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We use a family of critical spin chain models discovered recently by one of us [M. Greiter, Mapping of
Parent Hamiltonians (Springer, Berlin, 2011)] to propose and elaborate that non-Abelian, SU(2) level-k = 2S
anyon statistics manifests itself in one dimension through topological selection rules for fractional shifts in the
spacings of linear momenta, which yield an internal Hilbert space of 2n (in the thermodynamic-limit) degenerate
states. These shifts constitute the equivalent to the fractional shifts in the relative angular momenta of anyons in
two dimensions. We derive the rules first for Ising anyons, and then generalize them to SU(2) level-k anyons.
We establish a one-to-one correspondence between the topological choices for the momentum spacings and the
fusion rules of spin- 1

2 spinons in the SU(2) level-k Wess-Zumino-Witten model, where the internal Hilbert space
is spanned by the manifold of allowed fusion trees in the Bratteli diagrams. Finally, we show that the choices
in the fusion trees may be interpreted as the choices of different domain walls between the 2S + 1 possible,
degenerate dimer configurations of the spin-S chains at the multicritical point.
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I. INTRODUCTION

The concept of fractional quantization, and, in particular,
fractional statistics [1], has witnessed a renaissance of in-
terest in recent years. This is due to possible applications
of states supporting excitations with non-Abelian statistics
[2] to the rapidly evolving field of quantum computing and
cryptography. The paradigm for this class is the Pfaffian state
[3,4], which has been proposed to describe the experimentally
observed quantized Hall plateau at Landau level filling frac-
tion ν = 5

2 [5–7]. The state supports quasiparticle excitations
which possess Majorana fermion states at zero energy [8].
Braiding of these half vortices yields nontrivial changes in the
occupations of the Majorana fermion states, and hence renders
the exchanges noncommutative or non-Abelian [9,10]. Since
this “internal” state vector is insensitive to local perturbations,
it is preeminently suited for applications as protected qubits in
quantum computation [11,12]. Non-Abelian anyons are fur-
ther established in other quantum Hall states including Read-
Rezayi states [13], in the non-Abelian phase of the Kitaev
model [14], the Yao-Kivelson and Yao-Lee models [15,16],
and in the family of non-Abelian chiral spin liquid states
introduced by two of us [17–19]. The latter were subsequently
revisited from a coupled ladder approach [20,21], continuum
limit interpolation [22], as well as from the viewpoint of
Gutzwiller-projected superconductors [23] and topological
entanglement entropy [24].

In this article, we propose and elaborate that the possibility
of non-Abelian statistics is not limited to two spatial dimen-
sions, but exists in certain families of one-dimensional spin
models as well. In particular, we use a family of (multi)critical
spin chain models discovered a few years ago by one of us
[25] (and for SU(2) level 2 shortly thereafter independently
obtained by Nielsen et al. [26]) to show that the SU(2) level-k

anyon statistics of the spinons of these models manifests
itself in one dimension through topological selection rules
for the fractional momentum spacings, which constitute the
equivalent to fractional relative angular momentum for anyons
in two dimensions. In Sec. II, we review the fractional mo-
mentum spacings of the spinon excitation in a 1/r2 model
discovered by Shastry and one of us, commonly referred to
as the Haldane-Shastry model [27,28]. This model constitutes
a lattice Wess-Zumino-Witten model [29–31], and the spinons
obey Abelian half-Fermi statistics [32,33]. We further review
the formalism of extended Young tableaux [34,35], which pro-
vides the single-particle momenta of the spinon excitations.
In Sec. III, we first review the ground state and the associated
parent Hamiltonian of a similar, exactly solvable, critical spin
model for a spin S = 1 chain [25,26,36]. This model supports
spinon excitations with Ising-type, non-Abelian statistics. We
then generalize the formalism of extended Young tableaux
[34] to the case S = 1 and find that after every second spinon,
there are two possible choices for the quantization of the
momentum spacing—it can be either integer or half integer.
This yields an equivalent number of choices to what we
would obtain if we had one Majorana fermion state for each
spinon, in analogy to the Majorana fermion states located at
the quasiparticles of the Moore-Read state in the quantum
Hall effect [3,8,37]. The choice we have after the first, third,
fifth, etc., spinon is that the spacings between the neighbor-
ing single-spinon momenta can either be that of Bose (or
Fermi) statistics, or be that of half-Fermi statistics. We call
the momentum spacings for this model Majorana spacings.
In Sec. IV, we review the generalization of the model to
arbitrary spin S, generalize the formalism of extended Young
tableaux accordingly, and derive the rules for the momentum
spacings of non-Abelian SU(2) level-k = 2S anyons. These
are not as easily stated, but reasonably simple as far as the
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principles are concerned. The mapping of these rules back to
the related family of quantized Hall states, the Read-Rezayi
states [13], may be instructive in formulating explicit matrix
representations of SU(2) level-k anyons in two dimensions,
a task which so far has been accomplished only for Ising
anyons [9]. Finally, we establish a one-to-one correspondence
between the rules for the momentum spacings we have derived
from the formalism of extended Young tableaux, and the
fusion rules of j = 1

2 spinons within the SU(2) level-k = 2S
algebra. The physical information regarding the momentum
spacings can hence be transferred to the spinon bases [38–41]
of the conformal field theory, the Wess-Zumino-Witten model
[29,30,42,43].

II. FRACTIONAL MOMENTUM SPACINGS
AND ABELIAN ANYONS IN 1D

A. The Haldane-Shastry model

The Haldane-Shastry model [27,28,34,44–50] is one of
the most important paradigms for a generic spin- 1

2 liquid
on a chain. Consider a spin- 1

2 chain with periodic boundary
conditions (PBCs) and an even number of sites N on a unit
circle embedded in the complex plane:

Nsites with spin 1
2 on unit circle:

ηα = ei 2π
N α withα = 1, . . . , N.

The 1/r2 Hamiltonian

H HS =
(

2π

N

)2 N∑
α<β

SαSβ

|ηα − ηβ |2 , (1)

where |ηα − ηβ | is the chord distance between the sites α and
β, has the exact ground state∣∣ψHS

0

〉 = ∑
{z1,...,zM }

ψHS
0 (z1, . . . , zM )S+

z1
· . . . · S+

zM

∣∣↓↓ . . . ↓︸ ︷︷ ︸
all N spins ↓

〉
,

(2)

where the sum extends over all possible ways to distribute the
M = N

2 ↑-spin coordinates zi on the unit circle and

ψHS
0 (z1, z2, . . . , zM ) =

M∏
i<i

(zi − z j )
2

M∏
i=1

zi. (3)

The ground state is real, a spin singlet, and has momentum

p0 = −π

2
N, (4)

where we have adopted a convention according to which the
“vacuum” state |↓↓ . . . ↓〉 has momentum p = 0 [and the
empty state |0〉 has p = π (N − 1)] and energy

E0 = −π2

24

(
N + 5

N

)
. (5)

The ground state (2) with (3) was known long before the
model, as it can be obtained by Gutzwiller projection from
Slater determinant states describing filled bands [51–53]. The

Hamiltonian (1) possesses a Yangian symmetry [46,54], is
fully integrable [55], and also amenable to exact solution via
the asymptotic Bethe ansatz [44,47,54,56].

We will not verify the model explicitly here, but rather
focus on the fractional momentum spacings of the spinon
excitations, which reflect their Abelian anyon statistics.

B. Spinon excitations and fractional statistics

The elementary excitations for the Haldane-Shastry model
are free spinon excitations, which carry spin 1

2 and no charge.
They constitute an instance of fractional quantization, which
is both conceptually and mathematically similar to the frac-
tional quantization of charge in the fractional quantum Hall
effect [57]. Their fractional quantum number is the spin,
which takes the value 1

2 in a Hilbert space (2) made out of
spin flips S+, which carry spin 1.

One-spinon states. To write the wave function for a ↓-spin
spinon localized at site ηα , consider a chain with an odd
number of sites N and let M = N−1

2 be the number of ↑ or
↓ spins condensed in the uniform liquid. The spinon wave
function is then given by

ψα↓(z1, z2, . . . , zM ) =
M∏

i=1

(ηα − zi)ψ
HS
0 (z1, z2, . . . , zM ), (6)

which we understand substituted into (2). It is easy to ver-
ify Sz

totψα↓ = − 1
2ψα↓ and S−

totψα↓ = 0, which shows that the
spinon transforms as a spinor under rotations.

