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Anyons and fractional statistics are by now well established in two-dimensional systems. In one dimension,
fractional statistics has been established so far only through Haldane’s fractional exclusion principle, but not
via a fractional phase the wave function acquires as particles are interchanged. At first sight, the topology of the
configuration space appears to preclude such phases in one dimension. Here we argue that the crossings of
one-dimensional anyons are always unidirectional, which makes it possible to assign phases consistently and
hence to introduce a statistical angle �. The fractional statistics then manifests itself in fractional spacings of
the single-particle momenta of the anyons when periodic boundary conditions are imposed. These spacings are
given by �p=2�� /L���� /�+non-negative integer� for a system of length L. This condition is the analog of the
quantization of relative angular momenta according to lz=��−� /�+2� integer� for two-dimensional anyons.
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I. INTRODUCTION

The concept of fractional statistics,1,2 as introduced by
Leinaas and Myrheim3 �see also Goldin et al.4� and Wilczek5

has generically been associated with identical particles in
two space dimensions. It is intimately related to the topology
of the configuration space or the existence of fractional rela-
tive angular momentum. Angular momentum does not exist
in one dimension and is quantized in units of � /2 in three
dimensions due to the commutation relations of the three
generators of rotations. In two dimensions, however, there is
only one generator, Lz, which may have arbitrary eigenvalues
lz. Wilczek5 proposed that two-dimensional �2D� anyons
with statistical parameter � and relative angular momenta
lz=��−� /�+2� integer� may be realized by particle flux-
tube composites, attaching magnetic flux �=2��c /e
=� /��0 to bosons of charge e. The choices �=0 and �=�
correspond to bosons and fermions, respectively.

More fundamentally, the possibility of fractional statistics
arises in 2D because one can associate a winding number
with paths interchanging particles. The sum over paths in the
many-particle path integral consists of infinitely many topo-
logically distinct sectors, which correspond to the different
winding configurations of the particles around each other. By
the rules of quantum mechanics, one is allowed to assign
different weights to distinct sectors, provided these weights
satisfy the composition principle. In particular, one may as-
sign a phase factor e�i� for each �counter�clockwise inter-
change of two particles. This choice corresponds to Abelian
anyons with statistical parameter � if the bare particles are
bosons. The implicit assumption that the world lines never
cross holds automatically for all values ��0 mod 2� due to
the nonvanishing relative angular momentum alluded to
above. In three or higher dimensions, the only topologically
inequivalent sectors correspond to interchanges of particles,
and the only consistent choices for the statistics are bosons
and fermions. In one-dimensional �1D�, the situation is alike
if particles are allowed to pass through each other and trivial
if they are not. In either case, the topology appears to pre-
clude the possibility of one-dimensional anyons.

The association of anyons with 2D, however, was chal-
lenged in 1991 by Haldane,6 who generalized the notion of

fractional statistics to arbitrary dimensions by defining statis-
tics through a fractional and hence generalized Pauli exclu-
sion principle. According to his definition, the statistics of
anyons is given by a rational “exclusion” parameter g= p /q
�with p and q integers� which states that the creation of q
anyons reduces the number of single-particle states addi-
tional anyons could be placed in by p. In particular, Haldane
et al.7–10 showed that the spinons in the Haldane-Shastry
model �HSM�, a spin-1/2 chain with Heisenberg interactions
which fall off as 1 /r2 with the distance, obey the half-Fermi
exclusion statistics. Haldane observed that for a chain with N
sites, the number of single-particle states available to addi-
tional spinons is given by M +1, where M is the number of
up or down spins in the uniform singlet liquid, which in the
presence of Nsp spinons is given by M = �N−Nsp� /2. The cre-
ation of two spinons hence reduces the number of available
states by 1, which implies g=1 /2. �Note that since there are
always fewer single-spinon states as there are sites, localized
spinon states cannot be orthogonal.� Haldane7 further dem-
onstrated that the dimension of the Hilbert space spanned by
the ground state and all possible many-spinon eigenstates of
the model is 2N, as required for a spin-1/2 system with N
sites. The concept of fractional statistics hence was estab-
lished in a one-dimensional system, but it appeared that it
could only be defined through an exclusion principle. More-
over, Haldane6 observed that the two definitions of statistics
do not always match, as hard-core bosons in 2D with mag-
netic flux tubes attached would be classified as anyons ac-
cording to winding phases but as fermions according to his
exclusion principle.

