coefficients written out in Appendix A
(e.g., sz

1,24 = −sz
3,24 and sz

2,24 = 0 while Sz
1,11 = Sz

3,11) or from
a symmetry consideration. As the Hamiltonian is invariant
under reflection symmetry interchanging the outer chains of
each three-leg ladder (i.e., sites 1 and 3 on each rung), there can
only be terms containing an even number of the antisymmetric
operators a

†
0, a0, a

†
1, a1, A

†
0, A0, A

†
−1, or A−1 in the expansion.

In addition to this reflection symmetry, we have the SU(2)
spin rotation symmetry of the Hamiltonian (17). The spin
symmetry implies that the z component of the total spin,

Ŝz
tot =

∑
i∈A

ŝz
αi +

∑
j∈B

Ŝz
αj , (25)

must be conserved. This means that to second order in the
creation and annihilation operators, only operators which
change ŝz or Ŝz by the same integer can appear in each
term. For example, we can have a term b

†
1c1 or b

†
1c

†
−1, but not

b
†
1c0. Both symmetries together imply that to second order, the

Hamiltonian (17) decomposes into terms which contain only
operators belonging to one particular group,

Ĥ = Ẽ0 + Ĥa0 + Ĥc0 + Ĥa1 + Ĥc2 + Ĥb1,c1,c−1, (26)

where Ẽ0 is a contribution to the ground state energy, Ĥa0

contains only the operators a
†
0, a0, A

†
0, and A0, and so on.

The low energy physics we are interested in is contained
in Ĥb1,c1,c−1, which we will analyze in detail below. As for
the other terms, explicit expressions and expansions in terms
of creation and annihilation operators are given in Appendix
C. Ĥa0 and Ĥc0 describe almost dispersionless modes with
energies of around 2.1 and 2.7 (in units of Jexp which we
eventually set to Jexp = 140 meV). Ĥa1 describes a weakly
dispersing mode of energy of about 2.0, with a bandwidth
of about 0.2. Ĥc2 describes a completely dispersionless mode
with energy 3.12. Cuts of the dispersions of these modes are
shown in Fig. 16 in Appendix C. Since these modes occur at
energies at which we consider our spin wave theory no longer
reliable, we will not discuss them further.

To evaluate the spectrum of Ĥb1,c1,c−1, we write

Ĥb1,c1,c−1 =
∑

k

(
�̂

†
kHk �̂k − 1

2
tr(Hk)

)
, (27)

where

�̂
†
k = (

B
†
−1,k,b1,k,C

†
−1,k,c1,k,C1,−k,c

†
−1,−k

)
,

�̂k = (
B−1,k,b

†
1,k,C−1,k,c

†
1,k,C

†
1,−k,c−1,−k

)T
. (28)

The 6 × 6 matrix Hk consists of the k-independent diagonal
terms

Hk,11 = Hk,22 =−3

2
v2 + 2J

3∑
α=1

sz
α,11(Sz

α,22 − Sz
α,11)

+2J ′ sz
3,11(Sz

1,22 − Sz
1,11),

Hk,33 = Hk,44 = 3

2
u2 + 2J

3∑
α=1

sz
α,11(Sz

α,77 − Sz
α,11)

+2J ′ sz
3,11(Sz

1,77 − Sz
1,11),

Hk,55 = Hk,66 = 3

2
u2 + 2J

3∑
α=1

sz
α,11(Sz

α,55 − Sz
α,11)

+2J ′ sz
3,11(Sz

1,55 − Sz
1,11). (29)

The off-diagonal terms are of the general form

Hk,ij = Hk,ji = H 0
ij + Hx

ij cos(4kx) + H
y

ij cos(ky).

The k-independent coefficients

H 0
13 = H 0

24 = 2J

3∑
α=1

sz
α,11S

z
α,27 + 2J ′sz

3,11S
z
1,27 (30)

result from the ŝz
αŜz

β terms. Expansion of the ŝ+
α Ŝ−

β terms yields
the coefficients

Hx
12 = J ′s+

3,21S
−
1,21, Hx

14 = J ′s+
3,71S

−
1,21,

Hx
16 = J ′s+

3,15S
−
1,21, Hx

23 = J ′s−
3,21S

+
1,71,

Hx
25 = J ′s−

3,21S
+
1,51, Hx

34 = J ′s+
3,71S

−
1,71,

Hx
36 = J ′s+

3,15S
−
1,71, Hx

45 = J ′s−
3,71S

+
1,51,

Hx
56 = J ′s+

3,15S
−
1,15,

(31)

and

H
y

12 = J
3∑

α=1
s+
α,21S

−
α,21, H

y

14 = J
3∑

α=1
s+
α,71S

−
α,21,

H
y

16 = J
3∑

α=1
s+
α,15S

−
α,21, H

y

23 = J
3∑

α=1
s−
α,12S

+
α,17,

H
y

25 = J
3∑

α=1
s+
α,21S

−
α,15, H

y

34 = J
3∑

α=1
s+
α,71S

−
α,71,

H
y

36 = J
3∑

α=1
s+
α,15S

−
α,71, H

y

45 = J
3∑

α=1
s−
α,17S

+
α,51,

H
y

56 = J
3∑

α=1
s+
α,15S

−
α,15.

(32)

All other off-diagonal elements of Hk,ij vanish.