The localized spinon (6) is not an eigenstate of the Hamil-
tonian (1). To obtain exact eigenstates, we construct momen-
tum eigenstates according to

ψm↓(z1, z2, . . . , zM ) =
N∑

α=1

(η̄α )mψα↓(z1, z2, . . . , zM ), (7)

where the integer m corresponds to a momentum quan-
tum number. Since ψα↓(z1, z2, . . . , zM ) contains only powers
η0

α, η1
α, . . . , ηM

α and

N∑
α=1

ηm
α ηn

α = δmn mod N, (8)

ψm↓(z1, z2, . . . , zM ) will vanish unless m = 0, 1, . . . , M.
There are only roughly half as many spinon orbitals as there
are sites. Spinons on neighboring sites hence cannot be or-
thogonal. Acting with (1) on (7), we obtain [25,44,49,58]

H HS |ψm↓〉 =
[
−π2

24

(
N − 1

N

)
+ 2π2

N2
m(M − m)

]
|ψm↓〉 .

(9)

To make a correspondence between m and the spinon
momentum pm, we translate (7) counterclockwise by one
lattice spacing (which we set to unity for present purposes)
around the unit circle,

T |ψm↓〉 = ei(p0+pm ) |ψm↓〉 . (10)

With p0 = −π
2 N , we find

pm = π − 2π

N

(
m + 1

4

)
. (11)
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−π 0 π p0+pm

(pm)

allowed momenta

M evenM odd

FIG. 1. Dispersion of a single spinon in a Haldane-Shastry chain.

The energy (9) can be written as E = E0 + ε(pm), with the
spinon dispersion given by

ε(p) = 1

2
p(π − p) + π2

8N2
, (12)

as depicted in Fig. 1. The interval of allowed spinon momenta
spans only half of the Brillouin zone, and alternates with M
even vs M odd.

Two-spinon states. To write the wave function for two ↓-
spin spinons localized at sites ηα and ηβ , consider a chain with
N even and M = N−2

2 . The two-spinon state is then given by

ψαβ (z1, . . . , zM ) =
M∏

i=1

(ηα − zi )(ηβ − zi )ψ
HS
0 (z1, . . . , zM ).

(13)

A momentum basis for the two-spinon states is given by

ψmn(z1, . . . , zM ) =
N∑

α,β=1

(η̄α )m(η̄β )mψαβ (z1, . . . , zM ), (14)

where M � m � n � 0. For m or n outside this range, ψmn

vanishes identically, reflecting the overcompleteness of the
position-space basis. Acting with (1) on (7), we obtain
[25,44,49,58]

H HS |ψmn〉 = Emn |ψmn〉 +
lmax∑
l=1

V mn
l |ψm+l,n−l〉 (15)

with

Emn = − π2

24

(
N − 19

N
+ 24

N2

)

+ 2π2

N2

[
m

(
N

2
−1−m

)
+ n

(
N

2
−1−n

)
− m − n

2

]
,

(16)

V mn
l = − 2π2

N2
(m − n + 2l ), (17)

and lmax = min(M − m, n). Since the “scattering” of the
nonorthogonal basis states |ψmn〉 in (15) only occurs in one
direction, increasing m − n while keeping m + n fixed, the
eigenstates of H HS have energy eigenvalues Emn, and are of
the form

|φmn〉 =
lM∑

l=0

amn
l |ψm+l,n−l〉 . (18)

1

2 relative motion of one-dimensional anyons
is unidirectional (e.g. 2 moves clockwise
relative to 1)

when anyons cross: |ψ>→ eiθ|ψ>

mom. spacing: p1−p2 = Δp → Δp − 2 θ

L

FIG. 2. Fractional statistics in one dimension. The crossings of
the anyons are unidirectional, and the many-particle wave function
acquires a statistical phase θ whenever they cross.

A recursion relation for the coefficients amn
l is readily obtained

from (15).
If we identify the single-spinon momenta for m � n ac-

cording to

pm = π − 2π

N

(
m + 1

2
+ s

)
, (19)

pn = π − 2π

N

(
n + 1

2
− s

)
, (20)

with a statistical shift s = 1
4 [50,59], we can write the energy

Emn = E0 + ε(pm) + ε(pn), (21)

where E0 is the ground-state energy (5) and ε(p) the spinon
dispersion (12).

Fractional statistics. The mutual half-Fermi statistics of the
spinons manifests itself in the fractional shift s in the single-
spinon momenta (19) and (20), as we will elaborate now [33].
The ansatz (14) unambiguously implies that the sum of the
two spinon momenta is given by qm + qn = 2π − 2π

N (m +
n + 1), and hence (19) and (20). The shift s is determined by
demanding that the excitation energy (21) of the two-spinon
state be a sum of single-spinon energies, which in turn is
required for the explicit solution here to be consistent with the
model solution via the asymptotic Bethe ansatz [54,59,60].

The shift decreases the momentum pm of spinon 1 and
increases momentum pn of spinon 2. This may surprise at
first as the basis states (14) are constructed symmetrically with
regard to interchanges of m and n. To understand the asymme-
try, note that M � m � n � 0 implies 0 < pm < pn < π . The
dispersion (12) implies that the group velocity of the spinons
is given by

vg(p) = ∂pε(p) = π

2
− p, (22)

which in turn implies that vg(pm) > vg(pn). This means that
the relative motion of spinon 1 (with qm) with respect to
spinon 2 (with qn) is always counterclockwise on the unit cir-
cle (see Fig. 2). The shifts in the individual spinon momenta
can hence be explained by assuming that the two-spinon state
acquires a statistical phase θ = 2πs whenever the spinons
pass through each other. This phase implies that qm is shifted
by − 2π

N s since we have to translate spinon 1 counterclockwise
through spinon 2 and hence counterclockwise around the unit
circle when obtaining the allowed values for qm from the
PBCs. Similarly, qn is shifted by + 2π

N s since we have to trans-
late spinon 2 clockwise through spinon 1 and hence clockwise
around the unit circle when obtaining the quantization of qn.
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That the crossing of the spinons occurs only in one di-
rection is a necessary requirement for fractional statistics to
exist in one dimension. If the spinons could cross in both
directions, the fact that paths interchanging them twice (i.e.,
once in each direction) are topologically equivalent to paths
not interchanging them at all would imply 2θ = 0 mod 2π for
the statistical phase, i.e., only allow for the familiar choices of
bosons or fermions. With the scattering occurring in only one
direction, arbitrary values for θ are possible. Note that the one-
dimensional anyons break neither time-reversal symmetry nor
parity.

The fractional statistics of the spinons manifests itself
further in the fractional exclusion (or generalized Pauli) prin-
ciple introduced by one of us [32]. If we consider a state
with L spinons, we can easily see from (7), (8), and (14)
that the number of orbitals available for further spinons we
may wish to create is M + 1, where M = N−L

2 is the number
of ↑ or ↓ spins in the remaining uniform liquid. (In this
representation, the spinon wave functions are symmetric; two
or more spinons can have the same value for m.) In other
words, the creation of two spinons reduces the number of
available single-spinon states by one. They hence obey half-
Fermi statistics in the sense of the generalized Pauli exclusion
principle. (For fermions, the creation of two particles would
decrease the number of available single particle by two, while
this number would not change for bosons.)

C. Young tableaux and many-spinon states

The easiest way to obtain the spectrum of the model is
through the one-to-one correspondence between the Young
tableaux classifying the total spin representations of N spins
and the exact eigenstates of the Haldane-Shastry model for
a chain with N sites, which are classified by the total spins
and the fractionally spaced single-particle momenta of the
spinons [34].

This correspondence yields the allowed sequences of
single-spinon momenta p1, . . . , pL as well as the allowed
representations for the total spin of the states such that the
eigenstates of the Haldane-Shastry model have momenta and
energies

p = p0 +
L∑

i=1

pi, E = E0 +
L∑

i=1

ε(pi ), (23)

where p0 and E0 denote the ground-state momentum and
energy, respectively, and ε(p) is the single-spinon dispersion.
The correspondence hence does not only provide the quantum
numbers of all the states in the spectrum, but also shows that
it is sensible to view the individual spinons as particles, rather
than just as solitons or collective excitations in many-body
condensates. We now proceed by stating these rules without
further motivating or even deriving them.

