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Abstract

In order to obtain a local description of the short distance physics of fractionally quantized Hall states for realistic (e.g.
Coulomb) interactions, | interprete the zeros of the ground-state wave function, as seen by an individual test electron from
far away, as particles. [ then present evidence in support of this view, and argue that the electron effectively decomposes
into quark-like constituent particles of fractional charge. © 1997 Elsevier Science B.V. All rights reserved.
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In this article, I will argue that electrons in
fractionally quantized Hall fluids effectively decom-
pose into smaller, quark-like particles, which then
bind together to form electrons. This is not to say
that electrons cease to be the fundamental degrees of
freedom in these systems — a quantum mechanical
description of all the electrons in the liquid is as com-
plete as any description can be — but rather that the
hierarchy of effective field theories is reversed. While
we usually assume that constituent particles are more
fundamental than composite particles — quarks are
thought as more fundamental than hadrons in the stan-
dard model, or electrons as more fundamental than
Cooper pairs in superconductors — fractionally quan-
tized Hall liquids provide us with an example where
the composite particles, the electrons, are fundamen-
tal while the smaller constituent particles, which |
call quantum Hall quarks, are fictitious or effective
degrees of freedom induced by the surrounding elec-
tron condensate.
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I wish to address myself to readers without detailed
knowledge of quantized Hall fluids, and will begin
with a review of the long distance physics.

Most of our understanding of the fractionally
quantized Hall effect is based on a highly original
trial wave function for the ground state proposed by
Laughlin [1]:
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This wave function describes a circular droplet of an
incompressible electron fluid in a strong perpendicular
magnetic field B. The fact that all the electrons lie in
the lowest Landau level constrains the wave function
to an analytic function in the complex particle posi-
tions z = x + iy times a Gaussian; the Jastrow factor
[1(zi — z;) raised to an odd integer power m very ef-
fectively suppresses unwanted configurations in which
electrons come close to each other.

The Landau level filling fraction is defined as v =
ON/CNg, where N is the number of electrons and Ny
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the number of Dirac flux quanta through the liquid.
The latter is equal to the number of zeros of the wave
function ¥[z] seen by an individual test electron with
coordinate z; while all the other electron coordinates
Za2,...,zy are held at fixed positions. For the Laughlin
state, Eq. (1) above, such a test electron will see m
zeros at the positions of each other electron, and no
additional zeros elsewhere. This implies v = 1/m.

The elementary excitations, quasiholes and quasi-
electrons, correspond to additional zeros which are not
attached to electrons, or of deficits of zeros in given
regions, respectively. Laughlin’s explicit trial wave
function for the quasihole is given by

N
Pilz] = lj](z,- —n)¥nlz]. ()

It is immediately obvious that m quasiholes at the same
point # amount to a true hole in the liquid, which has
charge +e; the convention here is e>0. The quasi-
hole charge is therefore e/m. There is a similar trial
wave function for the quasielectron, which involves
derivatives in the z;’s.

The trial wave function, Eq. (1), is actually a rather
good approximation to the exact ground state of
two-dimensional electrons with Coulomb interactions
in the lowest Landau level; at v = %, a numerical
comparison for six electrons on a sphere yields [2, 3]

<l1’m:3 l lPexaCt> = 0.9964. (3)

The reason for this remarkable agreement, or more
generally, for the success of Laughlin’s theory, is that
it captures the correct long distance physics. The es-
sential physics contained in the trial wave function,
Eq. (1) —in fact, the only physics except for the mag-
netic field — is that the electrons become superfermions
for m = 3,5,.... The notion of superfermions makes
sense in two space dimensions only. It means that the
phase picked up by the wave function when one elec-
tron encircles another is not 27, as Fermi statistics re-
quires it, but an odd multiple 27m, which is consistent
with Fermi statistics as well. The fractional quantum
numbers of the quasiparticles, for example. are a di-
rect consequence of the superfermions.

Before closing this review, I would like to point
out a technical detail [4] which will ease the exposi-
tion below. In the lowest Landau level, any two-body
potential can be parameterized by a discrete set of
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pseudopotentials ¥, which denote the energy cost of
having relative angular momentum / between two par-
ticles. The Laughlin } state is the exact ground state
of a model Hamiltonian where only the pseudopoten-
tial ¥; >0 while all the other V; =0 for / = 3,5....
. The reason for this is simply that the superfermions
have — it follows directly from their definition — no am-
plitude to be in a state of relative angular momentum
[=1.