V. SOLUTION BY BOGOLIUBOV TRANSFORMATION

The Hamiltonian (27) can be diagonalized with a 2n–
dimensional Bogoliubov transformation.38 We begin with a
brief review of the formalism.
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At each point in k space, we wish to write the Hamiltonian
in terms of a diagonal matrix �,

Ĥ = �̂†H�̂ = ̂†�̂, (33)

with

�̂ = M̂, � = M†HM. (34)

The components of ̂ satisfy the same commutation relations
as the components of �̂:[

�̂i,�̂
†
j

] = [
̂i ,̂

†
j

] = Tij (35)

with

T = diag (1, − 1,1, − 1, − 1,1) . (36)

This implies

Tij = [
�̂i,�̂

†
j

] =
∑
l,m

[
Mil̂l,̂

†
m(M†)mj

]
=

∑
l,m

Mil

[
̂l,̂

†
m

]
M

†
mj =

∑
l,m

MilTlmM
†
mj ,

or

T = MT M†. (37)

Multiplying (37) by HM yields, with (34),

T HM = MT �, (38)

or in components∑
l

(T H )ilMlj = Mij (T �)jj , (39)

i.e., the j th column of M is given by an eigenvector of T H with
eigenvalue Tjj�jj . This specifies M up to the normalization of
the eigenvectors. To obtain the normalization, it is propitious
to rewrite (37) as

T = M†T M. (40)

[To obtain (40), multiply (37) by T M−1 from the left and by
T M from the right and use T 2 = 1.] Each column j of Mij

must hence be normalized such that

Tjj =
∑

i

Tii |Mij |2. (41)

Diagonalization of (27) using this formalism at each point
in k space with

̂
†
k = (

γ
†
1,k,γ2,k,γ

†
3,k,γ4,k,γ5,k,γ

†
6,k

)
,

̂k = (
γ1,k,γ

†
2,k,γ3,k,γ

†
4,k,γ

†
5,k,γ6,k

)T
(42)

yields

Ĥb1,c1,c−1 =
∑
k,i

[
ωk,i γ

†
i,kγi,k + 1

2

(
ωk,i − Hk,ii

)]
. (43)

This Hamiltonian describes three twofold degenerate modes
ωk,i , which we have plotted assuming Jexp. = 140 meV as cuts
along (kx, π ) and (π, ky) in Fig. 9. The twofold degeneracy of
each mode corresponds to spin waves with Sz = ±1. Since we
expect our spin wave theory to be reliable only for energies up
to Jexp., we will disregard the higher modes along with those

(a) (b)
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FIG. 9. (Color online) Modes described by Ĥb1,c1,c−1 plotted as
cuts (a) along (kx, π ) and (b) along (π, ky) using Jexp = 140 meV.

analyzed in Appendix C. The lowest mode ωk,1 = ωk,2 :=
ω(k) is shown as a 3D plot for half of the reduced Brillouin
zone in Fig. 10.

The Hamiltonian (43) further contains a contribution

Eb1,c1,c−1 =
∑
k,i

1

2

(
ωk,i − Hk,ii

) = −0.22116 N (44)

to the ground-state energy. (Here N denotes the number of
rungs. The sum extends over N

2 values for k.) In Appendix D,
we obtain the ground-state energy by adding this contribution
to the contributions of the other terms in (26) given in Appendix
C, and obtain E0 = −1.73378 N . We find that this number
is in excellent agreement with what we would expect from
diagonalizing the model for a finite cluster with unfrustrated
boundary conditions. This confirms the validity of our analysis.

 20
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FIG. 10. (Color online) The dispersion ω(kx, ky) of the lowest
eigenmode of Ĥb1,c1,c−1 in half of the reduced Brillouin assuming
Jexp. = 140 meV.
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VI. DISCUSSION OF THE RESULTS

A. Agreement with the experimental data

The significance of our results emerges in the context of
a comparison of our spectrum with the experimental data
obtained by Tranquada et al.15 through inelastic neutron
scattering on the stripe ordered compound La1.875Ba0.125CuO4.
The data points with their corresponding error bars are shown
as black or blue crosses in Figs. 1(a) and 1(b), respectively.

In Fig. 1(b), which is directly reproduced from Tranquada
et al.,15 the neutron data are superposed with the spectrum
of the triplet excitation of an isotropic two-leg Heisenberg
ladder, which models bond centered stripes at accordingly high
energies. In Fig. 1(a), we have superposed cuts of the lowest
mode ω(k) along (kx, π ) and (π, ky) with the experimental
data. (The superposition of cuts of our spectrum in the x

and y direction reflects the assumption that a superposition of
domains with stripes along the two principal lattice directions
has been observed in the experiment.) We believe it is fair
to say that up to energies of about 180 meV, the agreement
is excellent. (Above these energies, or more precisely above
energies of order J , a perturbative spin wave analysis becomes
unreliable.) Likewise, the constant energy slices of the neutron
scattering intensities χ+−(k,ω) obtained with the matrix
elements calculated in Appendix E shown in Fig. 11 agree
very well with the experimentally measured constant-energy
slices of the magnetic scattering in La1.875Ba0.125CuO4 shown
in Fig. 2 of Tranquada et al.15

B. Dependence on the interladder coupling J ′

The good agreement of our results with the experimental
data up to energies even larger than J = 140 meV (where
we would expect that the perturbative spin-wave analysis
becomes unreliable) is somewhat surprising. While any
explanation in terms of bond-centered stripes through coupled
two-leg ladders15,23,24 gives immediately a roughly adequate
estimate for the saddle-point energy in terms of the triplet
energy gap of the individual two-leg ladders, it is far from
obvious that a model of coupled three-leg ladders, which
are individually gapless, should give a saddle-point energy
consistent with the data. In our model, the saddle-point energy
depends significantly on the coupling J ′ between the ladders.
Fortunately, however, it is possible to determine J ′ rather
accurately through numerical comparison of a t–J model
with a site centered spin and a site centered charge stripe to
a model with three-leg Heisenberg ladders coupled by J ′, as
described in Appendix B. This analysis does not only provide
us with the value J ′ ≈ 0.07J , but also shows that this value is
rather robust in the sense that it does not significantly depend
on the details of how we localize the stripe. To obtain a better
understanding of the dependence of our final results on this
coupling, we have obtained the spectrum for a number of
different values of J ′ by solving (21) numerically for each
value, and proceeding with the Bogoliubov transformation
with the resulting values for u(J ′) and v(J ′). The results for
the saddle-point energies ω(π, π ) are shown in Fig. 12 (black
dots). Fitting the data yields