To begin with, the Hilbert space of a system of N identical
SU(n) spins can be decomposed into representations of the
total spin, which commutes with (1) and hence can be used to
classify the eigenstates. These representations are compatible
with the representations of the symmetric group SN of N
elements, which may be expressed in terms of Young tableaux
[61,62]. The general rule for obtaining Young tableaux is

1 ⊗ 2

1
2

S =0

⊕ 1 2

S =1

⊗ 3 = 1
2
3

⊕ 1 2
3

S = 1
2

⊕ 1
2

3

S = 1
2

⊕ 1 2 3

S = 3
2

FIG. 3. Total spin representations of three S = 1
2 spins with

Young tableaux. For SU(n) with n > 2, the tableaux with three boxes
on top of each other would exist as well.

illustrated for three S = 1
2 spins in Fig. 3. For each of the N

spins, draw a box and number the boxes consecutively from
left to right. The representations of SU(n) are constructed by
putting the boxes together such that the numbers assigned to
them increase in each row from left to right and in each col-
umn from top to bottom. Each tableau indicates symmetriza-
tion over all boxes in the same row, and antisymmetrization
over all boxes in the same column. This implies that we cannot
have more than n boxes on top of each other for SU(n) spins.
For SU(2), each tableau corresponds to a spin S = 1

2 (λ1 − λ2)
representation, with λi the number of boxes in the ith row, and
stands for a multiplet Sz = −S, . . . , S.

The one-to-one correspondence between the Young
tableaux and the noninteracting many-spinon eigenstates of
the Haldane-Shastry model is illustrated in Fig. 4 for a chain
with N = 4 sites. The rule is that in each Young tableau,
we shift boxes to the right such that each box is below or
in the column to the right of the box with the preceding
number. Each missing box in the resulting, extended tableaux
represents a spinon. The extended tableaux provide us with
the total spin of each multiplet, which is given by the repre-
sentation specified by the original Young tableau, the number
L of spinons present, and the individual spinon momentum
numbers ai, which are just the numbers in the boxes above
or below the dots representing the spinons. The single-spinon

Stot L a1, . . . , aL

1
2

3
4 0 → 1

2
3
4

→ 1
2

3
4 0

ptot

0

1 2
3 4 0 → 1 2

3 4
→ 1 2

3 4 2
1 4

π

1
2

3 4 1 → 1
2

3 4 → 1
2

3 4 2
3 4

3π
2

1 2
3

4 1 → 1 2
3

4 → 1 2
3

4 2
1 4

π

1 2 3
4 1 → 1 2 3

4
→ 1 2 3

4 2
1 2

π
2

1 2 3 4 2 → 1 2 3 4 → 1 2 3 4 4
1 2 3 4

0

FIG. 4. Young tableau decomposition and the corresponding
spinon states for an S = 1

2 spin chain with N = 4 sites. The dots
represent the spinons. The spinon momentum numbers ai are given
by the numbers in the boxes of the same column. Note that

∑
(2Stot +

1) = 2N .
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momenta are obtained from those via

pi = π

N

(
ai − 1

2

)
, (24)

which implies δ � pi � π − δ, with δ = π
2N → 0 for

N → ∞.
The total momentum and the total energies of the many-

spinon states are given by (23) with

p0 = −π

2
N, E0 = −π2

24

(
N + 5

N

)
, (25)

and the single-spinon dispersion

ε(p) = 1

2
p(π − p) + π2

8N2
, (26)

where we use a convention according to which the “vacuum”
state |↓↓ . . . ↓〉 has momentum p = 0 [and the empty state
|0〉 has p = π (N − 1)].

This correspondence shows that spinons are nonin-
teracting, with momentum spacings appropriate for half
fermions. We may interpret the Haldane-Shastry model as a
reparametrization of a Hilbert space spanned by spin flips (2)
into a basis which consists of the Haldane-Shastry ground
state plus all possible many-spinon states.

III. MAJORANA SPACINGS AND ISING ANYONS

A. An exact model of a critical S = 1 spin chain
described by a Pfaffian

As for the Haldane-Shastry model, we consider a one-
dimensional lattice with PBCs and an even number of sites
N on a unit circle embedded in the complex plane. The only
difference is that now the spin on each site is S = 1:

Nsites with spin 1 on unit circle:

ηα = ei 2π
N α withα = 1, . . . , N.

The ground-state wave function we consider here
[17,25,63] is given by a bosonic Pfaffian state in the complex
lattice coordinates zi supplemented by a phase factor,

ψS=1
0 (z1, z2, . . . , zN ) = Pf

(
1

zi − z j

) N∏
i< j

(zi − z j )
N∏

i=1

zi.

(27)

The Pfaffian is given by the fully antisymmetrized sum over
all possible pairings of the N particle coordinates,

Pf

(
1

zi − z j

)
≡ A

{
1

z1 − z2
· . . . · 1

zN−1 − zN

}
. (28)

The “particles” zi represent renormalized spin flips S̃+
α acting

on a vacuum with all spins in the Sz = −1 state,

|ψS=1
0 〉 =

∑
{z1,...,zN }

ψS=1
0 (z1, . . . , zN ) S̃+

z1
· · · · · S̃+

zN
|−1〉N ,

(29)

where the sum extends over all possibilities of distributing
the N “particles” over the N lattice sites allowing for double
occupation,

S̃+
α ≡ Sz

α + 1

2
S+

α (30)

and
|−1〉N ≡ ⊗N

α=1 |1,−1〉α . (31)

This state is translationally invariant with momentum p0 =
0, a spin singlet, real, and invariant under parity and time-
reversal symmetry. It may be viewed as the one-dimensional
analog of the non-Abelian chiral spin liquid [17,19].

Like the ground state of the Haldane-Shastry model, the
S = 1 state (27) describes a critical spin liquid in one di-
mension, with algebraically decaying correlations. It does
not, however, serve as a paradigm of the generic S = 1 spin
state, as the generic state possesses a Haldane gap [64–67] in
the spin excitation spectrum due to linearly confining forces
between the spinons [63,68–71].

The S = 1 Pfaffian state (29) with (27) is the exact ground
state of the Hamiltonian [25,36]

HS=1 =2π2

N2

[ N∑
α 	= β

SαSβ

|ηα − ηβ |2

− 1

20

N∑
α,β,γ

α 	=β,γ

(SαSβ )(SαSγ ) + (SαSγ )(SαSβ )

(η̄α − η̄β )(ηα − ηγ )

]
,

(32)

with energy eigenvalue

ES=1
0 = −2π2

15

(
N + 5

N

)
. (33)

This model was shortly afterward independently rediscovered
by Nielsen, Cirac, and Sierra [26]. The effective field theory of
the Hamiltonian (32) is given by the SU(2) level-k = 2 Wess-
Zumino-Witten model [29,30,42,43]. It was further shown
very recently by Michaud et al. [72] that one can construct
a critical spin model of the Wess-Zumino-Witten universality
class if one only keeps the leading two- and three-body spin
terms in (32), and adjusts the coefficients accordingly.

In analogy to the non-Abelian quasiparticles of the Pfaffian
state in the quantized Hall effect, the spinons of the model are
Ising anyons. The space of the (in the thermodynamic limit)
degenerate states associated with the non-Abelian statistics is
spanned by the Majorana fermion orbitals at the quasiparticle
or spinon excitations. The model hence provides us with a
framework to study Ising anyons in one dimension.

B. Generation of the ground state by
projection from Gutzwiller states

We will show now that the S = 1 ground state (27) can
alternatively be generated by considering two (identical)
Haldane-Shastry or Gutzwiller states (3) and projecting onto
the triplet or S = 1 configuration contained in

1
2 ⊗ 1

2 = 0 ⊕ 1 (34)

at each site [17,63].
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This projection can be accomplished very conveniently
using Schwinger bosons [73,74]. In terms of those, the SU(2)
spin operators are given by

S = 1

2
(a†, b†)σ

(
a
b

)
, (35)

where σ = (σx, σy, σz) is the vector consisting of the three
Pauli matrices, and a†, b† (a, b) are independent boson cre-
ation (annihilation) operators which obey

[a, a†] = [b, b†] = 1,

[a , b] = [a, b†] = [a†, b] = [a†, b†] = 0.
(36)

The spin quantum number S is given by half the number of
bosons,

2S = a†a + b†b, (37)

and the usual spin states (simultaneous eigenstates of S2 and
Sz) are given by

|S, m〉 = (a†)S+m

√
(S + m)!