In this paper, we resolve the apparent conflict between
these two definitions of fractional statistics �see Fig. 1�. The
argument consists of several parts. First, we show that in the
one-dimensional system obeying a fractional exclusion prin-
ciple, the HSM, an analog of a winding phase, i.e., a statis-
tical phase acquired by the wave function as the anyons go
through each other, exists. The conflict with the topological
considerations explained above is circumvented in that the
crossing of the spinons occurs in one direction only. The
statistical phase of � /2 acquired by the wave function as the
spinons cross manifests itself in a fractional shift for the
spacings of the single-spinon momenta.
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Second, we show that a fractional shift for the momentum
spacings, and hence a statistical phase of � /2 acquired by
the wave function, also exists for the holons in the
Kuramoto-Yokoyama model �KYM�,11 the supersymmetri-
cally extended HSM allowing for itinerant holes. The holons
are hence half fermions, a conclusion reached previously by
Ha and Haldane12 using the asymptotic Bethe ansatz �ABA�,
by Kuramoto and Kato13 from thermodynamics, and by
Arikawa et al.14 from the electron addition spectral function
of the model. Since the N localized single-holon states of the
KYM are orthogonal, however, they appear to be fermions
according to Haldane’s exclusion statistics. As a resolution of
the conflict, we propose that the exclusion principle yields
the correct statistics only when applied to energy eigenstates
of a given model. The statistics obtained via the exclusion
principle is then always consistent with the statistics mani-
fest in physical quantities, i.e., the momentum spacings in
1D or the quantization of the relative angular momenta in
2D.

Finally, we argue that the picture we propose—crossings
in only one direction, statistical phases acquired by the wave
function as anyons go through each, fractionally spaced
single anyon momenta—holds for one-dimensional anyons
in general.

II. FIRST EXAMPLE OF IDEAL ANYONS: TWO SPINONS
IN THE HALDANE-SHASTRY MODEL

The subtleties involved are best explained by looking
closely at two-spinon and two-holon eigenstates of the
KYM. The model is conveniently formulated by embedding
the one-dimensional chain with periodic boundary conditions
�PBCs� into the complex plane by mapping it onto the unit
circle with the sites located at complex positions �	

=exp�i 2�
N 	�, where N is the number of sites and 	

=1, . . . ,N. Each site can be occupied either by an up-spin or
down-spin electron or a hole �i.e., the site is empty�. The
Hamiltonian is given by

HKY = −
2�2

N2 �
	�


N
P	


��	 − �
�2
, �1�

where the graded permutation operator P	
 exchanges par-
ticles on sites �	 and �
, multiplied by a minus sign if both
particles are fermions �i.e., neither of them a hole�. In the
absence of holes, Eq. �1� reduces to the HSM, which pos-
sesses the exact ground state,

�0�zi� = �
i�j

M

�zi − zj�2�
i=1

M

zi, �2�

for N even, M =N /2, and �zi���z1 , . . . ,zM�. The zi’s denote
the positions of the up spins. The corresponding state vector
is given by

��0	 = �

z1,. . .,zM�

�0�z1, . . . ,zM�Sz1

+ . . . SzM

+ �0↓	 , �3�

where the sum extends over all possible ways to distribute
the positions zi of the up spins over the N sites. �0↓	
=�	c	↓

† �0	 denotes the fully spin-polarized reference state.
The greatly simplifying feature of the HSM �and the

KYM� is that the spinons �and the holons� are free in the
sense that they only “interact” through their half-Fermi
statistics.15–17 This renders these models particularly suited
for our studies.