ω(π, π ) ≈ 1.47
√

J ′J (45)
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FIG. 11. (Color online) Constant energy slices of the neutron
scattering intensity χ+−(k,ω) (see Appendix E below) for Jexp =
140 meV and J ′ = 0.07 Jexp in the magnetic Brillouin zone. In the
indicated energy range, only the lowest mode shown in Figs. 10
and 1(a) contributes. We have replaced the δ-functions in frequency
by Lorentzians with half-width � = 0.05 Jexp and averaged over both
stripe orientations (i.e., horizontal and vertical).
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FIG. 12. (Color online) The saddle point energy ω(π, π ) of the
lowest magnetic mode ω(k) calculated for various values of J ′/J
(points). Fitting yields ω(π, π ) ≈ 1.47

√
J ′J (solid line).
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J J⊥

x

y

x

y

FIG. 13. Auxiliary models of (a) two weakly coupled three-leg
ladders and (b) two weakly coupled spin 1

2 chains used in the
discussion to understand the square root dependence of ω(π, π ) on
J ′ depicted in Fig. 12.

to an excellent approximation up to values where J ′ becomes
comparable to J (solid line).

The square-root dependence of ω(π, π ) on J ′ can be
understood by considering a model of two three-leg ladders,
which are weakly coupled by J ′, as shown in Fig. 13(a). The
low-energy excitations of the individual three-leg ladders are
spin 1

2 spinons, which are gapless. The coupling J ′ induces a
linear confinement potential

V (y) = F |y| (46)

between pairs of spinons, since the links coupling the chains
effectively become decorrelated in the region between them.
The situation here is similar to a system of two coupled spin 1

2
chains shown in Fig. 13(b), where a weak coupling J⊥ between
the chains is known to induce a linear confinement potential
between pairs of spinons.18 In the model of coupled chains,
the force between the spinons is proportional to19,39

F ≈ 〈SS〉⊥J⊥ ∝ J 2
⊥/J. (47)

For the model of two coupled three-leg ladders we consider
here in the context of understanding the dependence (45) of
our spin wave analysis, however, we assume that the spin
correlation 〈SS〉 between the sites coupled by J ′ is to lowest
order independent of J ′/J . Therewith we account for the static
correlations present due to the long range order we assume. For
the confinement force in our auxiliary model of two coupled
three-leg ladders we hence assume

F ∝ J ′. (48)

The spinon confinement will then induce a gap �, which
corresponds to the the ground state or zero-point energy
of the linear potential oscillator for the relative motion of
the spinons. The dispersion of the spinons is linear for
both the individual spin chains and the individual three-leg
ladders,40

ε(ky) ≈ v|ky |, (49)

with v ∝ J as J is the only energy scale is these models.
[(In (49), we have shifted both spinon branches to the origin.]

The ground-state energy E0 of a constant force F oscillator
of linearly dispersing particles with velocity v, however, is
proportional to

√
Fv.41 This implies � ∝ J⊥ for the two

weakly coupled chains and � ∝ √
J ′J for the two weakly

coupled three-leg ladders with the additional assumption of
static correlations due to long range order.

To see why this gap � corresponds to the saddle point
energy ω(π, π ) in the spin-wave analysis above, consider the
transformation properties of our auxiliary model of the two
weakly coupled three-leg ladders shown in Fig. 13(a) under the
parity reflection x → −x. The gapped spinon-spinon bound
state is odd under this symmetry, which in the language of
momenta kx of the site centered stripe model corresponds to
a shift of π

4 . Since the ground state of the stripe model has
order with kx = π ± π

4 , the gapped excitation will correspond
to kx = π . Following this line of reasoning, we can understand
the square-root dependence (45) of ω(π, π ) depicted in
Fig. 12.

VII. CONCLUSIONS

In this work, we have provided a full and detailed account
of a spin-wave analysis of a coupled three-leg ladder model
for spin stripes in copper oxide superconductors. We have
numerically evaluated the interladder coupling J ′ induced by
the charge stripes in between both site-centered spin stripes
modelled by three-leg ladders and bond-centered spin stripes
modelled by two-leg ladders. As reported previously,36 for
the latter we obtain a ferromagnetic coupling J ′ = −0.05J ,
which is not sufficient to close the energy gap of the individual
two-leg ladders. This does not imply that the stripes cannot
be bond-centered. It does imply, however, that a description in
terms of spin-only models of coupled two-leg ladders is not
sensible.