(b†)S−m

√
(S − m)!

|0〉. (38)

In particular, the spin- 1
2 states are given by

|↑〉 = c†
↑|0〉 = a†|0〉, |↓〉 = c†

↓|0〉 = b†|0〉; (39)

i.e., a† and b† act just like the fermion creation operators c†
↑

and c†
↓ in this case. The difference between fermion creation

and Schwinger boson creation operators shows up only when
two (or more) creation operators act on the same site or
orbital. The fermion operators create an antisymmetric (or
singlet) configuration (in accordance with the Pauli principle),

|0, 0〉 = c†
↑c†

↓|0〉, (40)

while the Schwinger bosons create a totally symmetric
(triplet, or higher spin if we create more than two bosons)
configuration,

|1, 1〉 = 1√
2

(a†)2|0〉,

|1, 0〉 = a†b†|0〉, (41)

|1,−1〉 = 1√
2

(b†)2|0〉.

To generate the S = 1 ground state (27), we first rewrite (2) in
terms of Schwinger bosons,∣∣ψHS

0

〉 = ∑
{z1,...,zM }

ψHS
0 [z]S+

z1
· . . . · S+

zM
|↓↓ . . . ↓〉

=
∑

{z1,...,zM ;w1,...,wM }
ψHS

0 [z]a+
z1

. . . a†
zM

b+
w1

. . . b†
wM

|0〉

≡ �HS
0 [a†, b†]|0〉, (42)

where M = N
2 and the wk’s are those lattice sites which are

not occupied by any of the zi’s. Then the Pfaffian state (29)
with (27) is up to an overall normalization factor given by∣∣ψS=1

0

〉 = (�HS
0 [a†, b†]

)2|0〉. (43)

To verify (43), use the identity

S

⎧⎪⎪⎨
⎪⎪⎩

M∏
i, j=1
i< j

(zi − z j )
2

2M∏
i, j=M+1

i< j

(zi − z j )
2

⎫⎪⎪⎬
⎪⎪⎭

= Pf

(
1

zi − z j

) 2M∏
i< j

(zi − z j ), (44)

where S indicates symmetrization over all the variables in the
curly brackets, and

1√
2

(a†)n(b†)(2−n)|0〉 = (S̃+)n |1,−1〉 , (45)

which is readily verified with (35), (41), and the definition
(30). To prove (44), use the following identity due to Frobe-
nius [75],

det

(
1

zi − zM+ j

)

= (−1)
M(M+1)

2

∏M
i, j=1
i< j

(zi − z j )
∏2M

i, j=M+1
i< j

(zi − z j )

∏M
i=1

∏2M
j=M+1(zi − z j )

. (46)

The projective construction directly reveals that the state
(29) with (27) inherits several symmetries from the Gutzwiller
state [translational, SU(2) spin rotation, parity, and time
reversal].

C. Topological degeneracies and non-Abelian statistics

It is well established that 2n spatially well separated quasi-
particle excitations or vortices carrying half of a Dirac flux
quanta each in the non-Abelian quantized Hall state described
by the Pfaffian [3,4,6] will span an internal or topological
Hilbert space of dimensions 2n (2n−1 for either even or odd
fermion numbers) [76], in accordance with the existence of
one Majorana fermion state at each vortex core [8–10,37].
The Majorana fermion states can only be manipulated through
braiding of the vortices, with the interchanges being noncom-
mutative or non-Abelian [2,3,9].

The question we wish to address in this paper is whether
there is any manifestation of this topological space of di-
mension 2n, or the 2n Majorana fermion states, in the spinon
excitation Hilbert space suggested by the S = 1 ground state
(27). In Sec. II B, we have seen that the fractional statistics of
the spinons in the Haldane-Shastry model, and presumably in
any model supporting one-dimensional anyons, is encoded in
the momentum spacings of the excitations. This is not too sur-
prising, as there are no other suitable quantum numbers, like
the relative angular momentum for two-dimensional anyons,
available. We will propose now that the topological degenera-
cies, or the occupation numbers of the n fermions consisting
of the 2n Majorana fermions, are once again encoded in the
momentum spacings between single-spinon states.

In the Haldane-Shastry model, the spacings between neigh-
boring momenta were always half integer, in accordance with
half-Fermi statistics, as the difference between consecutive
spinon momentum numbers ai was always an odd integer,

ai+1 − ai = odd. (47)
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= 1 1
2 2

⊕ 1 1
2

2

⊕ 1 1 2 2

1 1 ⊗ 2 2 ⊗ 3 3 = 1 1
2 2

3 3

S = 1

⊕ 1 1
2

2
3 3

S = 0

⊕ 1 1
2

2
3

3

S = 1

⊕ 1 1
2

2 3 3

S = 2

⊕ 1 1 2
3

2
3

S = 1

⊕ 1 1 2 2
3

3

S = 2

⊕ 1 1 2 2 3 3

S = 3

FIG. 5. Total spin representations of three S = 1 spins in terms of extended Young tableaux.

This follows directly from the construction of the extended
Young tableaux illustrated in Fig. 4. When two spinons are in
neighboring columns, the difference of the ai is one and hence
an odd integer; when we insert complete columns without
spinons in between, the number of boxes we insert is always
even.

We will now show that for the S = 1 chain with the Hilbert
space parametrized by the ground state |ψS=1

0 〉 and all spinon
excitations above it, the corresponding rule is

ai+1 − ai = even or odd, for i odd,

ai+1 − ai = odd, for i even.
(48)

As i = 1, 2, . . . , 2n, we have a total of n spacings which can
be either even or odd, and another n spacings which are always
odd. With the single-spinon momenta given by

pi = π

N

(
ai − 1

2

)
, (49)

this yields momentum spacings which can be either an integer
or a half-integer times 2π

N for i odd. This is a topological
distinction—for Abelian anyons, one choice corresponds to
bosons or fermions (which, for most purposes, are equivalent
in one dimension), and the other choice to half-fermions.
For spinons which are well separated in momentum space,
the states spanning this in total 2n-dimensional topological
Hilbert space become degenerate as we approach the thermo-
dynamic limit.

To derive (48), we introduce a second formalism of ex-
tended Young tableaux, this time for spin S = 1. The general
rule we wish to propose for obtaining the tableaux is illus-
trated in Fig. 5 for three spins with S = 1. The construction
is as follows. For each of the N spins, put a row of two
adjacent boxes, which is equivalent to the Young tableau for
a single spin without any numbers in the boxes. Put these
N small tableaux on a line and number them consecutively
from left to right, with the same number in each pair of boxes
which represent a single spin. To obtain the product of some
extended Young tableau representing spin S0 on the left with a
spin-1 tableau (i.e., a row of two boxes with the same number
in it) on the right, we follow the rule

S0 ⊗ 1 =
{

1, for S0 = 0,

S0 −1 ⊕S0 ⊕ S0+1, for S0 = 1, 2, . . . ;
(50)

i.e., we obtain only one new tableau with both boxes from
the right added to the top row if the tableau on the left is a
singlet, and three new tableaux if it has spin one or higher.
These three tableaux are constructed by adding both boxes to
the bottom row (resulting in a representation S0−1), by adding
the first box to the bottom row and the second box to the top

row without stacking them on top of each other (resulting
in a representation S0), and by adding both boxes to the top
row (resulting in a representation S0+1). In each extended
tableau, the boxes must be arranged such that the numbers
are strictly increasing in each column from top to bottom,
and that they are not decreasing from left to right in that the
smallest number in each column cannot be smaller than the
largest number in the column to the left of it. In analogy to
the case of the Haldane-Shastry model, the empty spaces in
between the boxes are filled with dots representing spinons.
The spinon momentum number ai associated with each spinon
is given by the number in the box in the same column. A
complete table of all the extended Young tableaux for four
S = 1 spins is shown in Fig. 6. The assignment of physical
single-spinon momenta to the spinon momentum numbers
(49) is identical to this assignment for the Haldane-Shastry
model, as we can obtain the 3N states of the S = 1 Hilbert
space by Schwinger boson projection (i.e., by projecting on
spin S = 1 on each site) from states contained in the 2N × 2N -
dimensional Hilbert space of two S = 1

2 models, a projection
which commutes with the total momentum. The correctness
of this assignment has further been verified numerically up to
N = 16 sites [35].

