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The principle that perturbationin quantumstatisticsshouldbe accompaniedby applicationof
an appropriatemagneticfield hasbeen successfulin giving a simple understandingof major
qualitativefeaturesof the fractional quantizedHall statesand relatedanyon superconducting
states.In these applications,the starting point is one or more filled Landaulevels. Here we
considerthequestionof perturbationaround free fermions.We arguethat very nearthis point
the statistical interactions are weak and their effects calculable;neverthelessthey have the
important qualitativeconsequencethat a p-waveBCS pairing instability is triggered.Theresult
is a new line of incompressiblestatesin the (inverse) filling-fraction—statisticsplane.This line
extrapolatesto a stateobeyingFermi statisticsat filling fraction 1/2, which is a candidateto
describeelectronstates.A variety of techniquesis then employedto elucidatethe propertiesof
this state and the unusual quasiparticlesit supports.We believe the state is in the same
universalityclass as one Halperin proposedbasedon groupingelectronsinto pairs of tightly
bound bosonicmolecules,which form a correlatedstateof the Laughlin type. We report the
resultsof extensivenumerical work which establishesfirmly the existenceof an incompressible
statewith the propertieswe predict, including thevery unusualquasiparticles,for simple model
potentials.We alsoinvestigatethe situationfor realistic potentials,andconcludethat a paired
Hall stateof the type investigatedhere is a good candidateto describereal 2d electrongases,
especiallyfor thick samplesand higherLandaulevels,quite possibly including thestateat filling
fraction 5/2 that hasalreadybeenobserved.

1. Introduction and summary

Certainly one of the most startling and profound discoveriesin recent con-
densedmatter physics is the existenceof incompressibleground statesfor the
two-dimensional electron gas in a magnetic field, at favorable filling fractions
(quantizedHall effect) [1,2]. The integerquantizedHall effect canbe understood
at leastcrudelyon a one-particlepicture, as resultingfrom the existenceof Landau
bands separatedby energy gaps [31.When the electron density is such as to

* Researchsupportedin parts by DOE grant DE-FGO2-90ER40542.
* * Presentaddress:Departmentof Physics, MassachusettsInstitute of Technology,Cambridge,MA

02139, USA.

0550-3213/92/$05.00© 1992 — ElsevierSciencePublishersB.V. All rights reserved



568 M. Greiter ci a!. / PairedHall States

preciselyfill an integernumberof levels,any rearrangementof the densityrequires
the existenceof a hole somewhereand an excitationto the next band somewhere
else. This clearly requires an irreducible, finite injection of energy. (A proper
understandingof why the statecan accommodatefinite changesin density — in
experimentalterms,of why thereis a finite rather thanan infinitesimal plateauin
the quantizedresistivity — requiresan additional argument.It mustbe shown that
small deviations from the ideal densitycanbe accommodatedon localized states
pinnedto impurities, which do not contributeto the currentflow.) The fractional
quantizedHall effect [4—7],by contrast,contradicts the one-particlepicture. The
one-particlepicture would lead oneto expect a vast seaof degenerateor nearly
degeneratestates,with no gap,when the valenceLandauband is partially filled.
Thus non-trivial correlationsamongthe electronsmust be invoked to understand
the existenceof incompressiblestatesat fractional fillings, evencrudely.

The existenceandform of thesecorrelationshas beenconvincingly established,
at least for the primary states at t’ = 1/(2m + 1), by a variety of arguments.
Perhapsconceptuallythe simplest and clearest(thoughby no meansthe first or
only) wayto understandthe existenceof incompressiblestatesat thesefractionsis

the adiabatic approachsuggestedby two of us recently [8,91.According to this
approach,which we shall elaborate below, one can continuously interpolate
between v = 1 and v = I/(2rn + 1) through a seriesof incompressiblestates.In
this process,one changesthe hamiltonianby replacingthe uniform magneticfield

by an equalamount of flux localized in point-like tubesattachedto the particles,
and also adds suitable potentials (which are necessaryto keep the gap from
closing.)Thusone relatesincompressiblestateswith different quantumstatisticsin
different backgroundmagneticfields. At ii = l/(2m + 1) one has incompressible
fermion states,suitable for describingordinary electrons,while at intermediate
valuesonehas incompressibleanyonstates.The existenceof incompressiblestates
at t’ = 1/(2rn + I) is then a consequenceof the adiabatictheorem; thesestates
descend,in the simple andprecisesenseindicated, from the full Landaulevel.

One might try to consider,insteadof a singlefilled Landaulevel, other starting
points for this adiabatic flux-trading procedure. Perhapsthe most basic and
interesting starting point of all is free fermions in zero magnetic field [101.
Unfortunately it is not at all obviousthat an adiabaticprocedurewith thisstarting
point makessense,sincethe filled fermi seais not an isolated state — thereare
many low-energyexcitations.However, it is a very familiar fact that free fermions
are poisedon the brink of an instability — the BCS pairing instability. Arbitrarily
weak interactionscantrigger this instability, which doesopen a gap. It makessense
to attemptan adiabaticevolution, similar to the oneusedto obtain the s = 1/(2m
+ 1) states from the full Landau level, starting from a paired state in zero
magneticfield. Doing this, we find candidatefermion statesat i-’ = 1/2m. These
states,andin particular the simplestoneat o = 1/2, are the main subjectof this
paper.
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Sometime ago Halperin[5] suggestedthe possibility in principle of incompress
ible fermion statesat i.’ = 1/2, basedon considerationsdifferent from but not
entirelyunrelatedto these.He invites us to imagine,for purposeof discussion,that
there is some powerful attractive but saturable force, that organizescharged
fermions into tightly bound pairs,with repulsiveresidualinteractionsamongthe
bound pairs.Thenwe havethe conditionsto form an incompressiblebosonstateof
Laughlin type amongthe pairs. For bosons,the primary filling fractionsare of the
form v = l/2p. Since thesebosonshave twice the chargeand half the densityof
the original fermions, it is not difficult to seethat p = 4, an allowedvaluefor the

effectivebosons,correspondsto t’ = 1/2 for the original fermions.
Of course,this approachbegs the questionof where such a bizarreforce might

originate, and whether it is reasonableto expect electrons,which are basically
repulsive,to form effective pairs.As we shall arguein detail below, thereis every
reasonto believe that the stateswe describeare in the sameuniversality classas
the onesHalperin suggested,thus in a sensevalidating his discussiona posteriori.
The relationshipbetweenthe theoriesis quite similar to the relation betweenthe

Bose condensationpictureof superconductivityandBCStheory. For many qualita-
tive purposesit is simpler, and acceptable,to use the tight-binding picture.
However this picture is far from justified quantitatively. It also missesout on the
neutralpair-breakingexcitations,which we believemaybe quite importantfor the
v = 1/2 state in reality.

Now let us briefly discussthe literature andstatusof pairedHall states.As we
havementioned,the possibility of pairedHall stateswasraisedby Halperin,whose
strong-pairing picture also provides a simple way to envision many of their
qualitative properties.Although they did not interpret them this way, numerical
experimentsof CanrightandGirvin [11] demonstratedthe existenceof incompress-
ible statesat filling fraction i’ = 1 for repulsivespinlessbosons,which we strongly
suspectarepairedHall states.Moore and Read[12] emphasizedthe usefulnessof
pfaffians in constructing trial wave functions with pairing correlations in the
context of the Hall effect. Although (as discussedbelow) we have reservations
concerningtheir proposal of non-ahelianstatistics for the associatedstates,we
arrive at the sametrial wave functionsfor ground stateand chargedquasiparticle
excitations.Moore and Read were largely motivated by far-reachinganalogies
betweenconformal field theorycorrelatorsandthe groundstatewave functionsof
quantizedHall states.Wewere initially motivatedto considerpfaffiansby the fact
that the BCS pairing wave functions, in realspace,takethe form of a pfaffian. We
will demonstratebelow that it is generatedby adiabatic evolution in quantum
statisticsfrom an extremelysimple (exactly soluble, but singular) BCS supercon-
ductor, and also by exact solution of a simplelocal Hamiltonianwith short-range
three-bodyrepulsions.The fact that such different points of view all lead to the
sameclassof wave functions,certainly addsto their interestandcredibility. There
is a well-establishedHall stateat r’ = 5/2 [13], and hints of anomalousbehaviorat
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other even denominators[141.Thesedo not fit in to the standardhierarchical
construction[61for spin-polarized electrons.Trial wave functions incorporating
non-trivial admixturesof different spinsfor the electronshavebeenproposedfor

thesestates[5,151,butthe most recentanddetailednumericalstudieshavetended
to favor fully polarizedstates[16,171.It hasbeenshown that the 5/2 statecan be
destroyedby a strongperpendicularcomponentin the magneticfield [181,which at

first sightcertainly suggeststhe relevanceof spin correlations.However introduc-
tion of the perpendicularfield introducesother effectsbesidea Zeemansplitting,
andin our opinion it would be prematureto regardthe issue asclosed. In light of
the numericalresultsmentioned,and additional onespresentedbelow,we regard
the polarized pairedHall stateas excellentcandidatesto describereal statesof
matter, including the 5/2 state.

The contentsof the remainderof this paperare as follows. In sect. 2, we very
briefly review the adiabaticprocedure,and argue that it suggestsa connection
betweenthe BCS pairing instability for free fermions andan incompressibleHall
state(for spinlessor spin-polarizedfermions)at filling fraction r’ = 1/2. In sect.3,
we analyze the pairing instability induced by residual statistical interactionsin

detail. We argue that it leads unambiguouslyto pairing in the p-wave for weak
coupling (that is, small deviations from fermi statistics at zero external field.)

Unfortunately,the most interestingcasev = 1/2 is far from this limit, and other
approachesmust be used. Fortunately, the pairing analysis itself suggestsa
particular trial wave function, involving the mathematicalobject known as a
pfaffian, which hasthe requiredqualitative featuresand (we shall see) is exact for
oneclassof interactions.In sect.4 we discussthe expected“quantum numbers”of
the groundstate.Thesearewhole numbershaving to do with the degeneracy,and
the relationship betweenchargeand flux, on closed surfaces.We first give a
qualitative discussion, based on the strong pairing picture. We then give an
alternative analysis,basedon the suggestedtrial wave function. This requires
generalizingthe dropletwave function to the sphereandtorus,which provesquite
instructive. In sect. 5, we discussthe chargedquasiparticleexcitations abovethe
pairedHall state.(Functionsfor the halberons.)We argue that the fundamental
chargedquasiparticlesare chargee/4 anyonswith statisticalparameter9 =

and provide trial wave functions for thesequasiparticles(here christenedhal-
berons). Their form on a torus is particularly interesting, and has non-trivial
relationsboth to the groundstatedegeneracyand to the existenceof pair-breaking
modes.In sect. 6, we discussthe neutral fermion (pair-breaking)excitations.It is
arguedthat the existenceof suchexcitationsallows oneto evadethe conclusionof
Tao and Wu [19], that only odd denominatorsare allowed for the fractional

quantizedHall effect with spin-polarized electrons. In sect. 7, we discusssome
numerical experiments,which give evidence that a state of the kind we are
discussingis the ground state for suitable interaction potentials.This includes
evidencebasedon the relation betweenflux and particle number on a sphere
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(which includesa characteristicoffset), and numericalevidencefor the suggested
propertiesof the quasiparticles.In sect. 8, we consider the questionwhethera
pairedHall state is the groundstate for realisticor accessiblepotentials.It does
not appearto be the ground statefor the simpleCoulomb potential (projectedto
the lowest Landaulevel), but we find that after inclusion of higherLandaulevel
correlationsand finite thickness effects it becomesa compelling candidate to
describereal statesof matter,quite possiblyincludingsomethat havealreadybeen
observed.

To avoid repetition let us stateonceandfor all that in this paperunlessstated
otherwisewe will implicity ignorethe electronspin, so that we dealwith effectively
scalarfermions. This is presumablyappropriateat least for very strongmagnetic
fields, in circumstanceswhere the Zeemansplitting lifts the “wrong” spin above
the energyscaleof interest.

2. Searchfor analyticity in statistical perturbations

The possibility of anyon statisticsallows oneto considerperturbingor interpo-
lating in particlestatisticsin two spacedimensions[20,211.

Straightforwardperturbationtheoryis likely to be problematic,however,for the
following reason.Small changesin the statisticscorrespondto putting a small
quantityof fictitious magneticflux on eachparticle.Typical calculationsonemight
want to contemplatewould be to project out the ground state by the standard
device(Feynman)of startingfrom an arbitraryconfigurationandletting the system
evolve for a largeimaginarytime, or to calculatethe partition functionby summing
over all periodicpathsin imaginarytime, with period inverselyproportionalto the
temperature.In either case,insofar as the important paths wander over many
interparticlespacings,they acquire their phasefrom winding aroundmany tubes
each individually responsiblefor only a small phase.One would thereforeobtain
almost the same result by replacing the flux localized on the particles by its
uniform average.Thus if we wish to treat the change in statistics as a small
residualinteraction,then at leastunderthe conditionthat the pathswander— that
is, in the regimeof strongquantumphenomena,or low temperature— the proper

starting point must be to analyze the problem in the appropriatebackground
magneticfield. Only then will the residual interactionsbe in any sensesmall or
local. At hightemperaturesor low densitythis considerationis not so critical, and
one does find more or less smoothbehaviorin the quantumstatisticsparameter,
although even in this case a cusp in the secondvirial coefficient arises in the
first-orderperturbationaroundbosons[221.