For site-centered spin stripes modelled by three-leg ladders,
we obtain an antiferromagnetic coupling J ′ = 0.07J . We
have calculated the spectrum, the staggered magnetization,
the dynamical structure factor χ+−(k,ω), and the ground-
state energy for a spin-only model of coupled three-leg
ladders using a linear spin wave analysis of bosonic operators
representing the eight-dimensional Hilbert spaces on each
three-site rung. The analysis makes no assumptions except
for the model itself, and contains no variational parameter,
as even the interladder coupling J ′ is evaluated through
exact diagonalizations of small t–J clusters with and without
charge stripes in between the spin stripes. We find excel-
lent agreement with the experimental data of Tranquada
et al.15 The experimental data hence point toward site-
centered, and not, as previously asserted, bond-centered15,23,24

stripes.
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APPENDIX A: MATRIX ELEMENTS OF THE INDIVIDUAL
SPIN OPERATORS ON RUNGS

In Sec. II, we have written out the spin operators ŝτ
α and Ŝτ

α

with τ = +, − ,z on the individual sites α = 1,2,3 on rungs
belonging to sublattice A and B, respectively,

ŝτ
α =

∑
μ,ν

sτ
α,μν |μ〉 〈ν|A, (A1)

Ŝτ
α =

∑
μ,ν

Sτ
α,μν |μ〉 〈ν|B, (A2)

in the basis sets MA and MB specified in (6) and (11). The
matrix elements,

sτ
α,μν = 〈μ|ŝτ

α |ν〉A , (A3)

Sτ
α,μν = 〈μ|Ŝτ

α |ν〉B , (A4)

are explicitly given by

s+
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −u+√
2v√

6
0 0 0

−2
√

2u+v

3
√

2
0 − 1√

3
0 0 u+√

2v

3
√

2
0 0

0 0 0 0 1√
2

0 0 0

−
√

2u+v√
6

0 0 0 0 −u+√
2v√

6
0 0

0 0 0 0 0 0 0 0

0 0 0 0
√

2u+v√
6

0 0 0

u+2
√

2v

3
√

2
0 − 1√

6
0 0 2

√
2u−v

3
√

2
0 0

0 − 1√
6

0 1√
2

0 0 1√
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (
s−

1

)† = S−
1 = (

S+
1

)†
, (A5)

s+
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
√

2u+v√
3

0 0 0

u−√
2v

3 0 0 0 0 −
√

2u+v
3 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 u−√
2v√

3
0 0 0

−√
2u+2v
3 0 0 0 0 2u+√

2v
3 0 0

0
√

2
3 0 0 0 0 1√

3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (
s−

2

)† = S−
2 = (

S+
2

)†
, (A6)

s+
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −u+√
2v√

6
0 0 0

−2
√

2u+v

3
√

2
0 1√

3
0 0 u+√

2v

3
√

2
0 0

0 0 0 0 − 1√
2

0 0 0
√

2u+v√
6

0 0 0 0 u−√
2v√

6
0 0

0 0 0 0 0 0 0 0

0 0 0 0
√

2u+v√
6

0 0 0

u+2
√

2v

3
√

2
0 1√

6
0 0 2

√
2u−v

3
√

2
0 0

0 − 1√
6

0 − 1√
2

0 0 1√
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (
s−

3

)† = S−
3 = (

S+
3

)†
, (A7)
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sz
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(√

2u+v
)2

6 0 −u+√
2v

2
√

3
0 0 −√

2u2+uv+√
2v2

6 0 0

0 1
3 0 1

2
√

3
0 0 1

3
√

2
0

−u+√
2v

2
√

3
0 0 0 0

√
2u+v

2
√

3
0 0

0 1
3
√

2
0 0 0 0 − 1√

6
0

0 0 0 0 − 1
2 0 0 0

−√
2u2+uv+√

2v2

6 0
√

2u+v

2
√

3
0 0 −

(
u−√

2v
)2

6 0 0

0 1
3
√

2
0 − 1√

6
0 0 1

6 0

0 0 0 0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −Sz
1, (A8)

sz
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2+4
√

2uv−v2

6 0 0 0 0
√

2u2−uv−√
2v2

3 0 0

0 − 1
6 0 0 0 0 −

√
2

3 0

0 0 − 1
2 0 0 0 0 0

0 0 0 1
2 0 0 0 0

0 0 0 0 − 1
2 0 0 0

√
2u2−uv−√

2v2

3 0 0 0 0 −u2−4
√

2uv+v2

6 0 0

0 −
√

2
3 0 0 0 0 1

6 0

0 0 0 0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −Sz
2, (A9)

sz
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(√

2u+v
)2

6 0 u−√
2v

2
√

3
0 0 −√

2u2+uv+√
2v2

6 0 0

0 1
3 0 − 1

2
√

3
0 0 1

3
√

2
0

u−√
2v

2
√

3
0 0 0 0 −

√
2u+v

2
√

3
0 0

0 − 1
3
√

2
0 0 0 0 1√

6
0

0 0 0 0 − 1
2 0 0 0

−√
2u2+uv+√

2v2

6 0 −
√

2u+v

2
√

3
0 0 −

(
u−√

2v
)2

6 0 0

0 1
3
√

2
0 1√

6
0 0 1

6 0

0 0 0 0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −Sz
3. (A10)

APPENDIX B: ESTIMATION OF THE COUPLING J ′

BETWEEN LADDERS

The effective, antiferromagnetic coupling J ′ between
neighboring spin stripes described by three-leg ladders is
induced by the charge stripes between the ladders, since an
antiferromagnetic alignment of the spins on each side of the
charge stripe enhances the mobility of the holes. To determine
this coupling, we have exactly diagonalized 16 site clusters
of itinerant spin-1/2 antiferromagnets described by the t–J

model3,4 with J = 0.4t , two holes, and periodic boundary

conditions (PBCs), in which the spin stripes are localized.
The Hamiltonian is given by

Ĥt-J-B = −t
∑

〈i,j〉,σ
PG

(
c
†
i,σ c

†
j,σ + H.c.