With the tableau structure thus in place, all that is left
to show is that the allowed momentum spacings obey (48).
Looking at any of the tableaux in Fig. 6, we note that from left
to right, the spinons alternate between being assigned to the
first of the two boxes with a given number and being assigned
to the second of such two boxes. This follows simply form
the fact that the number of boxes in between the columns with
the two neighboring spinons must be even. The first spinon
momentum number a1 is always odd, but all the other ai’s can
be either even or odd. The rule is therefore that if i is odd,
the ith spinon is assigned to the first of the two boxes with
number ai, and the momentum spacing ai+1 − ai can be either
even or odd,

3 3

even

or 3 3
4

4

odd

or 3 3
4

4
5

5

even

or . . .

If i is even, however, the ith spinon is assigned to the second
of the two boxes with number ai, and the momentum spacing
ai+1 − ai has to be odd, as we can insert only an even number
of columns between the two spinons (recall that we cannot
stack two boxes with the same number in it on top of each
other):

3 4

odd

or 3 4
5

4
5

6

odd

or 3 4
5

4
5

6
7

6
7

8

odd

or . . .
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Stot a1, . . . , aL ptot Stot a1, . . . , aL ptot Stot a1, . . . , aL ptot

1
2

1
2

3
4

3
4 0 0 1 1

2
2
3 3

4 4 1
1 3 4

π
2

1 1
2

2 3 3
4

4 2
1 2 3 4

0

1 1
2

2
3

3
4 4 0

1 4
π 1 1 2

3
2
3 4

4 1
1 4

0 1 1 2 2
3

3
4

4 2
1 2 4

3π
2

1 1 2
3

2
3 4 4 0

1 4
0 1 1 2 2

3
3
4 4 1

1 2 4

3π
2

1 1 2 2 3
4

3
4 2

1 2
π

1
2

1
2

3 3
4

4 1
3 4

3π
2

1
2

1
2

3 3 4 4 2
3 4

π 1 1
2

2 3 3 4 4 3
1 2 3 4

3π
2

1 1
2

2
3

3
4

4 1
1 4

π 1 1
2

2
3

3 4 4 2
1 3 4

π
2

1 1 2 2
3

3 4 4 3
1 2 3 4

π

1 1
2

2 3
4

3
4 1

1 2 3 4

π
2

1 1 2
3

2
3

4 4 2
1 4

0 1 1 2 2 3 3
4

4 3
1 2 3 4

π
2

1 1 2 2 3 3 4 4 4
1 2 3 4

0

FIG. 6. Extended Young tableau decomposition for an S = 1 spin chain with N = 4 sites. The dots represent the spinons. The spinon
momentum numbers ai are given by the numbers in the boxes of the same column. Note that

∑
(2Stot + 1) = 3N .

The spacings between the single-spinon momenta are hence
as stated in (48).

IV. TOPOLOGICAL MOMENTUM SPACINGS FOR SU(2)
LEVEL-k ANYONS IN GENERAL

A. Generalization of the model to arbitrary spin S

The projective generation introduced in Sec. III B can be
generalized to arbitrary spin S = s:∣∣ψS

0

〉 = (�HS
0 [a†, b†]

)2s|0〉. (51)

In order to write this state in a form similar to (27)–(31),∣∣ψS
0

〉 =
∑

{z1,...,zsN }
ψS

0 (z1, . . . , zsN ) S̃+
z1

· . . . · S̃+
zsN

|−s〉N , (52)

where

|−s〉N ≡ ⊗N
α=1 |s,−s〉α (53)

is the “vacuum” state in which all the spins are maximally po-
larized in the negative ẑ direction, we introduce renormalized
spin flip operators S̃+ which satisfy

1√
(2s)!

(a†)n(b†)(2s−n)|0〉 = (S̃+)n |s,−s〉 . (54)

If we assume a basis in which Sz is diagonal, we may write

S̃+ ≡ 1

b†b + 1
a†b = 1

s − Sz + 1
S+. (55)

The wave function for the spin-S state (51) is then given by

ψS
0 (z1, . . . , zsN ) =

2s∏
m=1

⎛
⎜⎜⎝

mM∏
i, j=(m−1)M+1

i< j

(zi − z j )
2

⎞
⎟⎟⎠

sN∏
i=1

zi,

(56)

where M = N
2 . Note that these states are similar to the Read-

Rezayi states [13] in the quantized Hall effect.
As for the S = 1 state discussed in Sec. III B, the pro-

jective construction (51) directly implies several symmetries.
The state |ψS

0 〉 is translationally invariant with ground-state
momentum p0 = −πNS, a spin singlet, and real.

It was again shown by one of us [25] that (51) [or (52) with
(56)] is the exact ground state of the Hamiltonian

HS = 2π2

N2

[ ∑
α 	= β

SαSβ

|ηα − ηβ |2 − 1

2(s + 1)(2s + 3)

×
∑
α,β,γ

α 	=β,γ

(SαSβ )(SαSγ ) + (SαSγ )(SαSβ )

(η̄α − η̄β )(ηα − ηγ )

]
, (57)

with energy eigenvalue

ES
0 = −π2

6

s(s + 1)2

2s + 3

(
N + 5

N

)
. (58)

Note that the Haldane-Shastry Hamiltonian (1) and the S = 1
Hamiltonian (32) are just special cases of this general model.

B. Momentum spacings and topological degeneracies

In Sec. III C, we have shown that the non-Abelian statistics
of the Pfaffian state (27), and in particular the topological
degeneracies associated with the Majorana fermion states,
manifests itself in topological choices for the (kinematic)
momentum spacings of the spinon excitations above the S = 1
ground state (27). Specifically, we found that if we label the
single-spinon momenta in ascending order by pi < pi+1, the
spacings pi+1 − pi can be either even or odd multiples of π

N if
i is odd, while it has to be an odd multiple if i is even.

In this section, we formulate the corresponding restrictions
for the general spin-S chain with ground state (51). We will
first state the rules and then motivate them. Recall that spinons
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1 2bi =

ai+1 − ai odd

ai+1 − ai even

S = 1

(a)

1 2 3 2S−1 2Sbi =

ai+1 − ai odd

ai+1 − ai even

(b)

FIG. 7. Non-Abelian [SU(2) level k = 2S] statistics in one dimension: flow diagram for the (auxiliary) box numbers bi, which serve to
describe the restrictions for the spinon momentum number spacings ai+1 − ai for the critical models of spin chains introduced in Secs. III A
and IV A with (a) S = 1 and (b) general spin S. The unidirectional, horizontal arrows correspond to even-integer momentum number spacings
ai+1 − ai, while the bidirectional, semicircle arrows correspond to odd-integer spacings.

are represented by dots placed in the empty spaces of extended
Young tableaux, and that the momentum number ai of spinon
i is given by the number in the box it shares a column with.
For general spin S, the tableau describing the representation
on each site is given by

,

2S boxes

i.e., a horizontal array of 2S boxes indicating symmetrization,
which all contain the same number.

If this number is n, the spinons we assign to any of these
boxes will have momentum number ai = n. Let us denote the
number of the box a given spinon i with momentum number ai

is assigned to, by bi, such that box number bi = 1 corresponds
to the first and box number bi = 2S to the last box with
number n in it:

n n n n ,

bi = 1

n n n n , . . .

bi = 2

n n n n .

bi = 2S

We will see below that if a representation of a spin-S chain
with L spinons is written in terms of an extended Young
tableau, the first spinon with momentum number a1 will
always have box number b1 = 1, and the last spinon with
aL will have bL = 2S. The restrictions corresponding to the
non-Abelian [SU(2) level-k = 2S] statistics of the spinons are
described by the flow diagram of the numbers bi shown in
Fig. 7.

Let us elaborate this diagram first for the case S = 1, which
we have already studied in Sec. III C. In this case,

bi =
{

1, for i odd,

2, for i even.
(59)

For i odd, we may move from bi = 1 to bi+1 = 2 either via
the horizontal arrow or via the semicircle in Fig. 7(a), and
ai+1 − ai may hence be either even or odd, respectively. For i
even or bi = 2, however, the semicircle is the only available
continuation, which implies that the spacing ai+1 − ai must be
odd.