This discussionis closely related to, and is reinforcedby, a heuristic principle

recently emphasizedby two of us [8,91.It wasproposedthat incompressiblestates
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alongthe lines

0 1
(2.1)

t-

in the statistics—magneticfield (or inversefilling fraction) plane are likely to be
adiabatically related, by the procedureof slowly trading flux localized on the
particles for an equal amount of uniform flux. This proceduregeneralizesthe
successfulRPA treatment[23,24]of anyon superconductorsat 0/~= (1 — 1/n) in
zero magneticfield by perturbationaroundfermions (0/n = 1) filling n Landau

levels (p = n). It also relates, for i(O/~)= even integer, integer to fractional
quantizedHall statesof fermions— theconnectionbeing madethrougha continu-
ous successionof anyon states.This observationforms the basis of a systematic
perturbative approachto the latter states,which we plan to discussat length
elsewhere.However at this moment a negatil’c consequenceof the heuristic
principle is morerelevant.That is, that this principle makesit clear thatperturbing
in 6/~without changingthe magneticfield is a highly non-analyticprocedure.For
according to the heuristic principle this perturbation is smoothly related to a
perturbationin I/i; without changingthe quantumstatistics — andwe know that
this sort of perturbationis extremelynon-analytic;in fact the existenceof cuspsin
energyas a function of filling fraction is the essenceof the fractional quantized
Hall effect.

In this paperwe wish to focus on anothercasewhere the adiabaticheuristic,or

the idea of smooth perturbationin quantum statisticssuggeststhat particularly
interestingbehaviorwill occur.We ask: what statesare continuouslyrelatedto free
fermions in zero magneticfield? This is the referenceproblem for anyonswith
statisticalparameterU = ~(1 + e) in the presenceof a uniform magneticfield of
magnitudeB = 2~ep/e.Becauseit takesits point of departurefrom free fermions,

the line 1/v = (0/IT) — 1 was originally called the line of anyon metal. It seems
now more appropriateto call it the line of paired Hall states.

Onereasonthat this line is especiallyinterestingis that the referenceproblem—

free fermions in zero field — is poisedon the brink of an instability. We have in
mind the pairing instability of BCS theory [25], which can be triggered by
arbitrarily weak attractions.For this reason,the residual interactionsmay havea
large effect even in the small-E regimewhere they are small and their effectsare
reliably calculable. In fact we shall soon argue that the residual interactionsdo

trigger the pairing instability. They give us a p-wave superconductor— or, to be
more precise,pairing correlations in the p-wave. Moreover, the strength of the
pairing increases with e. Thus although the perturbative calculation becomes
unreliable,it still stronglysuggeststhat this type of orderingoccurs for large e as
well.

Travelling along this line in statistics — magnetic field space,one reachesan
interestingpoint at e = 1. At this point onehasreacheda (presumablyincompress-
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ible) state of bosons exactly filling one Landau level, v = 1. We find it quite
unusualand amusingthat bosonscan recognizethe significanceof exactly filling
one Landaulevel. There is some numericalevidence[111that bosonswith hard

core repulsiondo in fact organizethemselvesinto an incompressiblestateat v = 1.
Although a direct physical realization does not seemlikely, this boson state is
likely to be a good testingground for the ideasdescribedhere.We are claiming its
behavior is qualitatively similar to the physically realizable fermion state at

= 1/2, but it oughtto be more tractablenumericallyandanalytically.
Travelling still further along our line in statistics-magneticfield space,one

reachesan especiallyinteresting point at e = 2. At this point the statistical
parameterhas come full circle to arrive back at fermions. Thus fermions in a
magneticfield at filling fraction i.’ = 1/2 are related to fermionsin zeromagnetic
field with residuallocal interactions.This is interesting,becausea fermion stateat
least meets the most basic requirementfor a candidateto describeinteracting
electrons.Sincethis particularfermion statehasbeenevolved continuouslyout of
an adiabaticprocedurefrom an incompressible(gapped)system,and is therefore
very plausibly the ground state for suitableinteraction potentials — i.e. repulsive

potentialssuchthat the gap doesnot close at intermediatestages.
Unfortunately,E = 2 is beyondthe boundsof perturbationtheory. For E = 2 the

residualinteractions,though local, are strong. Nevertheless,one might hope to
learnsomethingaboutthe possiblebehaviorof fermionsat u = 1/2 by extrapolat-
ing the calculablebehaviorfor small e. To this, we now turn.

3. The pairing instability and the ground state

3.1. THE RESIDUAL INTERACTION AND THE INSTABILITY

In this sectionwe shall derive the residualinteraction aswe perturbfrom free
fermionsinto statistics— magneticfield space,andarguethat this interactiondoes
indeedtrigger a pairing instability.

For convenience,let us use secondquantizednotation. Then the hamiltonian
for an anyongasin a uniform, flux-compensatingmagneticfield is givenby

H=~fd2r 1I’~(r)[p+a(r)]2~(r), (3.1)

with

2X(r—r’)
a(r) = efd2r~ 2 {~t(r’)~(r’) — ~}. (3.2)

r—r
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Here ~I’is a spinlessfermion field (in accordancewith the assumptionthat the ii =

state is spin polarized), and ~ is the meanparticledensity.Our referenceproblem
for perturbationtheory is, of course, the idealized case of free fermions. The
residualinteractionis

H~115=H—H~=~fd2r ~t(r)(2pa —a
2}~(r), (33)

or, if we neglecttermsof secondorder in E

E p><(r—r’)
H

1~5= ~ffd2r d
2r’~V~(r) , 2 ~ —~} (3.4)

m

The velocity-dependenceof the two body interaction,

1’ >< r

H~
5

alreadyhints that the ground statewill not be an s-wave, but a higher angular
momentumeigenstatecapableof taking advantageof this potentially attractive
interaction. Following the standardBCS analysis,we rewrite the hamiltonian in

Fourier spaceandkeeponly those termsdecisivefor superconductivity

H~~5= ~ ckckVkkc_kck, (3.5)
kG

where the interactionis given by

� kxk’
Vkk =

2ITi~ . (3.6)
m Ik—k’~2

We now minimizethe expectationvalueof this hamiltonianwith respectto a BCS
pairing wave function. By familiar stepsone is led to the consistencyequation

~k ——E~Vkk’, (3.7)2 k’ Ek

for the superconductinggap parameter.Ek is the quasi-particleexcitationenergy,
definedby

EYk~2+~, (3.8)

with

~k ~Ek —e
1=
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where C~ denotesthe Fermi-energy.Now let us discussthe solution of the gap
equation(3.7).

To begin with, we substitutethe expression(3.6) for the interactionpotential
Vkk into the gapequationandreplacethe sumover k’ by an integral:

. 1 ~ ‘ak’ kxk’
Id2k’—Vkk . (3.9)m (2IT)2~ Ek Ik—k’~2

The imaginary prefactorindicates that ~k cannot be real, as it would be for an

s-wave superconductor.We are led to considerthe Ansatzfor /-wave pairing

= ~k e’~ with /= 1,2,3 (3.10)

where ‘Pk denotesthe direction of the two-vectork. Note that only oddvaluesfor /
are consistentwith Fermi statistics (and the assumptionthat the state is spin-

polarized). Substitutingthis Ansatz into the gap equation(3.9), we find

C ~ H~k’~ 1 1<’ k
H~k1= f k’ dk’ — — + (3.11)

4ITmJ
0 Ek 2 k k’

where

27r sin Isp sin sp
I,(A) f dsp . (3.12)

u A—cossp

This integralcan be evaluated,andyields

0 for I even
11(A) = i 2 / (3.13)2IT(A—VA —1) for/odd,

provided A ~ 1. If we substitute(3.13) for / odd into eq.(3.11), we obtain

E k k’ ‘~k~ ~ k IL~kJ

‘~k’4 fk’dk’(~) Ek ~1k’dk’(~) Ek (3.14)

Eq. (3.14)canbe solvedalmostexactlyfor small e. Onevery significant result can
be discerned immediately. The integral on the right-hand side of eq. (3.14)
acquiresits largestvalue for / = 1, and consequentlythe pairing for the ground

statemustbe p-wave.Thereforewe take I = 1 in the remainderof the discussion.
Furtherinsight canbe gainedif we reformulatethe integralequation(3.14) as a

differential equation:

3 k
2/2m{ ~ ~ + (C Ek — ‘~k =0, (3.15)
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where Ek is still a function of Llk , as given in (3.8). We expect I <<Cf for
small — an assumptionwhich will be justified a posteriori.The term containing Ek

is of order C and can be neglected,provided that k is not too close to the
Fermi-momentumk. The remaininghomogeneousdifferential equationhas two
independentsolutions:

~ and ~ (3.16)

From the integral equation(3.14), it follows clearly that the gap parametermust
vanish for both k = 0 and k = ~. Thus we cananticipatethe shapeof the solution
everywhereexceptat k~.The exact behaviorat this point, however,is irrelevantfor
our purposes,since none of the important parametersdependson it. So the
essentialk-dependenceis given by

Ik/k~I fork<kf
= I~-~kIx (3.17)kf/k for k > k1.

In order to find the remainingparameter I, we substitutethe solution (3.17)
back into the integral equation(3.14), set k = k5 and do the integralsover k’ on
the right-handside. Assuminge << 1, of course, and also I <<e1, we obtain to
an excellentapproximation

= ~Ef C

2~. (3.18)

Thus the latter assumptionis manifestlyvalid if we presupposethe former. The
solution (3.18) becomesexact in the limit ~ —s 0.

The critical temperature,defined as the temperatureat which the gapcloses,
also can be evaluatedin close analogyto the classic BCS analysis.Within the
regimeof the assumptionsmadeabove,oneobtains

1.13
kBTC = —~=—e

1e
2~. (3.19)

‘Va

Consequently,the gap parameterat k = kf and the critical temperature are
relatedby

= 1.76 k~7T~,

as familiar from conventionalBCS superconductivity.
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3.2. WAVE FUNCTIONS

The analysisin the precedingsectionshows,that the residualstatisticalinterac-
tions induce pairing correlationsof the BCS type for weak coupling — that is, in
our context, for small perturbationsfrom Fermi statistics.However the greatest
physical interest focuseson large perturbations,and ultimately on a perturbation
so large as to bring us full circle, back to fermions. Straightforwardperturbation
theory is of coursenot adequateto this extrapolation.However the pairing does
suggesta definite trial wave function for our problem,asfollows.

Since we are concernedwith problemsin a magnetic field, we may wish to
restrict ourselvesto the lowest Landaulevel. The restrictionto the lowest Landau
level is by far most easily implementedin real space,where it simply tells us that
the wave functions are analytic in the complexparticlepositions.Thus we should
look for analyticwave functions that incorporateBCS pairing in real space.BCS
theory is usually formulated in momentumspace,for good reasons(the Fermi
surface,which is central to the superconductivityof metals,is most easily located
in momentumspace).However it is a classic, thoughperhapsnot widely known,

fact that the BCS wave function in realspacehasa rather simpleandspecialform.
It can be written

N

~‘~cs(zi, z2 z2) =©/ fl ~(z~_1 —z1) (3.20)
z even

wherewe havealreadytakeninto accountthat ~~BCS is meantto be analytic in the
complex particle positions.The operator .~1indicatesthat one should antisym-
metrize,over all (N — 1)!! different possiblewaysof dividing N particlesup in to

pairs (N is assumedeven), the productof (N/2) factors of ~. This form can be
obtainedfrom the moreconventionalmomentumspacerepresentationby project-
ing ontoa definite numberof particles,asdemonstratedby Dyson [261a longtime
ago. It is closely relatedto the mathematicalobject known as a pfaffian.

The function ~ — which mustbe odd, to be consistentwith fermi statistics— is
to be interpretedas the wave function for the relativecoordinatewithin eachpair.
For a sensiblephysical interpretation,wemustdemandthat thepair wave function

representattractionbetweenthe membersof the pair — that is, it should be a
monotonedecreasingfunction of their separation.The simplestand leastsingular
wave function of this type is of course

4(z) = 1/z. (3.21)

This simplestchoice correspondsto pairing correlationsin the p-wave sector,and
is thusconsistentwith the perturbativeresultsobtainedin sect.It hasthe apparent
difficulty that it is singular at z = 0, which implies a non-normalizablewave
function divergingfor small separations.However in the context of the quantized
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Hall effect it is common to considerattachingfictitious chargeand flux to the

electrons;or, alternatively, what amountsto the same thing, to considerwave
functionsincluding positivepowers of the differencesz, — z1 for every set of two

particles(not just the pairedones). The appearanceof such powersremovesthe
objection to the singularity of the naturalanalytic pair wave function, since the
complete wave function, in which it is one factor, is not singular.