Now, imagine we adiabatically deform this set
of pseudopotentials into the corresponding set for
Coulomb interactions. Then the ground state will
evolve from a Laughlin % state into the exact Coulomb
ground state at v = % We know from the overlap,
Eq. (3), that the state cannot change very much, and
from the correctness of Laughlin’s theory that the long
distance physics cannot change at all — the changes
must occur at short distances. The superfermions must
evolve into approximate superfermions, that is, parti-
cles which look like superfermions from far away, yet
are different from the exact superfermions contained
in Laughlin’s trial wave function.

To eclucidate this notion, consider once more the
zeros of the wave function as seen by an individual
test electron z; while all the other electron coordinates
z3,....zy are fixed. The exact Coulomb ground state
is of the general form

N
Yeoulz]l = [(zi — z))P(z1.....2x)

i<j

xﬁe"(mw‘:":. 4)
i1
The Jastrow factor must be present since Wcoulz] is
antisymmetric; P(zy,...,zy) is, in general, a compli-
cated symmetric polynomial. A cartoon of the zeros
of ¥cou 1N a given region, as seen by a test electron
from far away, is shown in Fig. 1.

There are three zeros associated with each electron:
one of them (denoted by a cross) stems from the Jas-
trow factor in Eq. (4) and coincides with the electron
coordinate z;; the other two (denoted by dots) stem
from the polynomial P(z,,...,zy) and are, in gen-
eral, very complicated meromorphic functions of all
the electron coordinates in a range which depends on
the range of the interaction potential [5]. In the limit
of the minimally short-ranged potential mentioned
above, the positions of these two zeros depend only
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Fig. 1. Zeros of Wcuylz] as seen by an individual test electron z;. The zeros denoted by crosses stem from a

Jastrow factor and coincide with the electron positions z3,....

zn. while those denoted by dots are in general very complicated functions

of all the electron coordinates in the vicinity. Also shown is an isolated zero not associated with any electron, which corresponds to a

quasihole excitation.

on the coordinate of the electron they are associated
with — in fact, they coincide with this coordinate:
P(z,...,zy) becomes a Jastrow factor squared, and
the general ground state, Eq. (4), the Laughlin %
state.

The reason the test electron must be far away is
that the positions of the zeros associated with each
electron depend on the position of the other electrons
nearby. If we were to pick an electron nearby as a
test electron, the zeros seen in this region would be
those seen by another test electron from far away if
the test electron nearby did not exist. The positions
of the zeros would therefore depend on which of the
electrons nearby we were to pick as a test electron.
If we, however, choose an electron far away as the
test electron, the positions of the zeros in the region
nearby will not depend on our choice and an inter-
pretation of the zeros as particle coordinates, as | will
advocate below, is conceivable.

This brings me to the heart of the matter.
In order to provide a local description of the short
distance physics of fractionally quantized Hall flu-
ids, I propose to view the zeros associated with the
electrons as particles. The electron in a v = % state
effectively decomposes into three smaller constituent

particles,
e” — udd, (5)

where the u and d particles, or quantum Hall quarks,
are the zeros due to the Jastrow factor and the
polynomial P(z,...,zy), respectively, as shown in
Fig. 1. The d particles are equivalent to quasi-
holes, in the sense that a quasihole is nothing but
an isolated d. The charge of the d must there-
fore be equal to the charge of the quasihole,
which we know to be +_%. Since the vacuum or
ground state is neutral on a level on which the
quasihole assumes this charge, the total charge
of the udd composite must be zero, which implies
that the charge of the u is —3.

The remainder of this paper is devoted to motivat-
ing and elucidating this idea. To begin with, I will
use the hierarchy of quantized Hall fluids (4, 6, 7]
to establish an interpretation of the quasiparticles in
quantized Hall fluids as particles.