)
PG + J

∑
〈i,j〉

Ŝi Ŝj

+
∑

i∈shaded area

BiŜ
z
i , (B1)

where the first two sums extend over all nearest-neighbor pairs
〈i,j 〉, and Bi = ±B denotes a staggered magnetic field, as
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indicated by the signs in Fig. 14. The Gutzwiller projector PG

eliminates doubly occupied sites.
We compare the ground-state energies we obtain for

clusters with unfrustrated PBCs shown in Fig. 14(a) with the
ground-state energies we obtain for clusters with frustrated
PBCs shown in Fig. 14(b), in which the 16-site unit cells
on the right are shifted by one lattice spacing to the top.
We then consider spin-only Heisenberg models of three-leg
ladders, which consist of only the sites in the shaded areas in
Figs. 14(a) and 14(b), subject to the same staggered field Bi ,
and couple them antiferromagnetically by J ′, as indicated. The
Heisenberg models are described by

ĤJ-B =
∑
〈i,j〉

Jij Ŝi Ŝj +
∑

i∈shaded area

BiŜ
z
i , (B2)

where Jij = J for all nearest-neighbor links inside the shaded
areas, but Jij = J ′ for nearest-neighbor links across the
horizontal boundary lines between those areas. We again
compare the ground-state energies for unfrustrated PBCs,
where J ′ couples sites 10 and 1, 11 and 2, etc., for the three-leg
ladders shown in the shaded areas in Fig. 14(a), with frustrated
PBCs, where J ′ couples sites 11 and 1, 12 and 2, etc., as
shown in Fig. 14(b). Finally, we determine J ′ such that the
difference in the ground-state energies between frustrated and
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FIG. 14. Finite-size geometries with (a) unfrustrated and (b)
frustrated periodic boundary conditions for site-centered stripe
models. The spin stripes are localized by a staggered magnetic field
B, as indicated by the signs in the grey shaded areas.

TABLE I. Ground state energies and expectation values of the
staggered magnetic field term ĤB = ∑

BiŜ
z
i , of Ŝz

i , and of the
electron densities n̂i obtained by exactly diagonalization of the t–J

model (B1) as well as the coupled Heisenberg ladders described by
(B2) for the clusters shown in Fig. 14(a) and 14(b) for unfrustrated
and frustrated periodic boundary conditions, respectively.

Site-centered stripe models

PBCs unfrustrated frustrated �

as in Fig. 14(a) Fig. 14(b)
t–J model with spin and charge stripes

t = 2.5, J = 1, B = 0.17, N = 16, 2 holes
Et–J–B −21.3409 −21.2405 0.1004
EB −0.5415
〈Ŝz

1〉 −0.3140
〈Ŝz

5〉 0.2411
〈n̂1〉 0.9437
〈n̂5〉 0.8781

three-leg Heisenberg ladder with coupling J ′

J ′ = 0.071, J = 1, B = 0.17, N = 12
EJ–B −8.0068 −7.9065 0.1003

unfrustrated PBCs in the t–J clusters matches this difference
in the spin-only ladder models.

With B = 0.170J we obtain J ′ = 0.071J , as detailed in
Table I. The value for $B$ is chosen self-consistently such
that the mean value of the staggered magnetization we obtain
for our spin wave theory in Appendix F,

1

2

(−〈ŝz
1〉 + 〈ŝz

2〉
) = 0.2903, (B3)

matches the corresponding value in the t–J cluster shown in
Fig. 14(a). For this cluster, however, there are two values for the
staggered magnetization, depending on whether we consider
the overall magnetization

1

2

(−〈Ŝz
1〉 + 〈Ŝz

5〉
) = 0.2775, (B4)

or the magnetization on only those sites which are occupied by
electrons (which differs since the holes are not strictly localized
on the chain in between the shaded areas in Fig. 14(b)):

1

2

(
−〈Ŝz

1〉
〈n̂1〉 + 〈Ŝz

5〉
〈n̂5〉

)
= 0.3037. (B5)

We assert that these two values constitute lower and upper
bounds of what we would expect in a spin-only model, and
chose B such that the spin wave theory gives the mean value
of these bounds (this value is 0.2906).

For completeness, we also provide the details of the
corresponding calculation for the effective coupling J ′ be-
tween bond-centered stripes modelled by two-leg ladders, in
Table II. The calculation differs only in that we now use the
finite size clusters depicted in Figs. 15(a) and (b). The value of
the staggered magnetic field B = 0.225 is chosen such that the
staggered magnetic field energy EB described by the last term
in (B1) is equal to the value we obtained for the three-leg ladder
model listed in see Table I. We obtain a ferromagnetic coupling
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TABLE II. Ground-state energies and the expectation value of
the staggered magnetic field term ĤB = ∑

BiŜ
z
i obtained by exactly

diagonalization of the t–J model (B1) as well as the coupled
Heisenberg ladders described by (B2) for the clusters shown in
Figs. 15(a) and (b) for unfrustrated and frustrated periodic boundary
conditions, respectively.

Bond-centered stripe models

PBCs unfrustrated frustrated �

as in Fig. 15(a) Fig. 15(b)
t–J model with spin and charge stripes

t = 2.5, J = 1, B = 0.225, N = 16, 2 holes
Et–J–B −21.3428 −21.2526 0.0902
EB −0.5395

two-leg Heisenberg ladder with coupling J ′

J ′ = −0.051, J = 1, B = 0.225, N = 8
EJ–B −5.1557 −5.0655 0.0902

J ′ = −0.051J . This value is not large enough to close the spin
gap � ≈ J/2 of the the individual two-leg ladders, and hence
precludes a description of bond-centered stripes in terms of
spin-only models of coupled two-leg ladders.36

It should be born in mind that the values we obtain here
are only estimates, as it is impossible to calculate a precise
value for a coupling between spin-only models of stripes,
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FIG. 15. Finite size geometries with (a) unfrustrated and (b)
frustrated periodic boundary conditions for bond-centered stripe
models. The spin stripes are localized by a staggered magnetic field
B as indicated by the signs in the gray shaded areas.

as these constitute a rather crude approximation themselves.
We are confident, however, that the coupling for three-leg
ladders modeling site-centered stripes is between J ′ = 0.05J

and J ′ = 0.1J , and that the absolute value of the coupling
between two-leg ladders describing bond-centered stripes is
significantly smaller than this coupling.