The rough ideaof attachingflux to particles,andits connectionto specific wave
functions,gains precisionin the context of some simple solublemodels,to which

we now turn.

3.3. AN EXACT SOLUTION AND ITS EXTRAPOLATION

In this section we shall elaborateon an exact model, which allows us to

explicitly carrythroughthe processof adiabaticextrapolationin quantumstatistics
[9,27].This will provideus not only with a mostplausible(and essentiallyunique,
as we shall argue in sect. 4) form for the wave function at half filling, but alsowith
strong evidencefor one of the most decisivepropertiesof the Hall liquid: the
existenceof a pairing instability in the absenceof an attractive interaction.

In fact, the initial groundstateof our model is given by the unnormalizableBCS
wave function motivated above. It is an exact zero energy eigenstateof the
N-particle hamiltonian

HBCS = ~-~--- ~ (—i~)
2— ~ ~~2( r~— r

1). (3.22)

This hamiltonian describesa (spinless)BCS superconductorin position space,for
the attractive 6-function potential here is equivalent to a constantpotential in
momentumspace.It is mostconvenientto write the groundstateusinga pfaffian

(3.23)

where

N 1
Pf =~ fl . (3.24)

— I even Z5 —

The exactnessof this model may easilybe verified directly, with the identity

I 6
2(z)

z z

which is to be interpreted as a prescription for integrating smooth functions which
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vanish at the origin, slightly generalizingthe usualdefinition of distributions.(The
delta function is of course meant to be takenover the real and imaginarypart

separately.)
Since ~ is not normalizable,it is without evidentphysicalmeaningby itself.

Formally, it attemptsto describea BCS superconductorwith a short rangepairing
potential so strong that the potential energy gained is large enough to compensate
entirely for the total kinetic energyof the system.

The virtues of the singular solution become most apparent only as we initiate
the adiabatic process described above. The model will remain exactly soluble,
providedwe also vary the strengthof the delta-function interaction,and replace

the original hamiltonianby

H~=~E(_i~_eAj)2_()E62(rj_rj), (3.25)
2m m

where

C (r1—r1)x2
2 +~B~(r~.Xz). (3.26)

e1~1 1r1—r11

A. implements both fractional statistics with parameter 0 = IT(l + C) and a flux-
compensating, uniform magneticbackgroundfield B, 2irCp/e in the negative
2-direction. The exact groundstateevolvesinto

~Pf~flIzj_zkIfflexp(_~IzjI2). (3.27)
Theenergyof this stateis numericallyequalto the kinetic energyof N particles in

the lowest Landau-level (i.e. E~= ~ with w~= (e/m)B~).

The final point C = 2 is particularly interesting.The statistics hasthen evolved
back to fermions,andthe magnitudeof the externalmagneticfield is suchthat the
filling fraction is one-half. The flux-tubes attached — two Dirac flux quanta on each
particle— are no longer of physicalsignificance.In fact, they maybe removedvia a
singulargaugetransformation:

A1 —*A1 + V1fl1 for all j,

~It~~_~hIc11exp(_ieA1), (3.28)

with

Aj= — ~arg(z,—z1). (3.29)
e
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We say that this transformation is singular,becauseA1 becomesill-defined if any
one of the other particles takes the sameposition as the jth particle.However, a
centrifugal barrier excludes this possibility, and we may safely remove these points
from the N-particle configuration space.

Thus we obtain the final hamiltonian

~(—i~—eA1)
2+ —E62(r

1—ri), (3.30)

where

A. = ~-B(r,. x2). (3.31)

HPh., differs from our startingpoint H0 only in two respects: through the presence
of a uniform magnetic background field, and though the sign of the delta function
interaction. Removal of the flux tubes affects the ground state only by a phase, and
yields

~PhS=Pf( )fl(zj_zk)2flexp(___IzjI2). (3.32)z,—z1 j<k 4

Note that is an entire function of the complex particle positions multiplied by
an appropriateexponentialfactor, and thus a productof single particle statesin
the lowest Landau level. It represents a pairing stateat filling fraction one-half: a
Laughlin state modulatedby a strong attractivepairing correlation— which is to
say, the very strong anti-correlation implicit in the Laughlin wave function is
partially ameliorated. The filling factor in the thermodynamic (large-N) limit is
insensitive to the pairing, as can he seen from a simple angular momentum
argument.

Pairing is conventionally associatedwith an attractive interaction. Our exact
solution,however,makesit very clearthat this associationis not inevitable.As we
travel throughstatistics— magneticfield space,the coefficientof the delta-function
potential in (3.25) changescontinuously. It is attractive for the unnormalizable
superconductor,vanishesas we passthrough bosonstatistics,and remainsrepul-
sive as we reach the Hall state(strictly speaking, however,it is significant only
when it is attractive). This implies that the pairing in the Hall-state does not
require an attractive interaction;ratherit arisesindirectly asa necessaryaccessory
of Jastrow—Laughlincorrelationsat an even-denominatorfilling fraction.

3.4. PHYSICAL UNIQUENESSOF THE DROPLETWAVE FUNCTION

Our droplet wave function (3.32) is an example of a class of wave functions

~I/2~I’l~/’2’ (3.33)
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where t~i
1 is of the BCS—Dysonform

t/i,=d fl ~(z~—z~). (3.34)
pairs(ij)

and t/i2 is of the Laughlin—Jastrowtype form

~2 FJ(zj_zj)2flexp(_~-~IzjI2). (335)

Thesewave functionsareof the simplestform, that containsboth pairing correla-
tions andthe characteristicshort-rangerepulsionsof the Laughlin function.

Now we shall arguethat the choice madeabove,

(3.36)

is not only the simplest and most appealing, but essentially unique. Suppose
instead that we chose4.(z) to be an odd polynomial, say of degreek. Then the
pfaffian would be a totally antisymmetric polynomial in N variables,of degree
kN/2. Howevera totally antisymmetricpolynomial in N variablesmustcontain a
factor z1 — z1 for every pair i, j. (That is, it must contain the Vandermonde
determinantas a factor.) If it is not to vanish,sucha polynomial musthavedegree
at least N(N— I)/2. Hence in the thermodynamiclimit, when N is large, the
pfaffian will vanishfor any fixed valueof k.

Considernow the generalcase,~(z) = l/z +p(z) with p(z) of degreek. In
expandingthe pfaffian, one mayfor eachpair chooseeither the 1/z or the p(z).
Supposethat the 1/z factor is chosenfor r pairs,and p(z) for the other N/2 — r.

Fixing the r pairs and antisymmetrizingover the other variables,we seeby the
same argumentas in the previous paragraphthat the term will vanish unless
(N/2 — r)(N/2 — r — l)/2 ~ k(N/2 — r), i.e. N/2 — r — 1 ~ k. Thus for fixed fi-
nite k onemustchoosethe 1/z factor for almostall the pairs,that is all hut k + 1.
The resultingwave function is then most reasonablyregardedas being generated
from the statewith 4.(z)= l/z by allowing a finite numberof brokenpairs,as we

shall see in moredetail below.
In the classificationof superconductingpairing as s-wave,p-wave, ... the wave

functionbasedon (3.36)falls off the scale:it is a pairing in the I = — 1 wave! That
is, its angularmomentumis unity, but insteadof the radialwave function having a
centrifugal barrier, it is actualenhancednear the origin. Onemay alsu construct
statesof the generalform (3.33) at v = 1/4, 1/6, ... in the obvious way. (These
filling fractions lie along the same anyon metal line, extrapolatedincreasingly
further from free fermions.) For the suggestedwave function at these filling
fractions, higher-order poles in ~ becomeallowed.



582 M. Greiterci at. / PairedHalt stateS

3.5. PFAFFIAN FACTS

The precedingconsiderationshaveled us to considerwave functions in which
the mathematicalobjectsknown as pfaffiansmakea prominentappearance.Since
theseobjectsare probablynot in the mathematicaltool chestof mostphysicists,we
shall collect here a few facts about them that will be useful in our subsequent
considerations[281.

Given an antisymmetricmatrix M11 the pfaffian of M is definedto be

Pf(M) ~ (±) fl Mab, (3.37)
pairings pairs(ah)

where the sign associatedwith eachterm is positive if the permutationneededto
bring the indicesback to their original order is even, and negativeif the required
permutationis odd. Thus for examplethe pfaffian of a 4 X 4 matrix is

M12M54 — M11M,4+ M14M23.

Perhapsthe most importantfact aboutthe pfaffian is that its squareis equalto the
determinant,

Pf(M)
2=det(M). (3.38)

For a symmetricmatrix M,~onedefinesthe haffnian

Hf(M) = ~ fl M~. (3.39)
pairingspairs(ah)

In the importantspecialcase M,
1 = (z1 —z1)

2 (diagonal entries zero) one has the
identity

1 1
Hf 2 =det . (3.40)

(z
1—z1) (z1z1)

The identity (3.40) can be derivedfrom the correspondingcaseof (3.38) (that is,
with M11 = 1/(z1 — z1)) by an instructive argument,that will be used again in
severalrelatedcontextsbelow.To deriveeq. (3.40)from (3.38)in this specialcase,
it is clearlybothnecessaryandsufficient to show thatwhenonetakesthe squareof
the pfaffian all the crosstermsvanish.To seethis, considerthe result of collecting
all termsin which a fixed propersubsetI of the variables z participatein double
poles.They will form an expression

Fl 2 XP(zk), (3.41)
/Ie!
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where P is a polynomial in the inverse differencesof the remaining variables
(thosewhich do notbelongto I). We claim P = 0. To seethis, considerthe result

of multiplying P by the Vandermondedeterminantin thesevariables:

FT(z, — z~)= det I”~, (3.42)
i<j

where V,1 (z1)
3. The result of the multiplication is an antisymmetricpolynomial

of lower degreethan the Vandermondedeterminant.However, it is clearfrom the

identity (3.42)that the Vandermondedeterminantis the non-trivial antisymmetric
polynomial of lowest possibleorder, since it has all the requisite zeroesas linear
factors.Thusthe result of the multiplication vanishes,andthereforeP vanishes,as
claimed. This provesthat all the crossterms in the squareof the pfaffian cancel,
andthereforethat eq. (3.40) follows from the correspondingcaseof (3.38).

3.6. A HAMILTONIAN, FOR WHICH THE WAVE FUNCTION IS EXACT

It is an extremely important fact that the pfaffian wave function is the exact
ground stateof a simplelocal effective hamiltonian.Without somesuch property,
even the existenceof a sensiblethermodynamiclimit would not be at all evident,
nor evenparticularly likely.

The hamiltonianin questionis inspired by the classicmodel hamiltoniansfor
which the Laughlin 1/rn states are exact eigeastates[291.Becausethe wave
function for the 1/rn state contains the factor (z,— z

1Y~for each pair, it is
annihilatedby

V~’~~ (343)
i <1

where

y(m) = (V
2)(m — l)/2 5(2)( z~— z

1), (3.44)

andof courseby the samething with any smaller powerof the laplacian.Thus the
wave functionis an exacteigenstateof the hamiltonianwith short-rangeinterparti-
dc repulsionsof this form and the usual kinetic term for chargedparticlesin an
externalmagneticfield. Note that the expectationvalue of the potential energyis
positive definite for the sign correspondingto repulsion.While a pure 6-function
repulsion is negligible for any non-singularfermion wave function, due to the
antisymmetryof the wave function, the vanishingof thesederivativeinteractionsis
a highly non-trivial property, and indeedthe Laughlin 1/rn statesare non-degen-
erate.

(Actually thereis a subtlety here,well-known to expertsin the quantizedHall
effect. Onecould includeadditionalmultiplicative polynomial factorson top of the
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given wave function and still have an eigenstatewith the same eigenvalue,
formally. For instancethe standardquasiholehas this character.However these
factors if addedin a haphazardway will not lead to a wave function which has a

sensible thermodynamiclimit, or if addedin a systematicway (as is done in the
ease of the quasihole)will changethe density. Thus if a suitable pressureor
chemicalpotential term is added,onewill be driven backto the pure 1/rn stateas
the ground state.Perhapsthe simplestway to implementthis is to add a term
proportional to the total angularmomentum,or equivalently the degreeof the
polynomial factor. The 1/rn state is the antisymmetric polynomial of smallest
degreethat is annihilatedby V(m). Alternatively one may work on a sphereor
torus to avoid boundaryproblems;but then onemustadd a quasiparticletogether
with the quasihole,andtheenergyof the pair is definitely higherthat theenergyof
the groundstate.)

Thesepotentialswill not quite work in our case.However, the pfaffian state
(3.33) doeshavea very specialproperty,which allows a simplemodification of the
constructionto go through.The property in questionis this: for any term in the

wave function, and any particular coordinatez~,thereis at mostoneother z
1 for

which z1 — z1 fails to appearat leastquadratically.This property implies that the

threebody potential

~ V,:ii,’ (3.45)
triples

with

= v
2(6(2)(z~— z

1)6
t21(z, — zk))~ (3.46)

annihilatesthe pfaffian wave function (3.33).FurthermoreV is manifestlypositive
definite, sincein evaluatingits expectationvalueonecanintegrateby parts to peel
onederivativeoff to eachside, therebyarriving at a sum of squaresweightedby a
positivemeasure.

