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Generalizations of Perelomov’s identity on the completeness of coherent states
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We proof the Perelomov identity for arbitrary 2D lattices using Fourier transformation. We further generalize
it to situations where the origin does not coincide with a lattice site and where the form of the exponential factor
is reminiscent of magnetic wave functions in uniaxial rather than symmetric gauge.
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I. INTRODUCTION

Studies of two-dimensional spin liquids,'~'® which were

originally motivated by the problem of high-7, supercon-
ductivity, are enjoying a renaissance of interest in present
days.'*2* One of the reasons is the accumulation of numerical
evidence for spin-liquid phases in various two-dimensional
spin models, including the Hubbard model on a honeycomb
lattice®® and the next-nearest neighbor Heisenberg antifer-
romagnet on the square lattice, usually referred to as the
Ji—J> model.?® Another reason is that they constitute intricate
examples of topological phases,”’>? which currently receive
significant interest in the context of topological insulators.*3~3>

In fact, the concept of topological order?’—? was discovered
in a two-dimensional spin liquid, the (Abelian) chiral spin
liquid (CSL).246:11:1623.2436 The jdea of this spin s = 1/2
liquid, due to D. H. Lee,” is to describe spin flip operators
S:* in a background of down spins by a bosonic quantum Hall
wave function at Landau level filling factor v = 1/2. Kalmeyer
and Laughlin® discovered that this wave function, when
supplemented by an appropriate gauge factor G(z) = £1,is a
spin singlet. As first pointed out by Zou, Doucot, and Shastry,?
the proof relies on an identity established by A. M. Perelomov
in 1971 in the context of the completeness of systems of
coherent states.*® The Abelian CSL is the simplest example of a
class of spin liquids, which are constructed using Landau level
wave functions in fictitious or auxiliary magnetic fields. More
recent examples of this class include the spin S = 1 chirality
liquid® (which is constructed via Schwinger boson projection
form two Abelian CSLs with opposite chirality), the spin s
non-Abelian CSL'>?* [which supports spinon excitations with
SU(2) level k = 2s statistics], and a hierarchy of spin-liquid
states?? [which suggests that spinons in parity and time reversal
invariant antiferromagnets with integer spin s = 2 and higher
obey SU(2) level k = s non-Abelian statistics].

All the spin liquids in this class share two features. First,
the mechanism of fractional quantization yielding spinon (and
holon) excitations, is both mathematically and conceptually
similar to the mechanism of fractional quantization in quan-
tized Hall states. The fractional quantum number in the spin
liquids is the spin s = 1/2 of the spinon, which is fractional
in the context of Hilbert spaces built out of spin flips, which
carry spin one. The Abelian CSL is related to a Laughlin state
in the quantum Hall system, while the family of non-Abelian
CSLs are reminiscent of the Moore-Read***” and Read-Rezayi
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states.*! Second, many analytical results available for these
highly complex states, including the singlet property for
Abelian>® and non-Abelian CSL states'> as well as the recent
construction of a parent Hamiltonian?* for the non-Abelian
CSL states, rely on Perelomov’s identity.?

This identity was originally derived from the properties
of the Jacobi 6 functions and used to show that there is
only one linear relation between certain systems of coherent
states. In this paper, we show that Perelomov’s identity can be
generalized or reformulated in several ways, which are highly
expedient for applications to spin liquids.

To be precise, we do three things. First, we proof that
the identity holds for arbitrary 2D lattices with one site per
unit cell using Fourier transformation. Second, we generalize
the identity to situations where the origin does not coincide
with a lattice site. Third, we rewrite the identity such that
the form of the exponential factor is reminiscent of magnetic
wave functions in uniaxial rather than symmetric gauge. The
last result is particularly useful when the spin liquids are
formulated on lattices with periodic boundary conditions.

II. THE PERELOMOYV IDENTITY

Consider a lattice spanned by 7,,, =na +mb in the
complex plane, with n and m integer and the area of the unit
cell ©2 spanned by the primitive lattice vectors a and b set to
21,

Q = [3(ab)| = 27, (1)
where I denotes the imaginary part. Let G(n,.,) =
(_1)(11+l)(m+1). Then

Z P(n”vm)G(nn,m)e_%mn'm‘2 =0 (2)

for any polynomial P of 1, ,.
Proof. 1t is sufficient to proof the identity for the generating
functional

Z e%']u.miG(nn,m)67%|77n,m|2 =0. (3)
n,m

Since G(n,. ) takes the value —1 on a lattice with twice the
original lattice constants, we may rewrite this as

L 7 1 2 > 2
g einn.m&e_”’]n,ml -2 E enn,m<»e_|77n,m| =0. (4)

n,m n,m
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Kalmeyer and Laughlin® observed that for the square lattice,
the second sum in Eq. (4) can be expressed as a sum of the
Fourier transform of the function we sum over in the first
term. We demonstrate here that their proof can be extended to
arbitrary lattices.