For general S, Fig. 7(b) implies that the spacings can be
even or odd until bi = 2S is reached, which is then followed
by an odd-integer spacing ai+1 − ai, as the semicircular arrow
is the only possible continuation at this point. Note that for

S � 1, the minimal number of spinons is two (these two
spinons then have an odd-integer spacing a2 − a1), and that
we cannot have more than 2S spinons with the same momen-
tum number ai = n, as ai+1 − ai = 0 is even.

We will now motivate this diagram. To begin with, we
generalize the formalism of extended Young tableaux to ar-
bitrary spin S. The construction is similar to the one for S = 1
outlined in Sec. III C. For each of the N spins, put a row of
2S adjacent boxes. Put these N tableaux on a line and number
them consecutively from left to right, with the same number in
each row of 2S boxes representing a single spin. To obtain the
product of some extended Young tableau representing spin S0

on the left with a spin-S tableau (i.e., a row of 2S boxes with
the same number in it) on the right, we first recall

S0 ⊗ S = |S0 −S | ⊕ |S0 −S | + 1 ⊕ . . . ⊕ S0 + S, (60)

which implies that we obtain either 2S0 + 1 or 2S + 1 new
tableaux, depending on which number is smaller. In terms of
extended Young tableaux, (60) translates into

S0

⊗ n n n

2S boxes

= n n n

for S0 ≥ S

⊕ n n
n

for S0 ≥ S − 1
2

⊕ n
n n

for S0 ≥ S − 1

⊕ . . .

⊕ n n
n

for S0 ≥ 1

⊕ n
n n

for S0 ≥ 1
2

⊕ n n n

always

(61)

The first tableau on the right-hand side of (61) exists only
for S0 � S, the second only for S0 � S − 1

2 , and so on.
Note that the shape of the right boundary of the extended
Young tableaux for S0 does not determine which tableaux are
contained in the expansion of S0 ⊗ S, as this depends only
on the number S0 − S. In the expansion (61), the 2S boxes
representing a single spin S always reside in adjacent columns.
In an extended tableau, the numbers in the boxes are equal or
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1 1 1 1

S = 2

⊗ 2 2 2 2

S = 2
= 1

2
1
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1
2

1
2

S = 0

⊕ 1 1
2

1
2

1
2

2

S = 1

⊕ 1 1 1
2

1
2

2 2

S = 2

⊕ 1 1 1 1
2

2 2 2

S = 3

⊕ 1 1 1 1 2 2 2 2

S = 4

1 1 1 1
2 2 2 2

S = 0

⊗ 3 3 3 3

S = 2
= 1

2
1
2

1
2

1
2

3 3 3 3

S = 2

1 1
2

1
2

1
2

2

S = 1

⊗ 3 3 3 3

S = 2
= 1 1

2
1
2

1
2

2

S = 1

3 3
3 3 ⊕ 1 1

2
1
2

1
2

2

S = 2

3
3 3 3 ⊕ 1 1

2
1
2

1
2

2

S = 3

3 3 3 3

1 1 1
2

1
2

2 2

S = 2

⊗ 3 3 3 3

S = 2
= 1 1 1

2
1
2

2 2

S = 0

3 3 3 3
⊕ 1 1 1

2
1
2

2 2

S = 1

3 3 3
3 ⊕ 1 1 1

2
1
2

2 2

S = 2

3 3
3 3 ⊕ 1 1 1

2
1
2

2 2

S = 3

3
3 3 3

⊕ 1 1 1
2

1
2

2 2

S = 4

3 3 3 3

FIG. 8. Examples of products of extended tableaux for an S = 2 spin chain.

increasing as we go from left to right, and strictly increasing
from top to bottom. The empty spaces we obtain as we build
up the tableaux via this method represent the spinons. Note
that we cannot take a given tableau and just add a pair of
spinons by inserting them somewhere, as the resulting tableau
would not occur in the expansion.

In Fig. 8, we illustrate the principle by writing out a few
terms in the expansion for an S = 2 chain. We now turn to the
question of what this construction implies for the momentum
spacings of the spinons. It is very easy to see from Fig. 8
that b1 = 1 and a1 is odd, and that bL = 2S and aL is even
(odd) for N even (odd). Let us assume we have a spinon i with
momentum number ai and box number bi. If we take S = 3,
ai = 3, and bi = 2, this spinon would be represented by a
dot which shares a column with the second box with number
3 in it,

3 3 3 3 3 3 .

bi = 2

For the box number bi+1 of the next spinon, there are only two
possibilities:

(i) bi+1 = bi + 1, which implies that ai+1 − ai is even. The
spinons either sit in neighboring columns with ai+1 = ai, or
contain an even number of spin-S representations (with 2S
boxes each) in between them. For our example, the corre-
sponding tableaux are

3 3

bi

3

bi+1

ai+1 = ai

3 3 3 and 3 3

bi

3 3 3 3
4 4 4 4

4 4
5 5

5

bi+1

ai+1 = ai + 2

5 5 5 and . . .

This possibility produces the unidirectional, horizontal arrows
in Fig. 7. If bi = 2S, this possibility does not exist, and there
are either no further spinons or ai+1 − ai has to be odd.

(ii) bi+1 = 2S − bi + 1, which implies that ai+1 − ai is
odd. For our example, the tableaux are

3 3

bi

3 3 3 3
4 4 4 4

4

bi+1

ai+1 = ai + 1

4 and 3 3

bi

3 3 3 3
4 4 4 4

4 4
5 5

5 5 5 5
6 6 6 6

6

bi+1

ai+1 = ai + 3

6 . . .

This possibility produces the bidirectional, semicircle arrows
in Fig. 7.

This concludes the motivation of the flow diagram in
Fig. 7(b). As in Secs. II C and III C, the single-spinon mo-
menta are given by\vskip-2pt

pi = π

N

(
ai − 1

2

)
. (62)

This yields momentum spacings pi+1 − pi which can be either
an integer or a half integer times 2π

N .

V. CORRESPONDENCE WITH SU(2)
LEVEL-k FUSION RULES

In this section, we establish a one-to-one correspondence
between the topological choices for the momentum spac-
ings and the fusion rules of spin- 1

2 spinons in the SU(2)
level-k Wess-Zumino-Witten model [29,30]. The results we
present are completely consistent with, and in many ways
complementary to, those obtained by Bouwknegt, Ludwig,
and Schoutens [38–41] based on the Yangian symmetry of the
conformal field theory.

The “deformed” Lie algebra SU(2) level k is in essence an
SU(2) spin algebra with the maximal spin restricted to k

2 ,

j = 0,
1

2
, 1,

3

2
, . . . ,

k

2
. (63)

The fusion rules, and also the only possible rules consistent
with associativity, are given by

j1 ⊗ j2 = | j1 − j2| ⊕ | j1 − j2|
+ 1 ⊕ . . . ⊕ min{ j1 + j2, k − j1 − j2}. (64)

We will now investigate what these fusion rules imply for the
spinons of the models studied in the previous sections.
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(a) 1
2

1
2

1
2

1
2

1
2

j = 0
1
2 0

1
2 0

1
2

or 0 0 or 1
2

(b) 1
2

1
2

1
2

1
2

1
2

j = 0
1
2 0 or 1

1
2 0 or 1

1
2 0 or 1

j = 0

1
2

1

N even

N odd

b1 =
1

b2 =
2

b2
=

2

b3
=

1

b3 =
1

2

2 2

2

(c) 1
2

1
2

1
2

1
2

1
2

j = 0
1
2 0 or 1

1
2 or 3

2 0,1, or 2 0 or 2S

j = 0

1
2

1

3
2

S

N even

N odd

b1 =
1

2

3

4

2S

2S
− 1

1

2S
− 2

2

2S

1

2S −
1

2S
− 1

1

2S

2S

FIG. 9. Fusion trees and Bratteli diagrams for SU(2) level k = 2S spinons: (a) In the Haldane-Shastry model (k = 1), there is only one
possible fusion trajectory for spinons with ji = 1

2 , with j on the links alternating between 0 and 1
2 . The momentum spacings ai+1 − ai are

always odd. (b) For the critical S = 1 model studied in Sec. III, the fusion rules (64) for Ising anyons (k = 2) allow for a choice whenever
we reach j = 1

2 , which is the case after every other spinon. The momentum spacings ai+1 − ai are odd when we do not have a choice, and
either even or odd when we have a choice. (c) In the general k = 2S model studied in Sec. IV, there are many possible fusion trajectories,
as illustrated by the dotted lines in the lower diagram. We have a choice between two possibilities at all points where j reaches neither 0 nor
S. Continuation in the same direction, as illustrated for the first four spinons with a solid line, corresponds to following the unidirectional,
horizontal arrows in Fig. 7(b), which implies that bi+1 = bi + 1 and that ai+1 − ai is even. Changing direction via a kink, on the other hand,
corresponds to following one of the bidirectional, semicircle arrows in Fig. 7(b), and implies that bi+1 = 2S + 1 − bi and that ai+1 − ai is odd.