We canalso arguethat the polynomial factor in ~“I/2 is the uniqueantisymmet-
nc polynomial of lowest degree annihilated by V. Indeed, let P be such a
polynomial, andlet usconsiderthe partof P in which a fixed productp = fl(z~

5—

z,)) of linear factorsappears.(All other factorsin (z1 — z) arequadratic.)Thus,all
the termscontainingthis product p, and no other linear differencefactors,canbe
written as pA. If there are I linear factors in p, then A will be of degree
2 x (~-N(N— 1) — I), at least. Now, in p a given z~can appearat mostonce, for
otherwisethe term will not be annihilated by V. (There is no possibility for
cancellationsbetweentermswith different choicesof the linearfactors,since such
terms have different functional forms.) Thus I ~ N/2, and the inequality is
saturatedby choosingfixed pairsof the z’s anda linear differencefactor for each
pair. The lowest possibledegreeis thus attainedif and only if / = N/2 and A is
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exactlyquadraticin remainingdifferencefactors.Theserequirementsfix the form
of the part of P underdiscussionto be

1 fl(z1—z1)
2.

fixed pairs za — Zh i<j

Now the secondfactor in this expressionis symmetric.To form an antisymmetnic
polynomial incorporatingthe partof P underdiscussionwe mustantisymmetrize.
But in so doing we arrive backpreciselyat 1111/2.

Thus hI~I/2hasa similar statusfor the potential V as the Laughlin 1/rn statehas
for ~ By adding a pressure,a chemicalpotential, or an energy term propor-
tional to the total angularmomentum,we can insure that it is the unique ground

state.
In a similar fashion,onemay showthat the higheranalogsof the i- = 1/2 state

for s’ = 1/4, 1/6, ... are eigenstatesincluding appropriatehigher-gradientrepul-
sions.Anothernotablecaseis the i. = 1 bosonstateconstructedby multiplying the
standardfermionwave function for a full Landaulevel (involving a Vandermonde
determinant)by the 1/z pfaffian. This is actuallya particularly simplecase,since
the three-bodyhamiltonian can be taken to contain bare delta-functions,rather
than their gradients.It is amusingthat repulsiveinteractionscancausebosonsto
fill a Landaulevel essentiallyexactly, and to pair — a behaviorusually associated

with fermions.

4. Topological quantum numbers

A deepfeatureof the quantizedHall statesis thetopological characterof their
ordering. Their ordering apparentlycannot be characterizedby a local order
parameter;instead, it is better capturedby order parametersof a global or
topological character[301.Operationally,the relevantpoint for us here is that one
can identify discreteintegerswhich serveas signaturesfor the universalityclasses.
If some integers characterizetwo states which are continuously related, then
clearly the value of theseintegersfor the two statesmustbe equal. Thus, to test
our claim that the statewe reachedby heuristic argumentsbasedon adiabatic
developmentfrom the BCS pairing state,which plausibly is well describedby a
pfaffian trial wave function, is in the sameuniversalityclassas Halperin’s strong-
pairing state,we must verify that the characteristicintegers for thesestatesare
equal.

The particular integerswe shall discussare the flux-particle numberdisplace-
ment and the ground state degeneracyon spheresand tori. The displacementis

defined as follows. The incompressibleground state occurs when there is a
particularrelation betweenflux and particle number.In the thermodynamiclimit,
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this relation is of coursesimply N, = (1/v)N, whereN, is the numberof magnetic
flux quanta, N is the numberof electrons,and v is the filling fraction. For finite
N, however,the relationmay be different,and in fact will dependon the topology
of the compactsurfaceon which the systemis defined.We shall find, for example,
that on a spherewe havefor the pairedHall statethe extremelyimportant relation

Nth=2N—3, (4.1)

betweennumberand flux.
The groundstateon a torus will turn out to be 8-fold degenerate,a fact closely

related to the anyon statisticsof the quasiparticles.
Our other task in this section will be to argue that the pfaffian trial wave

function is in some sensephysically uniquewithin the lowest Landaulevel, and is
in a precise senseunique for a specially crafted, but quite simple, local hamilto-

nian.

4.1. EXPECTATIONS FROM THE STRONG PAIRING LIMIT

In the strong pairing limit for ii = 1/2, we replacethe fundamentalN =
2Nh

fermionswith Nb effective bosonsof twice the charge. Thesebosonsare then at
filling fraction ~h = 1/8, which is an allowed valuefor a Laughlin stateof bosons.
To read off the topological numbersfor the state,we can use the explicit form of
the Laughlin wave functionson spheresand tori.

Let us briefly recall the formalism for chargedparticles subject to a uniform
magneticfield on a sphere[61.Thus, we are studyingchargedparticlessubjectto

the influence of a magneticmonopolesourceat the origin. For this purpose,it is
convenientto introducespinor co-ordinatesu, i’ definedas

u = cos(0/2)e~”2, i = sin(0/2) e”~’~2, (4.2)

where 0, 4 are the polar coordinateson the unit sphere.(u, i’ of courseform a
double cover of the sphere,since they changesign under / —* 4i + 2IT.) Let us
assumethat thereare N~units of flux passingthrough the sphere,andchoosea
gaugesuch that A = (N~,/qR)cot(O)~.

The singleparticlewave functionsfor the lowest Landaulevel are the homoge-
neouspolynomialsof a fixed total degreed in u, i. Thus the d + I monomialsui’,

v~form a basis.Theyfill out a representationof spind/2. For particles
with no intrinsic spin, thesefunctionsdefinethe lowest Landaulevel whenthe flux
through the sphereis (d/2)(4IT/q) dIq, where q is the chargeof the particle
and the associatedflux quantum.Whenthe particleshavespin s, the relation is
changedin a very simple way, becausethe coupling of spin to curvature in this
geometryis just like the coupling of chargeto magneticflux. Thus, the effect of
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spin is to shift the degreeof the allowedpolynomialsby — 2s, for a givenvalueof
flux.

What shouldwe takefor the spin of the pair?Clearly(sincethe componentsare
identical fermions)it mustbe an odd integer. In principle any odd integers might
occur for a suitablepotential.Considerationssuchas thosein theprevioussection,
however, strongly recommends = — 1 to our attention. Indeed, it is only this
partial wave which lowersthe degreeof the zeroas two particlesapproach— and
thuscorrespondsto pair formation — without introducinga singularity.

Now in line with the prescriptionz —‘ u/i. the form of the Laughlin factor for
the droplet

~“c!ropiet = FT (z~ — z
1)

8 (4.3)
i<1

goesover into

hj~sphere= [1(u,L
1 — i1u1)

8 (4.4)
1<1

on a sphere.Note that no additional gaussianlocalizing factor is required.~‘~SPhCrC’

taken literally, is the canonical Laughlin trial wave function on a sphere. It is

demonstrablythe non-degenerateground statefor simple trial potentials — see
below. ~1’sphere is homogeneousin the two variables u,, v, for any i, of degree
8(Nh — 1). Thus it representsa wave function in the lowest Landaulevel for flux
andspin

N
1, +

2s=8(Nh—l). (4.5)

Now with N~= 2 N
1,, Nb = ~N this becomesthe number—fluxrelation

(4.6)

asanticipatedabove.
Let us now briefly recall the formalism for constructionof the corresponding

stateson a torus [31]. We identify functions on the torus with functions in the
complexplaneperiodic in 1 and ji-. We supposethat N51, units of flux penetrate
the torus, andadoptthe symmetricgauge

A(r) = ~B(rX2). (4.7)

In this gauge,the singleparticlewave functionsin thelowest Landaulevel take the
form

~(z)=exp(_~(IzI2_z2))f(z), (4.8)
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where f(z) is an arbitraryholomorphicfunction on the torus,that is, periodicwith

periods 1, T. Equivalently, t/s is a holomorphic function in the complex plane
subject to the quasiperiodicityconditions

~(z+~) =exP(_~(_z~))~(z)~ (4.9)

for ~ = 1, r.
In constructingexplicit wave functions, the i~Jfunctions[321are indispensable.

They aredefinedby

+a~
2 . I I

~
1(z, T) = Lexp(IT1(n + ~)T) exp(2IT1(n+ ~)(z+ ~)), (4.10)

~2(z, T) = s~1(z+ ~,T),

~3(z, T) =MP1(z+ ~(1 +T), i-),

1~4(z,T) =Mi~1(z+~-, T). (4.11)

where M e~~~T/
4e”~.For our purposesthe most important propertiesof the s~

functionsare the periodicities

P
1(z+ 1) = —~i1(z), ~2(z+ 1) =

i9~(z+I) = +~3(z), s~4(z+1) = +s~4(z), (4.12)

~1(z + T) = _e~~Te’
2~~

1(z), ~7(z + r) = +e’~ e’
2~~

2(z),

~3(z + T) = —e’~e’
2~~

3(z), ~4(z + r) = —e’~e’
2~~

4(z),(4.13)

the reflectionsrelations

~ —z) = —~J1(z), ~2( —z) =

1~3(—z) = ~(z), s~(—z) = i~4(z), (4.14)

andthe fact that ~ is a holomorphicfunction whoseonly zeroesaresimpleones
occuringat the lattice points rn + nT, wherem, n are integers.In the following, we
shall often leave r as an implicit parameter,as we havealreadydone in (4.14).

After thesepreliminariesit is possibleto constructthe appropriategeneraliza-
tion of the Laughlin wave function on the torus, as follows. One factorizesthe
wave function asa productof center-of-massandrelativecoordinatepieces,in the



M. Greiteret at. / PairedHatI states 589

form ~‘~torus tPc.m tIIreI The relativecoordinatepieceis simply

~~rel. fl~1(z1—z1IT)
5 (4.15)

i<J

The center-of-masspieceis more intricate.One canchoose

N eB 8

~ flexp(_~(IzIi2_z~)) exp(iKZ)fl~
1(Z—Z~Ir), (4.16)

where Z = Ez1 is the center-of-masscoordinate.The real parameterK and the
center-of-masszerosZ5 maybe chosenarbitrarily subject to the constraints

(_l)Ni exp(iK) = 1,

(1)NI exp(iKT) exP(2ITI~Z,)= 1. (4.17)

It may beverified that the wave functionthusconstructedis indeedof the required
form (4.8) in each variable separately. ln the processof this verification one
determinesthe number—fluxrelation,which is requiredto be N7,5 =

8Nh, or

N
51, =

2N~. (4.18)

The fact that the center-of-masswave function containsarbitrary parameters
indicates a degeneracyof the ground state.How large is this degeneracy?It may
be shown that it is (for the bosonic v = 1/8 statepresentlyunderdiscussion)8-fold
degenerate. Indeed the defining properties we require of the center-of-mass part
ti/cm of the wave function, are that it is holomorphic,that it hasexactly rn zeroes
in the principal region, and that it satisfies the appropriate boundary condition,
which is linear in t~s~•Thus givenone solution ti~cm,its ratio tPcm/~4’cm with any

other solution 1/1cm is a meromorphictruly periodicfunction on the torus,with at
most simple poles at 8 prescribedpoints (namely the zeroesof ti’~m~ It is a
standardtheoremin complex function theory — a very special caseof the Rie-
mann—Rochtheorem— that thespaceof suchfunctionsis 8-dimensional,including
the constantfunction [331.Consequently,a Laughlin 1/8-statesubject to periodic
boundaryconditionsis 8-fold degenerate.

The degeneracy has an appealing intuitive explanation in terms of the anyon
statistics of the quasiparticles. These quasiparticles are produced by adiabatic

insertion of a single flux unit, and are localized excitations with no internal
coordinates. They carry fractional charge 1/8 the charge of the effective pair
bosons, and obey anyon statistics with parameter 7t-/8. Now considerthe process
displayed in fig. 1, where the particles return to their original positions after
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time tinie

(a)

Fig. 1. The sequenceof four processesdisplayed in (a) — creation of particle hole pairs, adiabatic
transportsaroundone of the two meridiansof the torus, and subsequentannihilationsof thepairs — is

topologicallyequivalentto entanglingtheworld linesof quasiparticles,asshown in (b).

looping the torus to-and-fro,but their world linesare entangled.According to the
basic definition of anyons,this processshouldbe associatedwith the phasefactor
e1

2~r/s. Thus denoting the unitarity operators which implement the transition
betweenstatesrelatedby adiabatictransportof a particle aroundthe two meridi-
ansby T

1, T2 we havethe commutatorrelation

T1T2T~T~
1=e2~nt/S. (4.19)

This form of commutatoroften arises in problems involving translation in a
magnetic field. It is well known that the smallest space on which it can be
implementedis 8 dimensional;indeedthe canonicalrealizationof the algebrais in
the form

T
1v,, = exp —n V,5

8 (4.20)

T2v~= v,,+

where the v~are eight orthonormalbasis states,and the subscripts are to be
interpretedas integersmodulo8. Now if inserting a flux tube is a uniqueoperation
and the quasiparticleshaveno internalquantumnumbers,the degeneracyof the
statewith quasiparticlesmust reflecta pre-existingdegeneracyof the groundstate.
Thus we see that the 8-fold degeneracy,which appearedas a rather complicated
technicalby-productin the constructionof explicit wave functions,hasa profound
physical basis.