The quasiparticle excitations of quantized Hall lig-
uids, quasielectrons and quasiholes, were originally
conceived as vortices [1], and are adequately inter-
preted as such when a plateau in the Hall resistivity
results from their localization by disorder. There are
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situations, however, where an alternative interpreta-
tion as quantum mechanical particles is not only pos-
sible, but inevitable. The hierarchy of quantized Hall
states provides us with an example: the quasiparticles
themselves condense into a Laughlin—Jastrow-type
fluid, and it is necessary to assign a wave function
to them in order to describe this condensation. More
precisely, we write an [m, +p] state, that is a p daugh-
ter state of quasihole excitations of an m parent state,
as [8, 9]
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and N; = N/p. The two factors in the second line of
Eq. (6) serve to normalize the quasiparticle Hilbert
space. The fact that we have to integrate over the
quasiparticle coordinates to obtain a wave function
for electrons is entirely consistent with their nature as
guantum mechanical particles, as quantum mechani-
cal degrees of freedom always have to be integrated
out with a wave function as a measure whenever we
wish to calculate a measurable quantity (e.g. a transi-
tion probability).

The explicit trial wave function, Eq. (6). and its
cousin for the [m, —p] state in which quasielectrons
rather than quasiholes condense, are excellent approx-
imations to the exact Coulomb ground states; at v =
%, the overlap for 6 electrons on a sphere 1s [9]

<qj|3.——2]|lpcxacl,\) = 0.9995, (8)

a number which compares favorably even with the
Laughlin 1/m states.

The particle nature of the quasiparticles leads us to
the question of their origin, to the question of where
new particles of fractional charge may come from.
The answer is the obvious one, and this is precisely
why it is so hard to swallow: The charges of the quasi-
particles are parts of electron charges, and the quasi-
particles themselves are parts of electrons. In order

for quasiparticle excitations to exist, the vacuum or
ground state must contain them already in a confined
phase — the vacuum must be a phase in which pieces
of electrons bind together to form electrons [10].

Particle physicists usually establish the existence of
new particles by observing them as resonances in scat-
tering experiments. This is not possible for quantum
Hall quarks, because the kinetic energy of all the par-
ticles involved is quenched due to Landau level quan-
tization, and the concept of time consequently does
not exist, but even more profoundly so because we
invoke quantum Hall quarks to describe the vacuum,
which trivially excludes the possibility of scattering
experiments.

Fortunately, there is a way around these problems.
While we do not have a concept of real time, we can
perform a Monte Carlo simulation and monitor scatter-
ing events as particle configurations evolve in Monte
Carlo time. Let me briefly review the technique: a
Monte Carlo simulation is a numerical method to ap-
proximate an integral over many variables with a prob-
ability p as a measure. Instead of integrating over
the variables directly, we interpret them as dynamical
variables, and let them evolve in Monte Carlo time.
This concept of time is discrete; at each step we ran-
domly pick one of the variables, and define a new
configuration by randomly choosing a new value for
this variable according to a certain distribution, which
is usually taken as a Gaussian centered at the present
value. Finally, we randomly decide whether to update
the configuration or not according to probabilities pro-
portional to the measure p for the new and for the
present configuration, respectively. The desired inte-
gral is obtained by averaging the integrand (not in-
cluding the measure) over a long span in Monte Carlo
time; the approximation becomes exact as this span
tends to infinity.

In our case, the Monte Carlo variables are the clec-
tron coordinates z;, and the measure p is the probabil-
ity [¥cou(z1,....zx )| A snapshot of a typical Monte
Carlo configuration including all the zeros or quantum
Hall quarks, is shown in Fig. 2a. Only the electron
coordinates, or u quantum Hall quarks, are truly dy-
namical variables in Monte Carlo time; the dynamics
of the remaining zeros, or d quantum Hall quarks, is
induced through the surrounding electron condensate.
This, however, does not emerge from Fig. 2a, nor does
it ever manifest itself as we follow the evolution of
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Fig. 2. Electron—electron scattering in Monte Carlo time: (a) two
electron coordinates happen to come very close to each other;
(b) the surrounding electron configuration evolves in Monte Carlo
time, and with it the configuration of the zeros of the two electrons
close to each other; (¢) the two electrons separate again. having
interchanged one of their constituent particles.

this configuration on a continuous time scale — that 1s,
a time scale on which all the variables evolve simul-
taneously.

Let us now look at a particular scattering event, as
shown in Fig. 2. In this event, two electrons scatter
off each other, and interchange one of their constituent
particles: two electron coordinates happen to come
very close to each other, and remain unchanged for a
number of Monte Carlo steps, while the configuration
of the additional zeros associated with them evolves
with the surrounding electron liquid; this configura-
tion will, in general, have changed significantly by the
time the two electrons separate again. Thus, there is
a finite amplitude for zeros to get interchanged - the
zeros are indistinguishable when interpreted as parti-
cles, and scatter into each other as identical particles
do in quantum mechanics.