Let us now turn to the two-spinon eigenstates. A momen-
tum basis for spin-polarized two-spinon states is given by

�mn�zi� = �
	,


N

��̄	�m��̄
�n�
i=1

M

��	 − zi���
 − zi��0�zi� , �4�

where M = �N−2� /2 and M mn0. For m or n outside
this range, �mn vanishes identically, reflecting the overcom-
pleteness of the position space basis. Acting with Eq. �1� on
Eq. �4� yields18

HKY��mn	 = Emn��mn	 + �
l=1

lmax

Vl
mn��m+l,n−l	 , �5�

with lmax=min�M −m ,n�, Vl
mn=− 2�2

N2 �m−n+2l�, and

Emn = E0 + ��qm� + ��qn� . �6�

Here, E0=− �2

4N is the ground-state energy,

��q� =
1

2
q�� − q� +

�2

8N2 , �7�

and we have identified the single-spinon momenta for m
n according to

qm = � −
2�

N
�m +

1

2
+ s, qn = � −

2�

N
�n +

1

2
− s ,

�8�

with a statistical shift s=1 /4. Since the “scattering” of the
nonorthogonal basis states ��mn	 in Eq. �5� only occurs in
one direction, increasing m−n while keeping m+n fixed, the
eigenstates of HKY have energy eigenvalues Emn and are of
the form

Fractional statistics in 2D:

interchange through counterclockwise winding

|ψ>→ eiθ|ψ>

relative angular momentum lz → lz − �

π
θ

Fractional statistics in 1D:

vg vg2 1 relative motion of anyons is unidirectional
(e.g. 2 moves clockwise relative to 1)

when anyons cross:

|ψ>→ e
iθ|ψ>

momentum spacing p1−p2 = ∆p → ∆p − 2π�

L
θ

FIG. 1. �Color online� Fractional statistics in 2D and in 1D.
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��mn	 = �
l=0

lM

al
mn��m+l,n−l	 . �9�

A recursion relation for the coefficients al
mn is readily ob-

tained from Eq. �5�.
The relevant feature for our present purposes is the shift s

in the single-spinon momenta �8�, which we will elaborate
on now. The state �Eq. �4�� tells us unambiguously that the
sum of both spinon momenta is given by

ei�qm+qn� =
�mn��1zi�
�mn�zi�

�0�zi�
�0��1zi�

, �10�

with ��1z����1z1 , . . . ,�1zM�, which implies qm+qn=2�
− 2�

N �m+n+1�, and hence Eq. �8�. The shift s is determined
by demanding that the excitation energy �Eq. �6�� of the two-
spinon state is a sum of single-spinon energies, which in turn
is required for the explicit solution here to be consistent with
the ABA results.15–17

The appearance of this shift, which decreases the momen-
tum qm of spinon 1 and increases momentum qn of spinon 2,
is somewhat surprising given that the basis states �4� are
constructed symmetrically with regard to interchanges of m
and n. To understand this asymmetry, note that M mn
0 implies 0�qm�qn��. Dispersion �7� implies that the
group velocity of the spinons is given by

vg�q� = �q��q� =
�

2
− q , �11�

which in turn implies that vg�qm��vg�qn�. The physical sig-
nificance of this result can hardly be overstated. It means that
the relative motion of spinon 1 �with qm� with respect to
spinon 2 �with qn� is always counterclockwise on the unit
circle. Then, however, the shifts in the individual spinon mo-
menta can be explained by simply assuming that the two-
spinon state acquires a statistical phase �=2�s whenever the
spinons pass through each other. This phase implies that qm

is shifted by − 2�
N s since we have to translate spinon 1 coun-

terclockwise through spinon 2 and hence counterclockwise
around the unit circle when obtaining the allowed values for
qm from the PBCs. Similarly, qn is shifted by + 2�

N s since we
have to translate spinon 2 clockwise through spinon 1 and
hence clockwise around the unit circle when obtaining the
quantization of qn. �The fact that the “bare” �s=0� values for
qm and qn are quantized as 2�

N � 1
2 +integer� is related to the

bosonic representation of the bare spinons. If we had chosen
a fermionic representation, they would be quantized as 2�

N
� integer.�

That the crossing of the spinons occurs only in one direc-
tion is not just a peculiarity but a necessary requirement for
fractional statistics to exist in 1D at all. If the spinons could
cross in both directions, the fact that paths interchanging
them twice �i.e., once in each direction� are topologically
equivalent to paths not interchanging them at all would im-
ply 2�=0 mod 2� for the statistical phase, i.e., only allow
for the familiar choices of bosons or fermions. With the scat-

tering occurring in only one direction, arbitrary values for �
are possible. The one-dimensional anyons neither break the
time-reversal �T� symmetry nor parity �P�.