Let us summarizethis discussionof the topological numberswe infer in the
strongpairing limit. On thespherewe find a non-degenerategroundstateandthe
flux-numberrelation N1, = 2N— 3 (for pair spin s = — 1). On the torus we find an
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8-fold degenerateground stateand the flux—number relation N51, = 2N, indepen-
dentof the pair spin.

4.2. THE WAVE FUNCTION OF THE SPHERE:FLUX SHIFT

It is straightforwardto constructthe appropriategeneralizationof the pfaffian

wave function to the sphere.Thusthe suggestedtrial wave functionfor the paired
Hall stateon a sphereis ~~sphere = ti’ti~2 where

t1i1=Pf , (4.21)
— viul

t/i2— 11u1L’1—v1u1
2. (4.22)

i <1

The totalwave function is homogeneousin eachpair u,, t~of degree— 1 + 2(N —

1) = 2N—3. Thus we have the advertisednumber—flux relation (4.1) directly, in
agreementwith the strong-pairinglimit (for s = — 1).

4.3. THE WAVE FUNCTION ON THE TORUS: DEGENERACY

To constructthe generalizationof the pairing wave function for a torus, one
additional ingredient is required,beyondwhat was necessaryfor the traditional
Laughlin wave function. That is, of course, a prescriptionfor generalizingthe
pfaffian.

The i, j elementof the pfaffian certainly must include a factor 1/~
1(z,—

which is the appropriatesemi-naive generalizationof 1/(z, — z.). However the
inverse i~ function by itself will not do, becauseit wrecks the delicate periodicity
relationsfor the overallwave function. Fortunatelythereis a simple remedy:one
may includeany of the even thetafunctionsin the numerator.Thusthereare three

degeneratestateswhere the i, j elementof the pfaffian is

a , (4.23)

with a = 2, 3, 4 respectively.Since this is a ratio of thetafunctionswith the same
argument,it behavessimply undertranslationthroughthe periodsof the torus (in
particular, introducing no z-dependentfactors).Therefore the previousconstruc-
tion for the Laughlin statemay be used,with thispfaffian insertedas a prefactor,
to constructthe pairing Hall stateon a torus.

Much experimentationhas convincedus that there are no further possibilities
for the pfaffianalongtheselines, andwe haveactuallyprovedit for the caseof two
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particles.Thus it would appearthat the pfaffian factorintroducesa degeneracyof
threefor the groundstate.(This factorthreewould also be anticipatedif oneused

theconformalfield theoryof the Ising model to constructthe state;in this context
it is the statementthat thereare threeconformal blocks.)There is an additional,
independent,two-fold degeneracyassociatedwith the center-of-masszeroes.Thus
the total degeneracy,for the three-bodyhamiltonianmodel introducedpreviously,
is six.

Onethe other hand in the strongpairing limit we found an eight-fold degener-
acy. The physical argumentspresentedabove, and the numericalevidenceto be
presentedbelow, indicatedthat we should therefore expect this degeneracyalso
for the exactmodel.And we shall seebelow,that in the presenceof two separated
quasiparticlesthereis an exact eight-fold degeneracyfor wave functionsbuilt on
the pfaffian ground state.Given this result, it would require internal quantum
numbersand/or peculiar long-range interactionsbetweenthe quasiparticlesfor
the groundstate to havea differentdegeneracyfrom that of the groundstate.Both
thesearguments,suggestthe physical necessityof an eight-fold degeneracyfor the
ground state.What’s going on?

We would like to suggestthat the discrepancycanbe reconciledin the following
way. While it is true that the exact ground state is only six-fold degenerate,if the
state is incompressibletheremust be two additional stateswhich are separated
from thegroundstateby an energygapwhich vanishesin the thermodynamiclimit.

In favor of this point of view,we would like to comparea similar situationin the

theory of ordinary superconductors,and point to the importance of ~2 gauge
structuresin bothcontexts~.

As is of coursewell known, becauseof pairing the flux unit for an ordinary

superconductoris h/2e ratherthan h/c. On the other hand, single-electron wave
functions arounda loop enclosing an odd integermultiple of flux h/2e are not
singlevalued; rather,they changesign upon transportaroundthe loop. The point
is that the order parameter,which must be single-valuedaround the loop, is
quadratic in the single-electronwave function. More abstractly,the point is that
the superconductingstateonly requireslong-rangecorrelations in wave functions
invariant under a residual ~2 gaugegroup, the unbrokenremanantof the original
U(1) electromagneticgaugesymmetry. It is useful, in constructingexplicit trial
wave functionsfor the superconductingstate,to write them assumsof productsof
single-particlewave functions,but thesesingle-particlewave functionsare not to
be taken too literally, becausethe only long-rangecorrelationsin the systemare
typically correlations among different pairs. In particular, single particle wave
functions are not correlatedwith themselvesover long distances.Therefore they
may be antiperiodicaroundclosedloops — indeed,it is necessaryto allow them to
be,in order to reproducethe experimentallyobservedflux quantum h/2e.

* The following discussion is closelyrelated to the classic treatmentof Byers and Yang [34].
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To be more concrete,considerthe classicsituation of a thick cylinder threaded
by flux b = s(h/e), and let us discuss the angular dependenceof the wave
functionsin the regulargaugeA, = (1/2IT)s(h/e).Supposethat the pairing for
zero flux occurs betweenstatesof oppositeangularmomentum ±/, that is wave
functions t/i(1/.) cx ~ Thenby an adiabaticargumentthe pairing would like to
occur betweenstateswith wave functions e’t ±/+.s) when the flux is inserted. In
general,of course, thesewave functionsare not singlevalued. The multi-valued-
ness,as such,is a red herring (i.e. at the one-particlelevel), becauseall gauge
invariantquantitiesconstructedfrom 1/i are singlevalued, andtheseare generally
all that are physically meaningful. However, in the superconductingphasewe
require coherencein the condensate,which breaks the gaugesymmetry. This

coherence,captured in the order parameter,must be reflected in the wave
function constructedfrom the product wave functions for pairs. Thus we must
require, in order to construct the appropriatecorrelatedwave functions, that the

products

l/Ipair( ~ ~2) cx e’~’ ‘©) e”~’±~2)— (1 ~-* 2), (4.24)

are singlevaluedwith respectto thepair coo’-dinate, that is whenboth s/1~and ~/12

are translatedthrough2ir. (Here andbelow, in the interestsof simplicity we have
ignored the spin degreeof freedom; thuswe imposeantisymmetryon the spatial
wave function. There is no essentialdifficulty in incorporatingspin.) Cleary, for
this, it is enoughthat s is half of an integer. lf s is half of an odd integer,then the
one-particlewave functionswill not be singlevalued; rather theywill be antiperi-
odic under /1 -~ /1 + 2i7-.

Of courseif we wantedto constructa statewheretherewascondensationin the
one-particlesector,thenwe would haveto demandthat the wave functionsin the
one-particlesectorare singlevalued,and s would be requiredto be an integer.

For our purposes, it is especially important to re-consider the preceding
argumentin realspace,as opposedto (angular)momentumspace.This is actually
a more profound, and at the sametime more straightforwardway of dealingwith
the problem.(Though it may be less familiar — we have not found it in precisely
this form in the publishedliterature).The real-spaceform of the BCS trial wave

function is the pfaffian

lIr(t11,) = Pf(l/fpair(41i, 4~)) (4.25)

where 1/’pair is the wave function of a pair. According to the previousarguments,if
half an odd integerunit of flux threadsthe cylinder, the pair wave function must
obey the boundaryconditions

~pair(~i + 2IT, ~2) = — ~pair(~t, ~2)’

- - (4.26)
t/1pair( ‘~ i’ 5112 + 2 IT) = — ti’pair( 11~’4~2)
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Now wewould like to arguethat this boundaryconditionmakeslittle difference
to thebulk state,if the pair wavefunctionsareshort-range.Indeed,if the ordinary
pair wave function (without the flux-modified boundaryconditions) satisfiesthe
locality requirement

~i/pair(&’ c62) =0 unless I[(/1~—/12)/2ITj I <1/2, (4.27)

then onecould simply define

t~pair(4~t’ 51’2)

(~1)~’~~( — 1)[~2/2~I~pair(~i — 2IT[~,/2IT], ~2 — 2IT[~2/2IT]), (4.28)

where [xl is, by definition, the greatestintegerless than or equal to x. Becauseof
the locality requirement(4.27), the pair wave function defined this way doesnot
haveany discontinuities,andit obviously resembles1/i locally (and leadsto a state

with equalenergy)while obeyingthe boundarycondition(4.26).
Now the true pair wave function will not quite obey the strict locality require-

ment (4.27),but if we aredealingwith a macroscopicobject it will be true that the
wavefunction of thepair will becomevery small whenthe membersof the pair are
on oppositesides of the sample, and this requirementwill be satisfied to an
excellent approximation.(In real superconductors,the pair size is given by the
coherencelength,which is typically of order a micron or less.)The perturbationof
the pair wave function necessaryto implementthe flux boundarycondition (4.26)
will not be strictly trivial in the abovesense,but it will be vanishinglysmall as the

samplebecomeslarge, andthe changein the bulk energydensitywill vanish in the
thermodynamiclimit. On the other hand if the pair wave function is itself
long-range,this argumentwill fail. This must happenin particular if there is

substantialamplitude for a singleparticle to 1oop the loop coherently. In such a
case,therewill be strict periodicity only in the largerflux unit h/c.

Thus, to summarize,the halving of the flux quantumfor a pairedsuperconduc-
tor not only is consistentwith, but is in a precise senseequivalentto, the use of
non-trivial ~2 gaugestructuresfor the single-particlewave functions.If the pairing
wavefunctionsare local,thesedifferent gaugestructuresyield stateswith thesame

bulk energydensityin the thermodynamiclimit.
Now let us reconsiderthe pair wave functionswe haveconstructedin connec-

tion with the pairedHall statefrom this point of view. Undertranslationsaround
the cycles of the torus, i.e. translationsthrough 1 or r, the ratios ~2(z)/~1(z),

P3(z)/s~1(z),s’i4(z)/~1(z)are multiplied respectivelyby the factors (+, —), (—,

—), and (—, +). Thus, they give implementationsof 3 out of 4 of the possible~2
structures.Clearly, the missing element is the (+, +) sector. It is a simple
mathematicalfact that there doesnot exist an analytic function of the kind we
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would want for the pair wave sectorin this sector,that is, truly doubly periodic
with a single isolated zero. However, as we have argued above, insofar as the
physicalpair wave function may be takento be short-ranged,the different sectors
can be implementedwith nearly identical energies.Now in the Hall state we
expect that correlations in a pair that is separatedby many magnetic lengths
cannotbe energeticallysignificant.Thus,we expectall four sectorsto be degener-
ate in the thermodynamiclimit. Concretely, we expect that good trial wave
functionscanbe constructedby applying proceduressimilar to (4.28) to any of the
pair wave functionsabove,with a suitable cutoff.

From this perspective, it appears that the difficulty in finding the physically
necessaryfourth statestemsfrom the fact that analytic functionsareso rigid. Thus
strictly confining oneselfto the lowest Landaulevel makessmoothingconstruc-
tions, that manifestlydo not cost significant energy,appearto be impossible.If we
are correct, then by including a small admixture of higherLandau levels, which
costs arbitrarily little in the thermodynamiclimit, onecan gain all the correlation
energyof the pairing in any flux sector.

The argumentsof the precedingparagraphsare certainly not mathematically

rigorous,but we find their internal coherencecompelling.Thus we concludethat
an incompressiblestate of the pairing type, whose ground statewave function
resemblesthe pfaffian form, will havean eight-fold degenerateground stateon the
torus in the thermodynamiclimit. Whetherthe veryspecialthree-bodyhamiltonian
gives actuallyrise to an incompressiblestateis not clear to us, but an incompress-
ible state is a generic case. If the paired state for this special hamiltonian is
incompressible,then the six-fold degeneracy,andassociatednon-abelianstatistics
for the quasiparticles,will only hold for adiabatictransportwith frequency(times

h) smaller than the tiny gapto the two extrastates.The qualitative physicsof the
strong-pairinglimit, including abelian anyon statistics for the quasiparticles,will
occur for frequencies larger than this gap but smaller than the gap to true
quasiparticles.

5. Charged excitations: halving the flux

St. QUANTUM NUMBERS OF HALBERONS

It is easyto determinethe quantumnumbersof chargedquasiparticlesin the
strong pairing limit. Indeed in that limit the physics is essentially that of an
ordinary Laughlin state,with the unusualfeaturesthat the fundamentalparticles
are charge2e bosons.The quasiparticles(or, more precisely,the quasiholes)may
be createdby the adiabatic insertion of magnetic flux pointing in the same
direction as the uniform backgroundmagneticfield and localized at a point. The
insertedflux is slowly increasedfrom zerountil thereis one full unit of quantized
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flux, i.e. in this context flux h/2e. At the conclusionof this adiabaticprocess,the
flux will be essentiallyunphysical— it may be removedby a gaugetransformation.
(Thegaugetransformationis singularat the insertionpoint, but the wave function
vanishesthere.)Thus the notional externalfield used in the constructionneednot
correspondto anything real. Neverthelessthe adiabatic processof turning it on
producesa local densitydeficit, as electronsacquire increasedangularvelocity
from torquesarising from the inducedelectric fields. Standardargumentsallow
oneto infer that the chargeof the quasiholeis — 1/8 the chargeof the fundamen-
tal particles— that is —e/4 — and that they areanyonswith statisticalparameter
U/IT = 1/8.

