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Braiding errors in interacting Majorana quantum wires
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Avenues of Majorana bound states (MBSs) have become one of the primary directions towards a possible
realization of topological quantum computation. For a Y junction of Kitaev quantum wires, we numerically
investigate the braiding of MBSs while considering the full quasiparticle background. The two central sources
of braiding errors are found to be the fidelity loss due to the incomplete adiabaticity of the braiding operation
as well as the finite hybridization of the MBSs. The explicit extraction of the braiding phase from the full
many-particle states allows us to analyze the breakdown of the independent-particle picture of Majorana braiding.
Furthermore, we find nearest-neighbor interactions to significantly affect the braiding performance for better or
worse, depending on the sign and magnitude of the coupling.

DOI: 10.1103/PhysRevB.96.094307

I. INTRODUCTION

Topological quantum states of matter have become one
of the most vibrant fields of contemporary condensed matter
physics. One subbranch thereof, the search for realizations
of topological quantum computation, has decisively fueled
the interest, both from theory and experiment, to address
manifold scenarios of this kind. Among them, Majorana bound
states (MBSs) have been attracting pivotal attention in recent
years [1–4]. While Majorana-type quasiparticles have been
previously addressed in the context of the fractional quantum
Hall effect [5,6], unconventional superconductivity [6–8], and
spin liquids [9,10], the proposal by Fu and Kane [11] to employ
the conventional superconducting proximity effect to stabilize
MBSs in vortex cores at the surface of a topological insulator
unleashed a remarkable body of research that has brought the
detection and manipulation of MBSs closer to reality. After
crucial progress towards simpler realizations of proximity-
induced topological superconducting phases [12–14], several
experimental groups have reported increasingly compelling
evidence for the observation of Majorana zero modes in
semiconductor nanowires and iron atomic chains that are
coupled to a bulk superconductor [15–25]. The unambiguous
detection of a MBS, however, has so far remained elusive,
and parity-changing quasiparticle poisoning through single-
particle tunneling into the wire or chain likewise constitutes
a major challenge. One crucial experimental finding in favor
of the existence of Majorana zero modes would be a braid-
ing experiment [26–29], revealing their nontrivial braiding
statistics, and showing the path to more complex multi-MBS
protocols.

A plethora of approaches is currently underway towards the
realization of topological quantum computation in networks
of semiconductor nanowires that are proximity coupled to
a superconductor [29–36]. Alternative routes include the
aforementioned proximitized topological-insulator surfaces
[11,37,38], and atomic chains [14,28] or cold-atom setups
[39,40], where the originally envisioned lattice realizations of
topological superconductivity [7] are more directly accessible.
Given the amount of different obstacles still to overcome, it

is hard to predict which direction will lead to success. At
the current stage of the field, it thus appears worthwhile to
follow up on several of these directions at the same time: New
results on any given approach will offer guidance for inevitable
refinements of the others.

In this paper, we numerically analyze the braiding process
of MBSs in a minimal model of an interacting wire network.
To this end we define a Y junction of three Kitaev chains
[7] in which we investigate the controlled time evolution of a
single pair of MBSs as the most elementary braiding operation.
We employ time-dependent on-site potentials to locally drive
the system in and out of the topologically nontrivial phase,
which hence allows us to spatially move the MBSs [26].
In particular, we consider unitary time evolution of initially
prepared pure states, and analyze the absolute value (fidelity
F ) and the relative phase φ of the overlap between the initial
and time-evolved states. The potential-manipulation protocol
is analyzed to decrease nonadiabatic effects.

The use of exact diagonalization allows us to systematically
identify the different sources of braiding errors. Since we
keep the full Hilbert space during the braiding operation,
the measured fidelities and phases are not influenced by
implicit assumptions or restrictions. In addition, this allows
us to extract explicitly the geometric exchange “braiding”
phase acquired during the execution of the braid, directly
encoding the non-Abelian statistics of MBSs. By varying
the superconducting wire bulk gap, we then find how the
localization length of the individual Majorana zero modes as
well as the resulting MBSs’ hybridization affect the braiding
operation. Finally, interactions in the wires, modeled by a
nearest-neighbor density-density coupling [41–43], are found
to predominantly affect the braiding operation through its
impact on the wire bulk gap. Depending on the noninteracting
gap versus hopping strength, for weak attractive (repulsive)
interactions, the braiding operation is more stable due to an
increase (decrease) of the effective superconducting gap and
reduction of the MBS localization length. For strong attractive
or repulsive nearest-neighbor coupling, the interactions have a
negative impact on the braiding performance, where ultimately
the topological phase becomes inaccessible altogether
[41–43].