APPENDIX C: ANALYSIS OF Ẽ0, Ĥa0, Ĥc 0, Ĥa1, AND Ĥc2

In this appendix, we expand and analyze the terms in the
Hamiltonian (26) which have no influence on the low energy
spectrum in this appendix. These terms, however, are required
for evaluations of the ground-state energy.

1. The bare ground-state energy Ẽ0

The bare ground-state energy Ẽ0 accounts for the constant
terms in the Hamiltonian (17). It is given by Ẽ0 = ∑

k 2ε̃0 =
Nε̃0 with

ε̃0 = 1

2
− 3

2
u2 + J

3∑
α=1

sz
α,11S

z
α,11 + J ′ sz

3,11S
z
1,11

= −1.45842. (C1)

2. Evaluation of the spectrum of Ĥa0

The term Ĥa0 is given by

Ĥa0 =
∑

k

[
εa0

(
a
†
0,ka0,k + A

†
0,kA0,k

)
+ ξa0,k

(
a
†
0,k + a0,k

)(
A

†
0,k + A0,k

)]
, (C2)

with

εa0 =−1

2
+ 3

2
u2 − 2J

3∑
α=1

sz
α,11S

z
α,11 − 2J ′sz

3,11S
z
1,11,

(C3)

ξa0,k =J ′ cos(4kx) sz
3,13S

z
1,13 + J cos ky

3∑
α=1

sz
α,13S

z
α,13.

To a reasonable approximation, we obtain low energy modes
described by Ĥa0 by diagonalizing (C2) at each point in k
space in the reduced Hilbert space spanned by

|0̃〉, a
†
0|0̃〉, A

†
0|0̃〉, and a

†
0A

†
0|0̃〉,

where

|0̃〉 ≡
∏
i∈A

|b̃−1/2〉i ·
∏
j∈B

|b̃1/2〉j (C4)

is the bare vacuum unrenormalized by spin wave theory. This
yields two almost dispersionless modes

(ωa0,k)1/2 =
√

ε2
a0 + ξ 2

a0,k ± ξa0,k, (C5)

with energies of about εa0 = 2.07, or 290 meV if we assume
Jexp. = 140 meV. Cuts of the dispersions of these two modes
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FIG. 16. (Color online) Modes described by Ĥa0 (blue), Ĥc0

(green), Ĥa1 (red), Ĥc−2 (black) plotted as cuts (a) along (kx, π )
and (b) along (π, ky) using Jexp = 140 meV.

are shown in blue (color online) in Fig. 16. Ĥa0 also gives rise
to a contribution

Ea0 =
∑

k

(
εa0 −

√
ε2
a0 + ξ 2

a0,k

)
= −0.00008 N (C6)

to the ground-state energy. (Here N denotes the number of
rungs, which implies that the sum extends over N

2 values for
k.)

3. Evaluation of the spectrum of Ĥc 0

A similar analysis of

Ĥc0 =
∑

k

[
εc0

(
c
†
0,kc0,k + C

†
0,kC0,k

)
+ ξc0,k

(
c
†
0,k + c0,k

)(
C

†
0,k + C0,k

)]
, (C7)

with

εc0 = 3
2

(
u2 − v2

) + 2J
∑3

α=1 sz
α,11(Sz

α,66 − Sz
α,11)

+ 2J ′ sz
3,11(Sz

1,66 − Sz
1,11), (C8)

ξc0,k = J ′ cos(4kx) sz
3,16S

z
1,16 + J cos ky

3∑
α=1

sz
α,16S

z
α,16,

(C9)

yields two additional, almost dispersionless modes

(ωc0,k)1/2 =
√

ε2
c0 + ξ 2

c0,k ± ξc0,k, (C10)

with energies of about εc0 = 2.71, or 380 meV, which is shown
in green (color online) in Fig. 16. Ĥc0 also gives rise to a
contribution

Ec0 =
∑

k

(
εc0 −

√
ε2
c0 + ξ 2

c0,k

)
= −0.00048 N (C11)

to the ground-state energy.

4. Evaluation of the spectrum of Ĥa1

The term

Ĥa1 =
∑

k

[
εa1

(
a
†
1,ka1,k + A

†
−1,kA−1,k

)
+ ξa1,k

(
a
†
1,kA

†
−1,k + a1,kA−1,k

)]
, (C12)

with εa1 = εa0 as given in (C3) and

ξa1,k =J ′ cos(4kx)s+
3,41S

−
1,41 + J cos ky

3∑
α=1

s+
α,41S

−
α,41,

(C13)

can be diagonalized by a Bogoliubov transformation. We
obtain

Ĥa1 =
∑

k

[
ωa1,k

(
α
†
1,kα1,k + α

†
2,kα2,k

) + ωa1,k − εa1
]
(C14)

with

ωa1,k =
√

ε2
a1 − ξ 2

a1,k. (C15)

It yields a twofold degenerate, weakly dispersing mode with
an energy of about 1.95, or 273 meV, which is shown in red
(color online) in Fig. 16, as well as a contribution

Ea1 =
∑

k

(
ωa1,k − εa1

)
= −0.05363 N (C16)

to the ground-state energy.

5. Evaluation of the spectrum of Ĥc2

Finally,

Ĥc2 =
∑

k

ωc2
(
c
†
2,kc2,k + C

†
−2,kC−2,k

)
(C17)

with

ωc2 = 3

2
u2 + 2J

3∑
α=1

sz
α,11(Sz

α,88 − Sz
α,11)

+ 2J ′ sz
3,11(Sz

1,88 − Sz
1,11), (C18)

describes a twofold degenerate, completely dispersionless
mode with an energy of ωc2 = 3.12, or 436 meV.