III. SECOND EXAMPLE OF IDEAL ANYONS: TWO
HOLONS IN THE KURAMOTO-YOKOYAMA MODEL

We now turn to the two-holon eigenstates of the KYM,19

which are highly instructive with regard to Haldane’s exclu-
sion principle as a definition of fractional statistics. A mo-
mentum basis for two-holon states is given by

�mn
ho �zi,hj� = �mn�h1,h2��

i=1

M

�h1 − zi��h2 − zi��0�zi� ,

�12�

where M = �N−2� /2 and �zi ,hj���z1 , . . . ,zM ;h1 ,h2�. The zi’s
denote the positions of the up spins again and h1 and h2 the
positions of the holes. �mn�h1 ,h2� is an internal holon-holon
wave function, which has to be homogeneous and antisym-
metric under interchange of h1 and h2. Using an educated
guess,

�mn�h1,h2� = �h1 − h2��h1
mh2

n + h1
nh2

m� , �13�

we obtain

HKY
ho ��mn

ho 	 = Emn
ho ��mn

ho 	 + �
l=1

lmax

Vl
mn��m−l,n+l

ho 	 �14�

for 0�n�m�M +1. If this condition is violated, the basis
states ��mn

ho 	 do not vanish identically, but it is not possible to
construct eigenstates from them. In Eq. �14�, lmax is the larg-
est integer l�

m−n
2 , Vl

mn= 2�2

N2 �m−n�, and

Emn
ho = E0 + �ho�pm� + �ho�pn� . �15�

The single-holon energies are given by

�ho�p� =
1

2
p�� + p� −

�2

8N2 , �16�

and we have identified the single-holon momenta for mn
according to

pm = − � +
2�

N
�m + s�, pn = − � +

2�

N
�n − s� , �17�

with s=1 /4. The scattering occurs again only in one direc-
tion, this time decreasing m−n while keeping m+n fixed,
which implies both that the basis states ��mn

ho 	 are not or-
thogonal and that the two-holon eigenstates of HKY have
energy eigenvalues Emn

ho . The statistical shift s is once again
determined by demanding that the holons are free, which in
turn is required by consistency with the ABA solutions.16

The momenta are again limited to about half of the Bril-
louin zone, −�− �

2N � pn� pm�
�

2N . With the holon group ve-
locity,

vg
ho�p� = �p�ho�p� =

�

2
+ p , �18�
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we obtain vg
ho�pm��vg

ho�pn�. The crossing of the holons oc-
curs again only in one direction, and the momentum shifts as
well as the half-Fermi statistics emerges as in the case of the
spinons, except that the state now acquires the phase �=
−2�s, with the result that the momentum pm of the holon
with the larger group velocity vg

ho�pm� is shifted by + 2�
N s and

pn is shifted by − 2�
N s. Physically, this reversal in the sign

reflects that the holon is created by annihilation of an elec-
tron at a spinon site, i.e., by removing a fermion from a half
fermion. The spacing between pm and pn, however, is quan-
tized as for the spinons above. Note that the hard-core con-
straint of the holons is irrelevant here.

Let us now reconcile this result with the exclusion prin-
ciple. As mentioned, the hard-core condition for holons ef-
fects that they are fermions according to Haldane’s exclusion
principle applied to states localized in position space. When
applied to exact eigenstates of the model, however, the result
is different. Since the creation of two holons decreases the
number of up or down spins in the uniform liquid M by 1,
the number of single-holon states �labeled by m or n above�
available for additional holons decreases by 1. This implies
half-Fermi statistics and is consistent with the momentum
spacings as well as previous work.12–14

The exclusion principle hence yields the correct statistics
only if applied to eigenstates of the model. The wave func-
tion for localized holons is really a superposition of a holon
state �onto which we project in Eq. �12�� and a holon sur-
rounded by an incoherent spinon cloud in a singlet configu-
ration.