While the insertionof quantizedflux h/2e is of courseextremelynatural from
the point of view of the strong pairs, it is unusual from the point of view of the
electrons.Likewise the chargeand statisticsof the quasiholes,which are respec-
tively 1/2 and (1/2)2 of what would arise in a naive extrapolation from the
Laughlin 1/rn statesto in = 2. Since the minimal chargedexcitationsare, roughly
speaking,half of what might havebeenexpected,we call them ha/herons,after the
German“halb”, meaninghalf.

On general principles wemay expect that halberons,with the quantum numbers
just derived, will exist and will be the minimal chargedexcitations, at least for
small perturbationsof the strongpairing limit. RealisticpairedHall statesmay be
ratherfar from this limit, thoughin the sameuniversalityclass.One may still draw
the generalconclusion that thereare physical stateswith finite energyhaving the
exotic quantumnumbersof halberons,but whetherthe basic chargedexcitations
havethesequantumnumbersis a quantitativequestionof energetics.For example,
it is conceivable,at this level, that for suitablepotential a pairedHall state forms
in which the energyof two widely separatedhalberonsis much larger than the
energyof a localized charge —e/2 excitation, thoughwe do not expect this to
occur for basicallyrepulsivepotentials(which disfavor largedensitycontrasts).

5.2. LIMITATIONS OF THE FLUX INSERTION PARADIGM

Oncewe step outsidethe strong pairing limit, it becomesclear that the simple
flux insertionparadigmfor constructionof the halberonswill no longerwork. The
notionalpoint flux of strengthh/2e cancertainly not be gaugedaway. Indeed,as
we havediscussedin sect.4, such a flux will alter the boundaryconditionson the
fermion wave functions.Just as insertion of a full h/2e at the origin leadsto a
factor liz1 in the wave function, insertion of h/2e flux at the origin into an
ordinary or pairedHall statewould lead to a FI,~/z1factor in the wave function,
which in the absenceof a genuinemagneticfield is certainlyunacceptable.

(At the risk of belaboring the obvious, to avoid confusion let us mention

explicitly that the processwe areconsiderhere,of insertionof flux into the body of
the fluid, is quite distinct from the onewe consideredat length in sect.4. Therewe
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consideredinsertion of flux “through the holes” for an annular or toroidal
geometry.The two arenot entirely unrelated,of course.In eithercase,the energy
density in the bulk — far from the placewhere the flux is inserted— is indentical,
andit mustbe zero for valuesof the flux whichare allowedwith total finite energy
in the thermodynamiclimit. Thus the quantizationrules for finite energyare the
samein both cases.)

In fact wewould like to mimic the effectof thereal flux by particle correlations,
without actuallyhaving the flux. Thus the angularmomentumof eachpair should
be boostedby unity. However this is to be accomplishednot by boostingthe
angularmomentumof eachcomponentof the pair by ~ — which would leadto the
unacceptablesquareroots — but ratherby boostingthe angularmomentumof one
componentof the pair by 1 and while leaving that of the other unchanged.The
pairing of partial waveswith angularmomenta(I, —l — I) for our effective p-wave
superconductoris then changedto pairing of (I, —I). This is accomplishedvery
simply, by modifying the argumentof the pfaffian factor accordingto

—~ ‘ ~. (5.1)

z
1—z1 z~—z1

Indeed,for the angulardependencewe then have

1 = ~ e
1~~’~e’~’, (5.2)

— z
1 z1 ~ z1 ~

goingover into

~ e’~’~’e
1~’. (5.3)

1—0

Note that thesesamepartial wavesare determinedby startingwith the pattern(I,
—/ — 1) for half-odd integer I, as is appropriatefor p-wave pairing of particles
subjectto the boundaryconditionsfor half a flux unit, and adiabaticallyadding a
cancellinghalf flux unit, thus arriving at (1 + ~,—/ —

The substitution(5.1) is alsosuggesteddirectly by extrapolationfrom the strong

pairinglimit. Onesimply takesoneadditionalpowerof the coordinateof the pair,
where realizedas simply the center-of-masscoordinatefor the constituentsof the
pair.

5.3. WAVE FUNCTIONS FOR HALBERON PAIRS

It is instructive, and will prove useful, to considerhalberonsin spherical and
toroidal geometries.In doing this, however,we must certainly respectthe Dirac
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quantizationcondition for the total fluxes flowing through the surfaces.Thus we
mustconsideradding pairs of halberonsto the groundstate.

Let us begin, however,with the droplet. Let ~ and ~ be two fixed positions,
where the half-fluxonswill be localized.Thenthe first guessat a wave function for
the pair might be to modify the pfaffian accordingto

1 1 fz.+z \ z+z.-, -CI. (5.4)

z
1—z1 z1—z1~ 2 / 2 /

However, with some hindsight from the generalizationto sphere and torus, it
seemspreferableto delete the quadratic factors in za and z,, — which actually
correspondto an edgeexcitation.Thenwe arrive at the pfaffian factor

Pf —sPf . (5.5)

Indeedwhen~ —s ~j we shouldexpectthe two-halberonwavefunction to approach
that of a singleflux insertion,which is true for (5.5) but not for (5.4).

The generalizationof (5.5) to a sphere is immediate.Using the substitution

z —~ u/i. and clearingfractions,we find

1 (uJ3,~— i1a,7)(u1f3~— 1’1a~) + (i ~ , (5.6)

— u11:1 u,i1 —

where of course ~ p,5), (a~,~ are the spinor co-ordinatesof the halberons.
Notice that this transcription of (5.5) is homogeneousof degreeunity in each
particle coordinate;thus it representsan acceptablemultiplicative factor for a
wave function on the sphere,and correspondsto one extra unit of flux (h/c)
through the sphere.Transcriptionof (5.4) would not give an acceptablewave
function on the sphere.

5.4. HALBERON PAIRS ON TIlE TORUS

The generalizationto the torus is lessstraightforward,butvery instructive.The
most immediategeneralizationof (5.5) that suggestsitself is perhapsto modify the
pfaffian factor

1~a(Zij) ~z1—z1) .

~1(z,—z1) i~(z,—z1) (~1(z1—~)~1(z1—~)+ (i ~i)), (5.7)

but this is inadequateto producea well-definedoverallwave function on the torus.
The difficulty is that translation of (say) z1 through r producesdifferent phase
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factors in each of the two terms of (5.7). On thoroughreflection, one comesto
realizethat the correctgeneralizationis given by

~a( z
1 — z1) i~a(Zj — z1 + — ~))~~( z1 — i~1(z1— ~) + (i 4*J)Pf

1~1(z1—z1)

(5.8)

and that only the center-of-masscoordinate of the halberon pair enters the
center-of-masspart of the electrons

1 ~
ZZ+2 2 (5.9)

A particularly interestingfeatureof (5.8) is the factor ~ that appearsmultiplying
the halberon coordinates. It means that when this coordinate is transported
arounda cycle of the torus,the wave function will not comeback to itself. This is
certainlybroadly consistentwith the ideathat the halberonsare anyons,according
to the ideasof Einarsson[351and others[36]. Although we will not pursue this
aspectof the subject in detail here,we do wish to point out its connectionto our
previous discussionof ground state degeneracy.For two halberonsin general
position, (5.8) actually representsfour distinct stateson the torus. These are
labeled by the subscript a, which may be 1, 2, 3 or 4. By translating i~ (or ~)

through the periodsof the torus,we transformthesedistinct statestransforminto
eachother, as canbe seeneasily from the definitions (4.11). Given this result,we
might try to generateground stateconfigurationsby allowing s~to approach~,and
then removing the excess flux h/c. Attempting this, we find that when the

subscript is equal to 2, 3, or 4 we arrive exactly at the three degeneratestates
(4.23). However when the subscript a is equal to 1, the limiting wave function
vanishes.This is a very peculiarfact, since (aswe mentionedabove) the different
possibilities arise from eachother by transportinga halberonaround a cycle. At
presentwe do not understandthis very peculiar collapseof the wave function in
physical terms.However,the fact that in thepresenceof two halberonsthegeneric
degeneracyis 4-fold (or 8-fold, taking account of the center of mass) is only
consistentwith the notion that the halberonsare unique, localized excitations if
the underlyingground stateis equallydegenerate.

6. Pair breaking excitations

6.1. A STATISTICAL PARADOX RESOLVED

The traditional quantizedHall statesoccur for odd denominatorfilling frac-
tions. Tao and Wu [191presenteda generalargument,which gavea fundamental
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explanationof this fact. Since we are claiming the possibility of incompressible

quantized Hall states at ii = 1/2, an even denominator,we must addressthe
question,how the argumentof Tao and Wu is evaded.

Adapted to the case at hand, their argumentruns basically as follows. The
removal of an electron into the fluid must result in the creation of several
quasiholes.Thus, it must be possible to produce a state of several quasiholes,
which has the samequantumnumbersas a single electron.Let us see if this is
possible.

In the interestof simplicity let usadoptthe convenientfiction that the minimal
chargedquasiparticlesare di-halberons;we leave it as an exercisefor readersto
convince themselvesthat the conclusion is not changedby taking the existenceof
single halberonsinto account.Di-halberonsare createdby the normal flux inser-

tion process,and are charge —e/2 statistical parameterU/IT = 1/2 anyons.By
way of comparison, the quasiholesof the traditional i. = 1/3 state are charge
—e/3 statistical parameterU/IT = 1/3 anyons.Now when one puts togethern

anyonswith statisticalparametera, theresultingcompositehasstatisticalparame-
ter n2a — thereare ii times as many particles,each acquiring ii times as much
phase,asonecompositewindsaroundtheother. From this simplefact, we seethat
the ii = 1/2 and ii = 1/3 casesare profoundly different. In the former case,we
reproducethe chargeof an electron hole by forming a composite of two di-
halberons.This composite has statistical parameterU/IT = 22 x = 2 — it is a
boson.By contrastin the lattercasethe chrgeof the electronhole is reproducedby
a three-quasiholecomposite, with statistical parameterU/IT = 32 X = 3 — a
fermion. Clearly in the latter case,but not in the former, the quantum numbers
match that of an electron hole. From this mismatch, Tao and Wu draw the
conclusionthat v = 1/2 is impossible.

By the way, of course, this argumentwould not produce any objectionto the
filling fraction i. = 1/8 stateof the effective bosons.Here the fundamentalboson
hole has the chargeof 8 quasiholeswith statisticalparameterU/IT = 1/8; andthe
8-quasiholecompositeindeedhasBosestatistics(0/IT = 82 x = 8).

However, there is anotherway to interpret the argument.What the argument
really shows,is that the traditional chargedquasiparticlesaloneare not adequate
to produce an electron hole. Thus, an incompressiblev = 1/2 Hall fluid must
contain additional quasiparticles.The simplestpossibility to makeup the differ-
ence betweena two di-halberon compositeand an electron hole, is a neutral
fermion.

That the pairedHall stateshouldsupport neutralfermion excitations,can also
be arguedin anotherway, at leastheuristically. In a normal BCS superconductor,
the pair-breakingexcitations are neutral fermions. The neutral fermions of the
pairedHall state,are just the adiabaticcontinuationalong the anyon metal line of
the pair-breakingexcitationsthat exist in the mother superconductingstate.To
make this into a real argument,we would haveto convinceourselvesthat neither
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the chargenor the statistics of theseexcitations is altered in the processof
continuationin quantum statistics.(This is not obvious — in fact, it is definitely
falsefor the chargedexcitations).Without pretenseof rigor, let us merely remark
that the fact that the pair-breakingexcitationsare electrically neutral makesit
quite plausible that the manipulationof magneticfields involved in implementing
the adiabaticheuristic does not change the nature of the interactionsof these
excitations with electrons, nor with each other. That is enough,to insure that
neitherthe chargenor the statisticsof the pair-breakingexcitationschangeas one
movesfrom the motherBCS superconductorto the pairedHall state.

Thereis an instructiveconsistencyin the interpretationof the neutralfermions,
whoseexistencewasrequired to resolvea statisticalparadoxin the representation
of electron holes, with pair-breakingexcitations. For both the necessityof the
neutral fermions, and the possibility of pair-breakingexcitations,vanish in the
strong-pairinglimit. As we approachthis limit, the energy cost for producing
pair-breakingexcitationsescalates,andthey becomedynamicallyinsignificant.

6.2. TRIAL WAVE FUNCTIONS

Now we will attempt a more concretediscussion,featuring specific trial wave
functions.