This Monte Carlo experiment nicely illustrates the
underlying reason why it is possible for these fictitious

n

or induced degrees of freedom to become particles:
induced and fundamental degrees of freedom are /o-
cally equivalent, in the sense that no local experiment,
and, in particular, no scattering experiment, is capable
of resolving the difference. This is precisely the rea-
son why it is perfectly reasonable to invoke quantum
Hall quarks in order to provide a /ocal description of
fractionally quantized Hall fluids at short distances.

I have mentioned above that the d particle is equiva-
lent to a quasihole excitation, in the sense that a quasi-
hole 1s nothing but & d in isolation. To see this, we
just need to perform another Monte Carlo experiment
with an exact quasihole for Coulomb interactions at
some location #, and we will find that the position of
the zero associated with the quasihole does not ex-
actly coincide with the position #, but rather depends
on all the electron coordinates in the vicinity, as indi-
cated in Fig. 1. Moreover, we will find that this zero
has a finite amplitude to get interchanged with other
zeros or d particle in the liquid as electrons scatter off
the quasihole in Monte Carlo time. This illustrates the
precise sense in which the exact quasihole for realis-
tic interaction potentials differs from Laughlin’s trial
wave function, Eq. (2). The equivalence of confined
and isolated zeros can of course also be deduced from
the fact that a quasihole—quasielectron pair 1s created
by removing a zero from the vacuum in a certain re-
gion and placing it into another region.

Most of what I have explained in this paper concerns
the ground state or vacuum of fractionally quantized
Hall fluids, while only excitations matter to experi-
ments performed on quantum Hall systems. The real
significance of the analysis presented here lies in the
general message we can learn from it, and the potential
relevance of this message to other systems, in partic-
ular, to the vacuum of our universe, the ground state
which supports all the elementary particles known to
us as excitations.

This general message is that some of the particles
we see or detect as excitations above a certain vac-
uum might conceivably be pieces of larger particles
invisible to us. The degrees of freedom we perceive
as fundamental may, in fact, be fictitious or induced,
and fractional quantum numbers - but, in particular,
the fractional charges of quarks in quantum chromo-
dynamics — may arise through a mechanism related
to the one responsible for quantum Hall quarks. If
we specifically imagine an observer who lives in a
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quantized Hall fluid and consists of quasiparticles, this
observer would never see electrons, but only fictitious
particles of fractional charge, and would naturally be
inclined to accept those as fundamental. Note, in par-
ticular, that scattering experiments, both the ones per-
formed by this observer as well as the ones performed
by us in particle accelerators, are incapable of resolv-
ing the ambiguity between induced and fundamental
degrees of freedom.

A more elaborate account of this work will be given
elsewhere [11].

[ wish to thank L. Alvarez-Gaumé, E. Brézin,
W. Krauth, R.B. Laughlin, L. Susskind and E. Ver-
linde for inspiring discussions, and to R.B. Laughlin
again for his critical reading of the manuscript. This
work was supported through a Fellowship in Elemen-
tary Particle Physics at CERN and through NSF grant
No. DMR-95-21888.

References

[11 R.B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395.

[2] F.D.M. Haldane, E.H. Rezayi, Phys. Rev. Lett. 54 (1985)
237.

[3] G. Fano, F. Ortolani, E. Colombo, Phys. Rev. B 34 (1986)
2670.

[4] F.D.M. Haldane, Phys. Rev. Lett. 51 (1983} 605.

[5] The corresponding observation for the effect of mixing with
higher Landau levels has been made by B.I. Halperin, Helv.
Phys. Acta 56 (1983) 75; my considerations here, however,
only involve the lowest Landau level.

[6] R.B. Laughlin, Surface Science 142 (1984) 163.

[7] B.I. Halperin, Phys. Rev. Lett. 52 (1984) 1583.

[8] R.B. Laughlin, in: F. Wilczek (Ed.), Fractional Statistics and
Anyon Superconductivity, World Scientific, Singapore, 1990.

[9] M. Greiter, Phys. Lett. B 336 (1994) 48.

[10] The possibility of an interpretation along these lines has
been suggested by F. Wilczek, Liberating exotic slaves, Talk
at the Celebration of the 60th Birthday of Y. Aharonov,
IASSNS-HEP 94-58.

[11] M. Greiter, to be published.