We begin with the Haldane-Shastry chain, which is a
microscopic lattice realization of the SU(2) level-k = 1 Wess-
Zumino-Witten model. For k = 1, the relevant fusion rules
(64) are

0 ⊗ 1
2 = 1

2 ,

1
2 ⊗ 1

2 = 0; (65)

i.e., the fusion of two representations always yields a unique
representation. The fusion diagram we obtain as we combine,
starting from j = 0, spinons with j = 1

2 is likewise unique,
as illustrated in Fig. 9(a). In the case of the Haldane-Shastry
model, the momentum spacings ai+1 − ai of the spinons are
always odd, in accordance with Abelian half-Fermi statistics,
a result we ultimately wish to relate to the fusion diagram.
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We now turn to the S = 1 model discussed in Sec. III. The
relevant fusion rules for k = 2 are

0 ⊗ 1
2 = 1

2 ,

1
2 ⊗ 1

2 = 0 ⊕ 1,

1 ⊗ 1
2 = 1

2 ; (66)

i.e., whenever we reach a representation j = 1
2 on a horizontal

link in the fusion diagram, we have a choice between obtain-
ing j = 0 or j = 1 when fusing it with the next spinon on the
right, as illustrated in Fig. 9(b). Since we reach j = 1

2 after
every second spinon, the number of choices we obtain is com-
pletely equivalent to the number we obtained via the extended
Young tableau formalism in Sec. III C [see also Fig. 7(b)].
With this formalism, we further established that the momen-
tum spacing ai+1 − ai is odd whenever fusing the previous
spinon does not allow for a choice, and may be either even or
odd whenever the previous fusion provided us with a choice.

We may hence tentatively assume that whenever the direc-
tion of the declining or ascending lines in the lower diagram
in Fig. 9(b) changes, the spacing ai+1 − ai between the two
spinons on both sides is odd (as for Abelian half-Fermi
statistics), and that whenever the direction of the line does not
change, the spacing ai+1 − ai is even (as for Abelian Bose or
Fermi statistics).

We will now confirm this assumption by elaborating the
case of the general spin-S model discussed in Sec. IV. The
spinons of this model obey non-Abelian SU(2) level-k = 2S
statistics. The relevant fusion rules are

0 ⊗ 1
2 = 1

2 ,

j ⊗ 1
2 = j − 1

2 ⊕ j + 1
2 , for 0 < j < S,

S ⊗ 1
2 = S − 1

2 ; (67)

i.e., unless j = 0 or j = S on a horizontal link in the fusion
diagram, we have a choice of two possible representations
when we fuse j with the next spinon, as illustrated in Fig. 9(c).
Each line in the lower diagram of this figure represents a
spinon, and each dot on its left represents the fusion of this
spinon with the representation j from all the previous spinons.
The numbers on the declining or ascending lines denote the
box numbers bi of the spinons, which are assigned according
to the assumption we wish to confirm. As assigned, they are
uniquely determined by the vertical position and directions of
the lines in the diagram. Drawn with solid lines on the left of
the diagram is the simple sequence b1 = 1, b2 = 2, b3 = 3,
b4 = 4, which corresponds to following the horizontal arrows
in the flow diagram shown in Fig. 7(b). This implies that the
momentum spacings a4 − a3, a3 − a2, and a2 − a1 are even
for this sequence. The dotted lines represent the alternatives.
Each time we change the direction of the lines, say from
declining to ascending as we add the second spinon, the dot
at the kink corresponds to one of the bidirectional, semicircle
arrows in Fig. 7(b). The kinks hence represent even spacings
ai+1 − ai, as assumed above.

The diagram in Fig. 9(c) shows that there is a very large
number of possible trajectories. Unless we have reached j = 0

or j = S, both of which correspond to the last box bi =
2S in Fig. 7(b), we have the choice between continuing in
the direction of the line representing the previous spinon i
(which implies ai+1 − ai even, as for Abelian Bose or Fermi
statistics), or changing the direction (which implies ai+1 − ai

odd, as for Abelian half-Fermi statistics).
With the last spinon, we must always reach bi = 2S. If the

number of sites N of the chain with PBCs is even, we must
conclude with j = 0. It is not difficult to see from Fig. 9(c)
that the number of spinons must be even in this case. If N is
odd, however, we must conclude with j = S. The number of
spinons is given by 2S plus a non-negative, even integer. These
restrictions are completely consistent with what we would
expect from the projective construction of the wave functions
we discussed in Sec. IV B. If N is odd, we need at least one
spinon in each of the 2S Haldane-Shastry chains we project
together. Further spinons can only be created in pairs.

It is not really surprising that there is a one-to-one cor-
respondence between the fusion rules of SU(2) level-k = 2S
spinons with j = 1

2 and the rules for constructing the internal
Hilbert space for the SU(2) level-k = 2S anyons we have
derived in the previous sections. It is instructive, however, as
this correspondence provides us with the physical momentum
spacings we obtain as we fuse the j = 1

2 representations of
the individual spinons according to the fusion diagram in
Fig. 9(c).

Since the notation of the momentum numbers ai is tied
to the Young tableau formalism introduced in Ref. [34] and
generalized to higher-spin models in the previous sections, it
is appropriate to state the rules for the momentum spacings
in a generally more familiar language. If we fuse two SU(2)
spinons in an SU(2) level-k = 2S model (either one of the
microscopic models introduced by one of us [25,26] or the
conformal field theory of Wess, Zumino, and Witten [29,30],
with the spinon bases studied by Bouwknegt, Ludwig, and
Schoutens [38–41]) with j = 1

2 each, and neighboring single-
spinon momenta pi and pi+1, the spacing between these two
momenta pi+1 − pi is quantized according to Abelian half-
Fermi statistics, if and only if there is a kink between the
spinons in the Bratteli diagram,

j − 1
2

j

j + 1
2

i i + 1 or
i i + 1

:

pi+1 − pi =
2π

L

1
2

+ integer ,

(68)

where L is the length of the chain with PBCs. (“Neighboring”
here means that there are no other spinons with momenta be-
tween pi and pi+1.) If, on the other hand, the two spinons form
a straight line in the Bratteli diagram, the spacing between the
neighboring single-spinon momenta pi and pi+1 is quantized
according to Bose or Fermi statistics (which are equivalent for
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our purposes here),

j − 1
2

j

j + 1
2

i

i + 1
or

i

i + 1

:

pi+1 − pi =
2π

L
· integer.

(69)

These shifts are topological quantum numbers. The spinon
states with different shifts become degenerate in the thermo-
dynamic limit, but since the states are topologically different,
it is not possible to connect them with local perturbation. The
situation here is analogous to the Majorana fermion states
in the vortex cores of the quasiparticles of the Moore-Read
state.

VI. DOMAIN WALLS IN VALENCE BOND PHASES

One way to understand the SU(2) level-k Wess-Zumino-
Witten model for a spin chain with spin S = k

2 is as a de-
scription of the multicritical point between the k + 1 different
“dimerization” or valance bond solid (VBS) phases the spin
chain can assume in the ground state. Three of the possible
VBS configurations for a chain with spin S � 1 are shown
in Fig. 10. Here, the spin S at each site is understood to
be formed through the completely symmetric projection of
k = 2S spin 1

2 ’s onto one spin S. Before projection, the
constituent spin 1

2 ’s are arranged into dimers, indicated by
the solid, horizontal lines, which are just singlets formed
by two spins at neighboring sites on the same constituent
chain.