A first pass at the wave function for the pair breaker is suggestedby the
precedingargument.It is given (for the droplet)by

eB N

=d exp(_ ~( I z~2+ I~I — 2zi~*))fl(~ —z,)
2W

1/2(z2 zN),

(6.1)

where of course~ is the groud-statewave function discussedearlier. Here the
~ — z,)

2 factor implementsthe insertion of two flux units at i~, and the factor
exp(— ~eB( z

1 I 2 + 2 — 2 z ~ 5)) is the wave function (in symmetric gauge)for
an electron localized near ij. Thus, thiswave function representsthe insertionof
two units of flux, plus an electron,at ij. This gives a neutral excitation, which
standardargumentsshow to be a fermion. (We will also arguebelow,that it carries
spin ~!) The fact that they are neutral implies that theseexcitations are mobile
despitethe magneticbackgroundfield. Therefore,although the localizedversion
(6.1) is adequateto derive the quantumnumbers,we do not expectit to represent
the lowest energy configuration. In other words, theseexcitations, unlike the
halberons,are not necessarilyexpectedto havea narrow bandstructure.Accord-
ingly a superpositionof states like (6.1) but with different values of ~ is more

appropriate— seeour discussionbelow.
Before considering such superpositions,however, let us consider the wave

function for localized pair-breakingexcitationson a sphere.This will reassureus
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that the pair-breakersare legitimatebulk excitations,and also allow us to draw a
remarkableconclusionconcerningtheir spin. There is a simple andnaturalwayto
put a pair of localized pair-breakerson a sphere,as follows:

~pinned fermions =d(a~ui+ ~* ~ )
2N_l(a~u

2 + ~

x (a~i1— ~~uI)
2(a!.t/ — ~!.uj)21P[(ui, i~) (UN, ‘N)l,

(6.2)

where(a,
7, f3,~)and(a!., f~!.~arethe positionsof the two excitations.The powerof

the (a~u1+f3~t1)and (a2u2+/3A
1L’2) is determinedby the requirementthat the

total powerof (u
1, Li) (or (u2, 12)) is equalto the total powerof (u1, i1)I ~

Thesefactors representthe injection of electronsmaximally localized at (a,7, t3,~)
and (a~,/~!.~• It is easily verified that the power of (u,, i,) in 1

11p8 is equal to
2N, — 3, just as in the ground state.

Thus the stateof two localizedneutral fermionsandthe groundstatebelong to
the sameHubertspace(with fixed N and N,). The neutralfermion pair excitation
is indeedanallowedexcitationabovethe groundstate.It is thereforea permissible
bulk excitation.The neutrality of the quasiparticlefollows from the fact that the
number—flux relation is unaltered— there is neither an excessnor a deficit in
electrondensity, inducedby the existenceof the pair breakingexcitation.

By the way, if N were odd it would have been possibleto set up a single

fermion state

+ p*l. )2N_3 ,~2 (a,71/ — p,7u
1)

2111[(u
2, L2) (UN, 1’N)], (6.3)

basedon the pairing wave function for N— 1 particles.
From the form of the wave function in (6.2), one canarguethat the pair-break-

ing neutralfermionscarry spin ~ — that is, orbital angularmomentumin theplane.
Indeed,the difference betweenthe total power of the complex conjugateof its

coordinate(a~,/3~’)minus the total power of the coordinate(a,7, I3,~)itself is
equal to 1. That is to say, the orbital wave functionsof a single neutral fermion
alwayshavehalf odd integerangularmomentum.This meansthe neutral fermion
pair-breakereffectively seesa unit of flux going through the sphere.Since the
pair-breakercarries no electric charge,the flux must comefrom the coupling of
the spin to the curvatureof the sphere.For this coupling to generateone unit of
flux, the spinof the neutralfermion mustbe ~. (Note that sucha spinis a quantum
numberof the 0(2) planarrotations. It shouldnot be confusedwith the angular
momentumof the SU(2) spherical rotations, nor of coursewith an internal spin
degreeof freedom.)



M. Gre/tar at at. / PairedHall states 603

6.3. PROPERTIESOF THE PAIR BREAKING MODES

The particularwave function in (6.2) or (6.3) may not havethe lowest energy,
becauseneutralexcitationsaremobileeven in the presenceof a magneticfield. A
superpositionof the statesin (6.2) with different(a,7, /3,7), (a!., /~!.~will havelower

energy. We will now presentsome conjecturesas to the propertiesof the proper
excitations.Theserepresentlittle more than our presentbest guesses.

Since the neutralfermion carriesno charge,the energyeigenstatesare labeled
by momentum.Thus we may take the single neutral fermion wave function at
momentumk, ~~k’ as a trial wave function andcalculatethe spectrumas

(uik I V I
Ek= /~J, I \ (6.4)

‘ k ~

Here ~
11k is the Fouriertransformationof the neutral fermion wave function,

u’k[zl = fd2~ ~~[z] ~ik~ (6.5)

andV is the interactionpotentialbetweenelectrons.Let us introduce

v(17~~)=f1J1,7*[z]v1I1~[z]fl d2z
1,

(6.6)

g(q_fl=J~uI/,7*[z]lIf~[z]fl d
2z

1.

Then Ek canbe expressedas

Vk
Ek=—, (6.7)

gk

where
17k and g~are the Fourier transformationsof l(i~)and g(?7). gk is positive

since it is the norm of ~ Vk is also positive if the electronpotential is positive
definite. If our pairing state is incompressiblethe quasiparticleis expectedto have
a finite size. ThereforeV(~)—* 0 and g(i~)....~0 as I ii I —~ ~. However, in general
one expectsthat V decaysmore slowly than g, and therefore that Vk is more
sharplypeakedat k = 0 than is gk. If this is true, Ek will havea maximumat k = 0
and a minimum at a finite k = k

0. (Seealso the numericalevidencedisplayedin
fig. 3b)

Our argument leading to expression(6.7) is similar to the Feynman—Bijl
argument[371for the roton spectrumin superfluid HeII. Thus it is not surprising
to find a similar “roton dip” in the neutralfermion spectrum.However,the “roton
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dip” in our case has a new interpretation.The momentumat the minimum can
approximatelybe interpretedas a Fermi momentum.Such an interpretationis
supportedby the analogyto BCS theory, which we havestressedrepeatedlyabove.

We know that in BCS theorythe quasiparticleenergyis minimizednearthe Fermi
momentum.

An approximateFermi surfaceis traced out by the minimum of the neutral
fermion spectrum.The descriptionas a Fermi surfacewill be appropriate,insofar
as the energygap can be regardedas small. This picture suggeststhat abovethe
pairing temperaturethe specific heatof the v = 1/2 systemhas a linear tempera-
ture dependence.

Both our v = 1/2 pairing stateand the usual superconductingstateare incom-
pressiblestates.Although the chargedexcitationsin the two statesare different,
the low-lying neutralexcitationsin the two statesseemto be qualitatively similar,
accordingto this discussion.

6.4. PAIR BREAKING WITH SEPARATED QUASIHOLES

Let us consider the case where we have separatedcharged quasiparticles
(dihalberons),which may be pinned by impurities. In this case,the pair breaking
quite plausibly takesa different form. The energyof the pair breakingexcitations
is expected to he lower, simply becauseeach memberof the broken pair can
separatelytakeadvantageof theattractivepotentialprovidedby the quasiparticles.
In other words, one membermay concentratenear one quasiparticle,and the
other membernear anotherquasiparticle.Indeed,in the presenceof quasiholes
onecansuggesta much simpler broken-pairtrial wave function thenwithout them

zi—~z
2—~/0~z~—z,~

/a3

N N N eB
x 11(zI—?7)(z1~)FT(z1z1)

211exp— —Iz
1I

2 , (6.8)
i=1 1<] 4

where i~i and ~Tare the quasiholecoordinates.It is straightforwardto generalize
(6.8) to the sphericalgeometry

1 1 1
FT,7.. /3,7U

1 — a,751 /3!.U2 — a~L’2 I odd U1L’e+i —

/~3

x fl (/3~u~— a,7r’1)(/3~UJ — a!.L~,)FT (u1t’1 — u1v1)
2. (6.9)

i=1
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Mathematically,the importantpoint is that the existenceof flux tubesopensup
possibilitiesfor modifying the pfaffian factor,which is otherwisedifficult. In fact
we can relate the presentdiscussionto the uniquenessargumentformulatedin
sect. 3. There,we anticipatedthat modification of the pfaffian by /1(z)= 1/z —.s

1/z +p(z) would correspondto pair breaking,sincein the expandedproducton a
finite numberof terms involving p(z) — the brokenpairs — would occur. On the
spherethereis a homogeneityrequirement,so that the correspondingmodification
has to take the form

1 1 1 1
+ +.... (6.10)

U/Li — u~L’, U,i’
1 — U ~ /3,7U 1 — a,7i [3!.u2—

But this proposedmodification — the only kind consistentwith homogeneity—

leadsto an unnormalizablewave function, when implementedaroundthe ground
state.It becomesa realpossibility only whentherearequasiholesat the appropri-
atepoints.

The availability of a simple and natural wave function — and the physical

considerationthat it ought to be energeticallyfavorable to split up the charge
distribution of a pair to trackthe separatedquasiholes— suggeststhat the energy
required for pair breakingmay be drasticallyaffected by the presenceof quasi-
holes.lndeed,for the 3-bodyhamiltonianswe introducedpreviouslythe quasiholes
are zero energystateseither with or without pair breaking! Of coursethe zero
energyof the quasiholesis of limited physical meanins as such, becausethe
quasiholesdo not havevacuumquantumnumbers(andthe energyof aquasihole-
quasiparticlepair is presumablynot zero), the degeneracybetweenpairedand
pair-breakingstatesis significant.

A generalizationof the considerationsabove, shows that when 2r quasiholes
are present,up to r brokenpairscan be accomodatednaturally. One should also
take into accountthe fact that thesquasiholescanbreak up into halberonpairs,

but we will not attemptthat here.

7. Numerical experiments: model potential

In the previouschapters,we havearguedfor the theoreticalconsistencyof the
pairedHall state,and derivedseveralof its qualitative properties.The techniques
we used,however,do not providea readybasisfor quantitativeenergeticconsider-
ations.Is the pairedHall statethe groundstate for morerealisticpotentials?If so,
are the low energyexcitationsreally the peculiaroneswe have arguedfor? These

questionscanbe answeredconvincingly only by explicit, quantitativecalculations.
In this sectionand sect. 8, we will report the result of some relevant numerical
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simulations~,which do seemto support many aspectsof our analysis,and to
suggestthat the pairedHall state is a good candidateto describeexperimentally
attainablesituations.

We havecalculatedthe completespectrumfor small numbersof fermionson a
spherepenetrateduniformly by magneticflux, and interactingvia various simple
two-body potentials,using the methodsof Haldane and Rezayi [15,39]. In this
sectionwe will concentrateon a classof simplemodel potentials,which allow us to
exhibit clearly the existenceof the universality class, its smooth connectionto a
strong pairing regime, and several of the most important qualitative features
suggestedby the precedinganalysis. In the following chapterwe shall consider
more realisticpotentials.

Let us considera model in which the only interactionsarepairwiseinteractions,
and within each pair interactionsoccur only when they are in a relative angular

momentum1 or 3 state.The potential for angularmomentum1 is denotedV~and
thepotential for angularmomentum3 is denotedl7~.All interactionsareprojected
onto the first Landau level, as is appropriate if we assumethat the splitting
betweenLandaulevels is much larger than the potential interactionenergy.

Representativeresults are displayed in fig. 2. The potentials are given by

V1 = cos /1 and V1 = sin /1, with 51. = 0, 51i = O.l
28IT, /1 = 0.517-, and çb = O.628IT.

The most notable feature of the results is the rather clear indication of an

energygap in fig. 2b. The ground stateoccursat zero angularmomentum,andis
thereforeisotropic. Note that the relation betweenthe amount of flux threading
the sphereand the number of particles is just what is expectedfor the pairing
state,i.e. N

4 = 2N — 3. The clear gap structuredepartsas one deviatesfrom this
relation — and thus enters,according to our theory, sectorscontaining charged
quasiparticles.

For other potentials,as displayedin fig. 2a, the groundstateseemsto occur at
non-zeroangularmomentum.We are temptedto interpretthis as theformationof
a chargedensitywave state,or perhapsas phaseseparation.

The numericalexperimentsalso confirm OUr predictionthat the elementaryflux
quantum is halved due to pairing. If the flux deviatesfrom the magic value
N,, = 2N — 3 by one quantum,we predict that two identical chargedelementary
excitations— two halberons— shouldhe produced.In the low-lying portionof the
spectrumof fig. 3a, one noticesa clear even—oddpatternfor the allowedangular

momenta.This is exactlywhat one would expectfor two identical particles.(It is
very familiar that for bosonsthe relativeorbital angularmomentummustbe even,
while for fermions it must be odd. The general result, for any statistics,is equal
spacing by two units in the spectrumof allowed angular momenta.)It is also
interestingthat the lowest energiesoccur for the lowest angularmomentum.This

* Relatedcalculationshave beenperformedby Fano et al. [38] for Coulombinteractionsat N,~, 2 N.