APPENDIX D: GROUND-STATE ENERGY

To evaluate the ground state energy E0, we collect the
contributions from (C1), (C6), (C11), (C16), and (44). This
yields

E0 = −1.73378 N, (D1)

where N is the number of rungs. This number is in good
agreement with what we would expect from the results of
exact diagonalizations of

ĤJ =
∑
〈i,j〉

Jij Ŝi Ŝj (D2)

for small clusters of 12, 18, and 24 sites with unfrustrated
boundary conditions, as shown for N = 4 rungs by the shaded
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areas in Fig. 14(a). Specifically, we obtain E0 = −1.827 N

for a cluster with N = 8 rungs, J ′ = 0.07, and unfrustrated
boundary conditions with a shift of three lattice spacings. If we
compare the nearest-neighbor spin-spin correlation we obtain
from exactly diagonalizing the same 24-site cluster with J ′ =
1,

〈
Ŝi Ŝj

〉 = −0.343, to the the value predicted by standard
two-dimensional linear spin wave theory42,

〈
Ŝi Ŝj

〉 = −0.329,
we are led to estimate that the bond operator spin wave theory
developed here should yield a number around

E0 = −1.827 N · −0.329

−0.3432
= −1.751 N. (D3)

This differs only by 1% from (D1).

APPENDIX E: MATRIX ELEMENTS

The dynamical structure factor measured in neutron scat-
tering is given by

χ+−(k,ω) =
∑

n

| 〈0| Ŝ+
k |n〉 |2δ(ω − ωn), (E1)

where |0〉 is the ground state and the sum extends over all
excited states |n〉 with energy ωn, and

Ŝ+
k =

∑
l

e−ikr l Ŝ+
l (E2)

is the Fourier transform of the spin raising operator Ŝl at lattice
site l with respect to original lattice, i.e., the sum runs over all
lattice sites. This implies

r i,α = Ri +
(

α − 2
0

)
, (E3)

rj,α = Rj +
(

α − 2
0

)
, (E4)

with Ri and Rj as indicated in Fig. 7 for sublattices A and B,
respectively. In analogy to Fourier transforms of the bosonic
creation and annihilation operators (23) and (24), we further
Fourier transforms of the spin operators with respect to the
rung sublattices A and B according to

ŝ+
k,α =

√
2

N

∑
i∈A

e−ikRi ŝ+
i,α, (E5)

Ŝ+
k,α =

√
2

N

∑
j∈B

e−ikRj Ŝ+
j,α, (E6)

and express the operator (E2) in terms of them:

Ŝ+
k =

√
2

N

{ ∑
i∈A

∑
α

e−ikr i,α ŝ+
i,α +

∑
j∈B

∑
α

e−ikrj,α Ŝ+
j,α

}

=
∑

α

e−ikx (α−2)s+
k,α +

∑
α

e−ikx (α−2)S+
k,α

=
∑

α

e−ikx (α−2)
(
ŝ+
k,α + Ŝ+

k,α

)
. (E7)

As we are interested only in the contribution of the low-
energy mode ωk,1 to χ+−(k,ω), the only matrix element we
need to evaluate is∣∣〈0|Ŝ+

k |γ1,k〉
∣∣2 = ∣∣〈0|Ŝ+

k γ
†
1,k|0〉∣∣2

(E8)
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FIG. 17. (Color online) Numerical evaluation of the matrix
elements |〈0|Ŝ+

k |γ1,k〉|2 for the entire Brillouin zone k ∈ [0,2π ] ×
[0,2π ]. Note the strong enhancement aground the antiferromagnetic
ordering wave vectors k = (π ± π/4,π ).

for all values of k. [The second low-energy mode ωk,2, which is
degenerate with the first, does not contribute to (E8) and hence
to χ+−(k,ω), but instead yields a contribution to χ−+(k,ω)
which is identical to the one we calculate below.] Keeping
only terms which contribute to this mode and are linear in the
expansion (14) of ŝ+

α , we obtain for sublattice A

ŝ+
α = s+

α,21b
†
1 + s+

α,71c
†
1 + s+

α,15c−1

or in Fourier space with (E5), (23), and (28)

ŝ+
k,α = s+

α,21b
†
1,k + s+

α,71c
†
1,k + s+

α,15c−1,−k

= (
0,s+

α,21, 0, s+
α,71, 0, s+

α,15

) · �k (E9)

and similarly with (16) and (24) for B

Ŝ+
k,α = S+

α,12B−1,k + S+
α,17C−1,k + S+

α,51C
†
1,−k

= (
S+

α,12, 0, S+
α,17, 0, S+

α,51,0
) · �k. (E10)

We then use �k = Mkk and (42) to express ŝ+
k,α and Ŝ+

k,α in

terms of γi,k and γ
†
i,k, recall S+

α,ji = s+
α,ij , and finally obtain

∣∣〈0|Ŝ+
k |γ1,k〉

∣∣2 =
∣∣∣∣∣

3∑
α=1

e−ikx (α−2)
{
s+
α,21(Mk,11 + Mk,21)

+ s+
α,71(Mk,31 + Mk,41)

+ s+
α,15(Mk,51 + Mk,61)

}∣∣∣∣∣
2

. (E11)

The result is plotted in Fig. 17. Note that χzz(k,ω) = 0 as there
is no term linear in b

†
1, c

†
1, or c−1 in the expansion (14) for ŝz

α .
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APPENDIX F: STAGGERED MAGNETIZATION

The staggered magnetizations on the outer and in-
ner chains of our three-leg ladders, 〈ŝz