In this framework, single-spinon excitations are minimal
domain walls between the dimerized phases. The structure of
the patterns we elaborate below is intimately related to those
of Read-Rezayi quantized Hall states in the limit of the thin
torus [77–79], where different domain wall patterns likewise
correspond to the nontrivial degeneracies associated with the
non-Abelian statistics [80,81].

In Fig. 11, we illustrate the correspondence between the
spinons, the labels j from Fig. 9, and the Bratteli diagrams
with a few examples. Let us first look at Fig. 11(a). The
first spinons shifts the dimer configurations from the initial
one, to which we assign label j = 0, by one lattice spacing.
Following the terminology introduced in Sec. V, we assign
the label j = 1

2 to the chain where one constituent chain (and
in this first example we have only one constituent chain) has
shifted by one lattice spacing. If the number of sites on the
chain is even, we need an even number of domain walls, and
hence an even number of spinons in each constituent chain to
close the boundary. This is in correspondence with the Bratteli
diagram shown to the right of the chain in Fig. 11(a). Three
of the many possible spinon configurations for a spin S = 1
chain, and the corresponding Bratteli diagrams, are shown in
Figs. 11(b), 11(c), and 11(d). In these pictures, the distance
between spinons on the same constituent chain in units of
lattice spacings is an odd number, and an even number for

(a) one site

projection
onto spin S

2S chains

spin 1
2 singlet

(b)

(c)

FIG. 10. (a)–(c) Illustration of three of the 2S + 1 possible dimer
configurations for a spin-S chain. The spin S at each site of the
chain is obtained by symmetric projection of the k = 2S constituent
spin 1

2 ’s. The different dimerization patterns are obtained from
the reference pattern ( j = 0) shown in (a) by shifting 2 j, j =
0, 1

2 , 1, 3
2 , . . . , S of the 2S dimerized constituent chains by one lattice

spacing. The critical SU(2) level-k spin chain can be thought of as the
multicritical point between all the possible dimer phases.

neighboring spinons on different constituent chains. Making
the connection with the results of Secs. IV B and V, we see
that the momentum spacing between neighboring spinons is
according to (68) for spinons on the same constituent chain,
and according to (69) for spinons on different constituent
chains. Periodic chains with an odd number of sites require
an odd number of domain walls, and hence an odd number of
spinons, on each constituent chain. The minimal number of
spinons in this case is 2S, as illustrated for an S = 1 chain in
Fig. 11(c). In Fig. 11(d), we give an example indicating how
the application of these rules proceeds to chains with general
spin S.

Viewing spinons, which are by definition excitations with
spin 1

2 and no charge (as compared to electrons, which have
spin 1

2 and charge −1, or spin flips, which carry spin 1 and
no charge), as domain walls in dimerized chains is intuitively
rewarding. It correctly captures many subtle technical issues
like the state counting, and hence to a limited extent also the
statistics, even though no information regarding the physical
manifestation of the fractional statistics, the fractional shifts
in the momentum spacings, can be extracted. That a direct
correspondence between the dimer phases and the Bratteli
diagrams can be established, however, is remarkable since
the chains we describe are critical and do not display any
dimerization patterns. The reason is that we can view the
critical, and for S > 1

2 multicritical, phases of the spin chains
as the critical points between all the possible dimer phases.
At criticality, quantum fluctuations will have destroyed any
possible dimerization in the chains, but—and this is the cru-
cial point—will not have altered the topological properties
of the spinon excitations we can visualize as domain walls
in dimerized chains. The quantum statistics of the spinons
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(a)
j = 0 j = 1

2
j = 0

S = 1
2
, N even

(b)

j = 0 j = 1
2

j = 0

S = 1, N even

(c)

j = 0 j = 1
2

j = 1
S = 1, N odd

(d)

j = 0 j = 1
2

j = 1 j = 1
2

j = 0 S ≥ 1, N even

FIG. 11. Examples of dimer configurations with two or four spinon excitations (domain walls) in (a) a spin- 1
2 chain, (b) and (c) a spin-1

chain, and (d) a spin chain with spin S � 1. The chains are assumed to have PBCs and even or odd number of sites N , as indicated. Note
that each domain wall shifts one constituent chain by one lattice spacing, and hence changes the configuration label j by ± 1

2 . It is hence
trivial to read of the corresponding Bratteli diagrams, which are depicted to the right of each of the dimerized chains. Note that even though
no dimerization occurs in the multicritical SU(2) level-k spin chain we discuss in Secs. IV B and V, the Bratteli diagrams, and hence the
topological properties (i.e., momentum spacings), of the spinons are nonetheless identical to those of the spinons or domain walls in the
dimerized chains.

is among these topological properties. Of course, the spinon
excitations in the critical chains are not localized in real space,
and do not provide a context to consider neighboring spinons
in real space. As we have argued in Sec. IV B, the good
and robust quantum numbers in the critical chains are the
topological shifts in the relative spacings between neighboring
spinons in momentum space, not in real space.

VII. CONCLUSION

In this article, we have argued that in one dimension,
non-Abelian and, in particular, SU(2) level-k statistics man-
ifests itself in fractional, topological shifts in the spacings
of neighboring quasiparticle momenta pi+1 − pi, and derived
the general rules which patterns for the shifts are allowed
for each k. For k = 2, the case of Ising anyons, we found
that the state counting of the internal Hilbert space associ-
ated with the non-Abelian statistics is equivalent to that of
Majorana fermion states attached to the spinons. This led us
to refer to the shifts as Majorana spacings. For this case,
the braiding of the vortices carrying Majorana fermions in
the two dimensional analog, the Pfaffian quantum Hall state,
is also well understood [9]. We consider it likely that we
can learn something about the open problem of the braiding
properties of SU(2) level-k > 2 vortices in Read-Rezayi states
by exploring the analogy to the one-dimensional models we
studied here.

The most important aspect of the emerging picture is the
general validity, which needs some clarification. We have
derived the formalism for non-Abelian SU(2) level-k statistics
using spin chains with spin S � 1

2 tuned to the multicritical
point. We found that the quantum statistics of the spinons in
these systems is encoded in the topological shifts in momen-

tum spacings between spinons with neighboring momenta,
as detailed in Sec. IV B. The only case where the individual
spinon momenta are known to be perfectly good quantum
numbers, however, is the Haldane-Shastry model for spin 1

2 . A
natural question to ask, therefore, is what happens in a general,
critical or multicritical spin chain, when the spinon momenta
are not good quantum numbers. Are our results, or is our for-
malism, still applicable to the general case? Fortunately, the
answer is yes. The spacings between the adjacent momenta
of the particles carrying the Abelian or non-Abelian fractional
statistics are given by the sum of the topological shifts derived
above, and integer spacings which we have not specified. In
(68) and (69), the topological shifts are 1

2 and 0, respectively.
The key point is that while there is no reason to assume

that the integers in (68) and (69) are good quantum numbers
in a general system, the topological shifts are always good
quantum numbers.

The situation is comparable to fermions, bosons, and
anyons in two space dimensions. There, the relative angular
momentum between two identical particles is an odd integer
times h̄ for fermions, an even integer times h̄ for bosons, and
an even integer plus the statistical parameter θ times h̄/π

for anyons. In a many-particle state in two dimensions, like
an electron liquid forming a quantized Hall state or a liquid
of quasiparticles with fractional statistics forming a daughter
fluid, the relative momentum between two fermions or two
anyons is never a good quantum number. The topological
shift, that is, the integer being odd or even for fermions or
bosons, respectively, and shifted by θ/π away from bosons for
Abelian anyons, however, is always a good quantum number.
This shift specifies the (fractional) statistics. Similarly, the
momenta of the Abelian and non-Abelian anyons in one space
dimension do not have to be good quantum numbers, while
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the topological shifts to the otherwise integer momentum
spacings we derived above will always be good quantum
numbers. These spacings specify the Abelian or non-Abelian
statistics and are topological properties of the SU(2) level-k
Wess-Zumino-Witten model.

An important, but by contrast unresolved, question is
whether the non-Abelian statistics of the one-dimensional
models, if realized in a multicritical spin chain in the lab-
oratory, could be used in quantum computation or quantum
cryptography. Unfortunately, we have no definite answers to
report at the present time.
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