No incompressiblestatewas found.
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Fig. 2. The spectraof 10-electronsystemson a spherewith 17 flux quanta. The interactionbetween
electronsis V

1 = eos ~s and V1 = sin 4, where 4, is givenby (a) 4, = 0, (b) 4, = 0.1
28~r,(c) 4, = O.Si,- and

(d) 4, = 0.628ir.

has a simple physical meaningin the two-helberonpicture. The lowest angular
momentum corresponds,in real space, to two localized halberonssitting on

oppositesides of the sphere.This is the configurationwe expect should give the
lowest energyfor chargedquasiparticleswith repulsiveinteractions.On the other
hand,the two quasiparticlescarry maximal angularmomentumwhen they lie on
top of each other. The maximum value for a pair of halberonsis thus given by
N/2, which also agreeswith our numericalresult.

Whenwe remove(or add)one electronandtwo units of flux from the pairing
groundstate,the spectrumcontainsa low energybranchwhich is separatedfrom
the “continuum” (fig. 3b). The low energybranchdescribesthe dispersionof the
neutral fermion, pair-breaking excitation. It has a minimum at finite angular
momentum,as anticipated.In the weak pairing limit, such neutralexcitationsmay
have the smallestenergygap (and thus, for example,may dominate the thermal
conductivity and other transportproperties).

The scaling of the energygap with N is displayed in fig. 4. As N ..+ ~,the
energygap extrapolatesto approximately0.1 (in relative units), for 51 = O.l28IT.
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Fig. 3. The spectraof (a) 10 electronswith 18 flux quantaand (I’) 9 electronswith 15 flux quantaon a
sphere.The electron interaction is the same as that in fig. 2h. Note the unambiguouseven—odd
structurein the angularmomentumdependencein (a). The neutralfermion dispersioncurve can be

seenclearly in (b).

This providesstrongevidencefor the existenceof incompressiblestatesof spinless

fermionsat filling fraction 1/2, for simplerepulsivepotentials.
A point of considerableconceptualimportanceemergesupon considerationof

the seriesof simulationson the 10-electronsystemdepictedin figs. 2b, c andd. In
this series,we haveinterpolatedbetweenpotentialscombiningshort-rangeattrac-
tion and longer-rangerepulsions and potentials which are purely repulsive.
Throughoutthe interpolation,the gap nevercloses.Thisprovidesdirect numerical
evidencethat the pairing v = 1/2 statefor quasi-realisticinteractionsis in the

~ ~flI I I I )

~ _L~I II LIII LIII I I~LJ...

0 .05 .1 15 .2

1/(N~+1)

Fig. 4. Thescalingof the energygapof an electronsystemon spherewith Nc even and N,5 = 2S/~—3.
The interactionbetweentheelectronsis thesameasthat in fig. 2b.
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sameuniversalityclassasthe strong-bindingeffectivebosonHall stateproposedby
Halperin. The existenceof such a connectiongives further, indirect but in our
opinion compelling, supportfor the existenceof the halberonswith the quantum
numbersof chargeandthe (abelian)statisticswe assignedthem,since theseresults
clearly hold in the strong-pairinglimit. (However we should mention that the
similar calculation on the 8-electronsystemproduceda different result. For 8

electrons,the energygap collapseswhen V1 is near zero. Numerical calculations
on largersystemswould be very desirable.)

8. Realistic potentials and experimental considerations

In sect. 7, we discussednumericalsimulationsfor the pairing Hall stateusinga
quasirealisticmodel potential. In this section we will discusssimilar numerical
simulationsfor realistic electron interactions,and attempt to draw some lessons
relevantto practicalexperimentalpossibilities.

We haveshownin ref. [101and in sect.7 that a strongshort-rangerepulsion V1

will destabilizethe pairing state.For electronsin the first Landaulevel, it appears
that for unscreenedCoulomb interactions,the magnitudeof V1 is too large to
favor the pairedground state (see fig. 5a). This motivatesus to considermecha-
nisms which may serve to reduce the short range repulsive componentof the

Coulomb interaction.
In real samples,the short-rangerepulsionof the Coulomb interaction may be

reducedby anyof the following threeeffects:
(1) Finite thicknessof the electronwave function in thedirection perpendicularto

the plane.
(2) The largersizeof the electronwave packet in higherLandaulevels.
(3) Mixing betweendifferent Landaulevels.

Herewe will considerthe first two effects.
To model theeffect of the finite thicknessof the electronwave function,we will

usea screenedColoumb potential [401

e
2

V(r) = (8.1)
+ A

and neglectfinite-size correctionsto the pseudopotentials[41]. In typical experi-
mentsA/I is between1 and2, hut for speciallypreparedthick samplesA/I canbe
as large as 4 to 5.

At filling fractions2 < v <3, it is believed that in the strong magnetic field
regimerelevant to the quantizedHall effect the first Landaulevel is completely
filled by electronsof both spins,becausethe gapbetweenLandaulevels is large
comparedto the Coulomb energy. For the same reason, the mixing between
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Fig. 5. The spectraof 10 electrons(a. b) in the first Landaulevel and (c, d) thesecondLandau level
with 17 flux quanta. Theelectroninteraction is given by V= c2/a~~~2, with (a, c) A = 0, (b) A = 4!

and(d) A 2!. All energiesarein (cgs)unitsof e
2/el.

Landaulevelscan be ignored. Thus the systembehaveseffectively as if it wereat

filling fraction v — 2; the only significant differenceis that now theelectronslive in
the secondLandaulevel. This differenceresults in a different effective interaction
betweenthe electrons,oncethe projectionontowave functionswithin the Landau
level is performed, becausethe wave functions in different Landaulevels have
different shapes. The wave functions of the second Landau level are more
extendedthan thoseof the first, and thereforethe projectedpart of short-range
repulsion will be relatively less important.

Resultsfor the energyspectrumof 10 electronon a spherepermeatedwith 17
flux quantaare exhibitedin fig. 5. The interactionbetweenelectronsis chosento
be that in (8.1). Figs. 5a and Sb are for electronsin the first Landau level with
A/i = 0 and A/I = 4, respectively,while figs. Sc and Sd correspondto the second
Landaulevel with A/I = 0 and A/i = 2.

Thesefinite-size calculationssuggestthat the pairing state may exist in real
samples.For electrons in the first Landau level (correspondingto the s’ = 1/2
state), thepairing statemay exist for especiallythick samples,while for electronsin
the secondLandaulevel (correspondingto s’ = 5/2 state), the pairing statemay
quite possibly be realized in standardsamples.(We will give a more detailed
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discussion for the v = 5/2 state later.) We have checked the spectrumsfor
6-electronand 8-electronsystemswith flux given by N,1, = 2N — 3. We find the
spectra,for the correspondinginteractions,to bevery similar to those in fig. S. In
particular, the energygap remainsfinite for the interactionswith finite thickness.
Becausethe incompressiblestatethat we find alwaysappearsat N,1, = 2N — 3, we
believe it to correspondto thepairing statediscussedin this paper.

We also attemptedto study the scaling of the energygapswith N. Unfortu-
nately, the resultswere inconclusive.The energygapappearsto approacha value
very close to zero for the casesdisplayed in fig. Sb and fig. Sd. Thus, basedon
thesestudiesit is not clear whether or not the pairing state survives in the
thermodynamiclimit. Clearly, studieson larger systemswould be mostdesirable.

The energygap of the pairing statefor the 10-electronsystem is found to be

~1/2 = 0.0085 e
2/El for A/I = 4 and ~5/2 = 0.0096 e2/EI for A/I = 2. It is inter-

estng to comparethese gaps with the v = 1/3 Laughlin state in the first and
secondLandau levels. For a systemwith 7 electrons,we obtain = 0.00656
e2/ei for A/I = 4 and = 0.01060e2/eI for A/l = 2.

Now let us considerthe caseof unscreenedColoumbinteractions(A = 0). In the
first Landaulevel it is clear that the e = 1/2 stateis not incompressible,because

of the existenceof a low energybranch.The situation is less clear for the second
Landau level (~= 5/2). There we can still identify a low energy branchwhich
resemblesthe one in the first Landaulevel, but now it appearswith a finite slope.
This featuresuggeststhat the v = 5/2 state for the pure Coloumb interactionis
not a pairedHall state.Apparentlythe reductionin V

1 in the secondLandaulevel
seemsthus not sufficient to stabilize a pairedground state,and finite thickness
effectsare requiredaswell.

This conclusion is supportedby calculationsperformed by Chakrabortyand
Pietiläinenusing the torus geometry[161.They found that the ground state of
v = 5/2 systemwith the pure Coloumb interactionalwayshaszeromomentumon
a torus, both for evenand for odd numbersof electrons.If the pairing statewas
the groundstate,the odd-number-electronsystemwould containa neutralfermion
excitation.The groundstatepresumablywould then exhibit non-zeromomentum,
as shown in fig. 3b.

We also have argued that the paired Hall state has eight-fold ground state
degeneracyon a torus in the thermodynamiclimit. For a finite system the
degeneracyis split by an amountof ordere’~ where ~ is the typical length scale
of pairing state[30]. Numerical calculationsfor the unscreenedCoulomb interac-

tion havenot exhibited theseeight closely degenerategroundstates.
The results presentedabove suggestthe following possiblescenariofor the

ii = 5/2 electronsystem.Above a certaincritical thicknessthe groundstateof the
systemis the pairing state,and demonstratesthe quantumHall effect. Below the
critical thickness the pairing state is unstable and the system may be in a
compressiblestate.Certainly this scenariois consistentwith our numericalresults,
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but we cannotclaim that our simulations,basedon suchsmall systems,establishit

definitively.
In the discussionso far we have ignored the spin degree freedom of the

electrons.HaldaneandRezayi [15] havesuggesteda spin singlet state to describe
the observedincompressiblestateat c = 5/2. However, the possibility of a spin
singlet statehas not receivedsufficient support from numerical calculationsfor
quasi-realisticpotentials.For the pure Coloumbinteractionin the secondLandau
level, it has beenshown that the ground state is fully spin polarized,even if the
Zeeman splitting is not taken into account. Finite thickness calculationswith
reversedspins are neededto reacha more conclusiveresult. It presentlyappears
to us that, taking the known numericalresultsat face value, the pairedHall state is
the bestbet to describethe incompressiblev = 5/2 state.

It is noteworthy that the spin singlet state and the pairing state have very

different behavior in the high magnetic field limit. The spin singlet state will
eventuallybe destroyedby the high magnetic field, while the pairing statewill
becomemore stable,becauseof the increaseof A/i. Experimentsin the high field
limit for highmobility samplescould distinguishbetweenthesealternatives.

The energygap of the c = 5/2 statehas beenmeasuredto be ~ 200 mK
(for a magneticfield B S T). The gap for the 10-electronsystemis I K

(we have takene = 10). i~/2canbe regardedas an upperbound of the gapof the
pairing state.We seethat the valueof the is reasonablyconsistentwith the
experimentalvalue.

Finally, let us briefly comment on the tilted magnetic field experimentsper-
formedby Eisensteinandcoworkers[18]. In theseexperiments,the magneticfield
has a componenttangent to the plane of the 2d electrongas, in addition to the

perpendicularcomponent.The magnetic field component tangent to the plane
tendsto have the sameeffect as reducingthe thickness,since the particlesdo not
like to crossfield lines. Becausethe thicknessof the real samplesis of the same
order as the magneticlength, the effective thickness is sensitive to the tilt angle.
According to recentnumericalwork [42], the effectivethicknessmay be reducedby
a factor 2 or 3 if the sampleis tilted by, say, 60°.Thereforethe pairedHall state
and the associatedHall plateaumay be destroyedby tilting the magneticfield
which reducethe thickness.

In fact, the observedincompressiblev = 5/2 statedoesseemto be disruptedby

a tilted magnetic field. The conventional interpretationof this observationhas
beenthat it providesevidencethat the groundstateis not spin polarized.For if it
were spin polarized, it might seemthat the tilted field would be accomodated
simply by appropriatere-alignmentof the spin direction, without loss of correla-
tion energy.Howeverof course the Zeemancoupling is not the only coupling of
the electronsto the magneticfield, aswe havejust remarked,so the conventional
interpretationis not entirely well grounded.Indeedthe picture describedabove,
basedon our numericalsimulations, is very similar to what hasbeenobservedin
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the experimentsat filling fraction 5/2. Thuswe are temptedto concludethat the
tilted-field experimentsdo not necessarilyimply, as is generallyasserted,that the
electronsin the secondLandaulevel arespin unpolarized.

In sum, existing experiments are not manifestly inconsistentwith the assumption
that the electronsin the secondLandaulevel form a spin polarizedpairedHall
stateat filling fraction v = 5/2. In fact, existing numericalcalculationsseemto
point towardsuch a possibility. Experimentsat highermagneticfields could help
settlethe issue.The spin-polarizedpairing statewould tend to be more favorable
in high magneticfields, dueto an increasein the thickness/magneticlength ratio,
while a spin-singletpairing statewould tend to be destabilized,simply due to the
Zeemaneffect.
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