1〉 = 〈ŝz
3〉 = −〈Ŝz

1〉 =
−〈Ŝz

3〉 and 〈ŝz
2〉 = −〈Ŝz

2〉, respectively, are given in by
the the bare values sz

α,11 = −Sz
α,11 with α = 1,2,3 minus

corrections from the individual terms in the Hamiltonian
(26). From (A8)–(A10) with (22), we obtain for the bare
values

〈ŝz
1〉bare =sz

1,11 = −0.4633, (F1)

〈ŝz
2〉bare =sz

2,11 = 0.4265. (F2)

We expect that the largest corrections arise from Ĥb1,c1,c−1,
as this part contains the only low energy mode of the
theory. The for this part relevant terms in the expansion (14)

for ŝz
α are

b
†
1b1

(
sz
α,22 − sz

α,11

) + c
†
1c1

(
sz
α,77 − sz

α,11

)
+ c

†
−1c−1

(
sz
α,55 − sz

α,11

)
+

(
b
†
1c1 + c

†
1b1

)
sz
α,27.

For convenience, we define

ρα,1 = (
sz
α,22 − sz

α,11

)
,

ρα,2 = (
sz
α,77 − sz

α,11

)
, (F3)

ρα,3 = (
sz
α,55 − sz

α,11

)
.

and express the operators b1,c1,c
†
−1 as well as their

Hermitian conjugates via � = M through the γ operators
[see (28), (34), and (42) above]. Using γj |0〉 = 〈0|γ †

j = 0 and

〈0|γiγ
†
j |0〉 = δij , we obtain for the corrections from Ĥb1,c1,c−1

〈ŝz
α〉Ĥb1,c1,c−1

= 2

N

∑
k

{[
ρα,1Mk,21M

T
k,12 + ρα,2Mk,41M

T
k,14 + ρα,3Mk,62M

T
k,26 + sz

α,27

(
Mk,21M

T
k,14 + Mk,41M

T
k,12

) ]

+
[
ρα,1Mk,23M

T
k,32 + ρα,2Mk,43M

T
k,34 + ρα,3Mk,64M

T
k,46 + sz

α,27

(
Mk,23M

T
k,34 + Mk,43M

T
k,32

) ]
+

[
ρα,1Mk,26M

T
k,62 + ρα,2Mk,46M

T
k,64 + ρα,3Mk,65M

T
k,56 + sz

α,27

(
Mk,26M

T
k,64 + Mk,46M

T
k,62

) ]}
.

In this sum, the terms in the first pair of square brackets
originate from the low-energy eigenmodes γ1,γ2 in the energy
range from 0 to about 190 meV in Fig. 9, the terms in the
second pair originate form γ3,γ4 at about 290 meV, and the
terms in the third pair originate from γ5,γ6 at about 460 meV.
Evaluation yields

〈ŝz
1〉Ĥb1,c1,c−1

= 0.1752 + 0.0018 + 0.0003

= 0.1773, (F4)

〈ŝz
2〉Ĥb1,c1,c−1

= −0.0864 − 0.0210 − 0.0001

= −0.1075, (F5)

for the outer and inner chains, respectively. As expected, the
low energy mode we compare to the experiment15 yields the
dominant contribution.

The corrections arising from Ĥa1 are evaluated in complete
analogy. The Bogoliubov transformation �a = Maa with
�a ≡ (A−1,a

†
1)T is now only two-dimensional, and the only

contribution comes from the term −sz
α,11a

†
1a1 in (14):

〈ŝz
α〉Ĥa1

= − 2

N

∑
k

sz
α,11Ma,k,21M

T
a,k,12. (F6)

Evaluation yields

〈ŝz
1〉Ĥa1

= 0.0127, (F7)

〈ŝz
2〉Ĥa1

= −0.0117. (F8)

Finally, Ĥa0 and Ĥc0 give rise to corrections

〈ŝz
α〉Ĥa0

= (−sz
α,11

) 2

N

∑
k

1

N2
a0,k

, (F9)

〈ŝz
α〉Ĥc0

= (
sα,66 − sz

α,11

) 2

N

∑
k

1

N2
c0,k

, (F10)

where

N2
ao,k =

⎛
⎝εa0 +

√
ε2
a0 + ξ 2

a0,k

ξa0,k

⎞
⎠

2

+ 1, (F11)

N2
ao,k =

⎛
⎝εc0 +

√
ε2
c0 + ξ 2

c0,k

ξc0,k

⎞
⎠

2

+ 1 (F12)

with εa0 and ξa0,k as given in (C3) and (C4) and εc0 and ξc0,k

as given in (C8) and (C9). Evaluation yields

〈ŝz
1〉Ĥa0

+ 〈ŝz
1〉Ĥc0

= 0.0001, (F13)

〈ŝz
2〉Ĥa0

+ 〈ŝz
2〉Ĥc0

= −0.0001, (F14)

i.e., negligibly small contributions.
Summing up (F1), (F4), (F7), (F13), and (F2), (F5), (F8),

(F14), we obtain

〈ŝz
1〉 = −0.2732, (F15)

〈ŝz
2〉 = 0.3072 (F16)

for the staggered magnetizations on the outer and inner chains
of the three-leg ladders, respectively.
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12H. A. Mook, P. Dai, and F. Doğan, Phys. Rev. Lett. 88, 097004
(2002).

13S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M.
Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys. 75,
1201 (2003).

14E. Berg, E. Fradkin, S. A. Kivelson, and J. Tranquada, New J. Phys.
11, 115004 (2009).

15J. Tranquada, H. Woo, T. Perring, H. Goka, G. Gu, G. Xu, M. Fujita,
and K. Yamada, Nature (London) 429, 534 (2004).
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