IV. GENERAL VALIDITY OF THE CONCLUSIONS

So far, our discussion has been limited to a particular
model. The conclusions, however, hold in general. As noted
above, the KYM is special in that the spinon and holon ex-
citations are free. The single spinon and holon momenta are
hence good quantum numbers. The eigenstates of the model
can be labeled in terms of these momenta, which we have
shown to be fractionally spaced. Any other model of a one-
dimensional spin chain can be described as a KYM supple-
mented by additional terms, which give rise to an interaction
between the spinons and holons. This interaction will scatter
the basis states of free spinons and holons, the eigenstates of
the KYM, into each other. The eigenstates of the interacting
model will hence be superpositions of states with different
single spinon and holon momenta, all of which, however,
will be fractionally spaced. In other words, the fractional
shifts in Eqs. �8� and �17� �and also Eqs. �19� and �20� be-
low� will still be good quantum numbers, while the integers
n and m will no longer be good quantum numbers. �Of
course, if we turn on an interaction such that the quantum
numbers of the excitations change �e.g., from spinons to spin
flips�, the Hilbert space will change and the argument will
break down. This, however, is beyond the point as we make
a statement about the statistics of spinons and not the spin
flips.�

This argument shows that whenever we have spinons and
holons in a one-dimensional spin chain, we have fractionally
spaced single-particle momenta as a consequence of their

fractional statistics. Is it reasonable to assume that this pic-
ture holds for anyons in 1D in general? We believe there are
very good reasons to do so. First, spinons and holons are the
only known examples of anyons in 1D. This picture hence
holds for all examples of 1D systems with fractional statis-
tics. Second, the picture resolves a profound conflict, as to-
pology precludes the existence of one-dimensional anyons in
a conventional framework of indistinguishable particles. The
conflict is circumvented here in that the anyons become dis-
tinguishable through their dynamics and cross in one direc-
tion only. If the picture we propose here were not of general
validity, another resolution to this conflict would have to
exist. This does not appear to be the case.

V. SUMMARY

We conclude with a summary. We propose that the statis-
tics of identical particles is always reflected in the quantiza-
tion condition of an observable quantity. For anyons with
statistical parameter � in 2D, the kinematical relative angular
momentum between two anyons is quantized as5

lz = ��−
�

�
+ 2m , �19�

where −����� and m is integer.
For anyons with statistical parameter � in a one-

dimensional system with length L and periodic boundary
conditions—and this is the central message of this paper—
the allowed values for the spacings between the kinematical
�linear� momenta are quantized as

pi+1 − pi = �p =
2��

L
� ���

�
+ n �20�

for pi+1− pi0, where −����� and n is a non-negative
integer. The spacing condition �20� holds for many-anyon
states with single-particle momenta p1� p2� . . . � pN in any
interval pi�I provided that the anyon group velocity vg�p�
=�p��p� is a strictly increasing ���0� or decreasing ���0�
function of p in this interval. This condition is required for
the anyons to cross in one direction only. In an interacting
many-particle system, the quantum numbers m and n in Eqs.
�19� and �20� are not expected to be good quantum numbers.
The fractional shifts −� /� and ��� /�, however, are topologi-
cal invariants.

Note that Eqs. �19� and �20� hold only between the physi-
cal or kinematical statistics of the anyons and the kinemati-
cal angular or linear momenta, as canonical momenta are
gauge dependent. In particular, one may change the canoni-
cal momenta while simultaneously changing the canonical
statistics of the fields �i.e., the statistics imposed when ca-
nonically quantizing the fields� used to describe the anyons
via a “singular gauge transformation.” The canonical statis-
tics may either be bosonic, as in the case of the spinons in
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the analysis above, or fermionic, as in the case of the holons
above.

Our analysis further demonstrates that particular care
must be exercised when defining statistics using Haldane’s
exclusion principle. The fact that it gives the correct result
for the statistics of holons in the KYM when applied to
eigenstates of the model but an incorrect result when applied
to holon states localized in position space leads us to conjec-

ture that in general, the exclusion principle yields correct
results only when applied to eigenstates of a given model.
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