To begin with, we define the Fourier transform in complex
coordinates

fo)= f d>nf ()e™ @), ()

where 91 denotes the real part and we have used Eq. (1). Since
the area of the unit cell of our lattice is taken to be 27w, the
reciprocal lattice is given by the original lattice rotated by /2
in the plane without any rescaling of the lattice constants. In
complex coordinates,

Cww =i(n'a +m'b), (6)
as this immediately implies
Rn,m . Kn’,m’ = Sﬁ(’”n,m&n’,m’)
= N((na + mb)(—i)(n'a + m'b))

= nm'I(ab) + mn'I(ba) = 2w x integer.
Then
D F ) =2 fOlnm). (7)

n',m’ n,m
Equation (7) follows directly from
Z €im(nz”,”"/) =Q Z 8(2)(nn,m - 77)7 (8)
n',m’ n,m

which is just the 2D equivalent of the (Dirac comb) identity

00
§ lerin’x _
n'=—00

The right-hand side of Eq. (9) is obviously zero if x is not an
integer and manifestly periodic in x with period 1. To verify
the normalization, observe that since for any N odd,

o]

> 8x —n). ©

n=—00

N for
0 otherwise.

+Nfl
: _ .

Z 2T yIN { y = N x integer,
N-1

)

n'=—=-

This implies

N—

2

2 eZmn y/N — 1’

N-1
2

N-1
2

1+
N2
-

N
7 =

+

which in the limit N — oo is equivalent to

which proves the normalization in Eq. (9).
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We proceed by evaluation of the Fourier transform of
f(n) = exmiem il

Fe) = /dzn o 31 = Ll i)
_ /dzn 1=K GSOBHIO) 4o lePHEE (1)
where we have used the integral
/dan(n)e—éﬂmz—ﬁw)

= F(aaﬁ,)fdzn o~ uInP=nw—ni)

w=0

F(ady) / e T

=0
= am F(aaw)eiw“_’ = an F(w)
=0
with F(n) = e2"+2" o = 4, and w = 2i¢.
Substituting Eq. (10) into Eq. (7), we obtain
Z fOm) =2 Z e~ G P4l w2 (11)
If we now substitute n’ = —n, m’ = —m, and hence i, ,y =

Ny.m into the right-hand side of Eq. (11), we obtain Eq. (4).
This completes the proof.

III. GENERALIZATION TO LATTICES WHERE THE
ORIGIN DOES NOT COINCIDE WITH
A LATTICE SITE

We now assume a shifted lattice with the sites given by
Nn,m = na + mb + c, (12)

where n and m are integer and a, b, and ¢ are complex numbers
such that the area of the unit cell 2 spanned by the primitive
lattice vectors a and b remains set to 2 [see Eq. (1) above].
Then for any polynomial P of 5, .,

Z P(nn,m)(;(nn,m)e_blqm”'m‘2 = 07 (13)
where the gauge factor is now given by
G(im) = (= 1) DD 3300n0), (14)

Proof. With n), . = 1,.m — ¢, we write the exponential in Eq.
(13) as
e~ il — o= 3Vl o= 5O Tt ) =gl
= ei%|77;1,m|ze%(n:xm67ﬁ//x.mc) e*%i’];.m{‘ ei%lclz
— o il p330md) g= 37 n€ g3l
If we now absorb the last two factors into the Polynomial
P(1n.m), Eq. (13) with Eq. (14) reduces to Eq. (2).

Comment. For most applications, it is convenient to write
Eq. (14) as

G(nn,m) — (_1)(n+l)(m+l) e%[(a’n+b'm)c”—(a"rH—b”m)c’)]’
(15)
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/ s 1 / N / M/ / 4
where a =a’' +1ia”, b=b"+1b", c = +1ic”, and d’, a”,
etc., are real.

IV. THE PERELOMOY IDENTITY IN UNIAXIAL GAUGE

The generalized identity Eq. (13) with Eq. (14) can further
be rewritten as

> P(n) G m)e™ " = 0, (16)
nm
with the gauge factor now given by
G ) = (— 1)+ DD G IR =On+0) (17)
Proof. If we substitute
P(yn) = Py ) €3
into Eq. (13), we obtain for the product of all the exponential
factors
o= 23008 o3 (0 =1 )
— ¢ 3300m®) o+ 30l —Tlnm)

— o 2350mm®) ot 3[R+ ) |3l m)
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— ¢~ 30 g+ 5305,) o= 330 m)?

+ 33000 (=200 =3 )
=33@) p+ 33— =33’

— o TEN@) 3RO =IO +) (=3 3m)

If we absorb the first factor into the polynomial, we obtain
Eq. (16) with Eq. (17).

Comment. For most applications, it is convenient to write Eq.
(17) as

G(nn m) — (_1)(n+l)(m+l) e%(a’l’H-b’m)(a/fn+b/rm+2c//)' (18)
For a rectangular lattice with a” = b = ¢” = 0, this gauge
factor reduces to

Gy ) = (=141 (19)
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