2469-9950/2017/96(9)/094307(10) 094307-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.094307


MICHAEL SEKANIA et al. PHYSICAL REVIEW B 96, 094307 (2017)

II. KITAEV CHAIN

The (interacting) Kitaev model is the most elementary
system exhibiting MBSs [7,41]. It is given by the Hamiltonian
[44,45]

H =
L−1∑
i=1

(Jc
†
i ci+1 + �c

†
i c

†
i+1 + H.c.) +

L∑
i=1

μini

+
L−1∑
i=1

V nini+1, (1)

where c
†
i (ci) is a creation (annihilation) operator of the spinless

fermion on site i and ni = c
†
i ci is the density operator. J

denotes the nearest-neighbor hopping amplitude, � = |�|eiϕ

the p-wave superconducting pairing amplitude with phase
ϕ, V the strength of the nearest-neighbor interaction, and
μi the site-dependent potential. The superconducting pairing
term breaks U (1) fermion number symmetry down to Z2

(parity conservation), where the two parity sectors will be
denoted even (e) and odd (o) below. Unless stated otherwise,
we initially constrain ourselves to the noninteracting limit
V = 0. The Kitaev chain features a topological trivial and
nontrivial phase for |μ| > 2J and |μ| ≤ 2J , respectively, so
long as |�| > 0 [1,7]. For the ideal parameter set μ = 0,
|�| = J , and hard wall boundary conditions, hence residing
in the nontrivial regime, Hamiltonian (1) takes a particularly
simple form in terms of a Majorana fermion representation
H = −J

∑L−1
j=1 iγ2j γ2j+1, where γ2j−1 = eiϕ/2cj + e−iϕ/2c

†
j

and γ2j = (eiϕ/2cj − e−iϕ/2c
†
j )/i are real Majorana operators

γ
†
i = γi obeying a Clifford algebra, {γi,γj } = 2δij . We ob-

serve that the first and last Majorana modes, residing on the
first and last site, respectively, are decoupled from the rest of
the fermionic chain. The corresponding Majorana operators
γ1 ≡ γL and γ2L ≡ γR do not appear in the Hamiltonian,
[H,γL] = [H,γR] = 0, and form a fermionic zero-energy
mode comprising two individual Majorana (zero) modes local-
ized on single sites at each end of the chain. After introducing
a nonlocal fermionic operator f = 1

2 (γL + iγR), these zero-
energy states can be identified with MBS eigenstates f |0〉 = 0
and f †|0〉 = |1〉, which reside in the middle of the effective
bulk gap 4|�|/J . The states |0〉 and |1〉 also coincide with
the parity eigenstates of the full fermionic chain, and can be
associated with the ground-state wave functions of the Kitaev
Hamiltonian Eq. (1) in the even (e) and odd (o) parity sector,
respectively [46].

Away from this particular parameter set but still within the
nontrivial regime, i.e., for μ = 0 and |�| < J , or 0 < μ < 2J

and |�| = J , the Majorana zero modes develop an exponential
tail extending into the bulk, yielding a small energy split
of the two eigenstates previously located at zero energy (in
different parity sectors). This splitting energy, usually referred
to as MBS hybridization energy, decays exponentially with
the distance between MBSs on a length scale governed by �

(cf. Fig. 3). The protection offered by the bulk energy gap
and spatial isolation of MBSs are the main stimuli for |0〉 and
|1〉 to serve as a basis for the sought-after topological qubit.
As we show below, targeting the entire Hilbert space—and
not only a subspace of subgap Majorana states in terms of

an effective low-energy theory as conventionally assumed
[26–35,37–40,47–53]—is essential when braiding manipula-
tions are performed on finite time scales, i.e., nonadiabatically,
and in finite-size systems. Preceding works undertook steps in
this direction [54–56], but attempted to search the errors in an
effective low-energy (Majorana) picture.

Here, via a sequence of predefined exact manipulations
of potentials μi of Hamiltonian (1), we perform a braiding
operation imposed on an initially prepared set of MBSs
[26]. Such manipulations employ unitary but in general
nonadiabatic dynamics. This implementation requires a way
to (i) dislocate MBSs without destroying them or creating new
ones, (ii) realize a system geometry that allows one to exchange
Majorana modes while keeping their overlap exponentially
small during the entire braiding process, and (iii) provide
an exchange process that gives fidelity, taken as the overlap
between initial and final states, close to unity.

At the elementary level of our description, the goal is not
to define the optimal exchange protocol applied to a realistic
setup for topological quantum computation (though we made
sure to select a favorable implementation among several
“simple” test routines). Rather, for the simplest braiding
operation possible, we intend to identify the time scale and
conditions under which it is feasible to perform a braiding with
the desired fidelity and braid-phase accuracy. For an analysis
of tailor-made braiding protocols and possible drawbacks or
limitations thereof, based on effective models of the low-
energy (Majorana) sector of the system, see Refs. [52,53,56].

III. Y JUNCTION

The minimal geometry required for the exchange “braid-
ing” of MBSs is a junction with three legs (trijunction) [1,26].
It can be formed by connecting three Kitaev chains Eq. (1)
(later referred to as junction legs) to an additional connecting
junction site at i = 0, which otherwise witnesses parameter
sets identical to the respective adjacent leg,

HY = μ0c
†
0c0

+
3∑

n=1

⎡
⎣(

J (n)c
†
0c

(n)
1 + �(n)c

†
0c

†,(n)
1 + H.c.

)
+ V

(n)
n0n

(n)
1

+
L(n)−1∑
i=1

(
J (n)c

†,(n)
i c

(n)
i+1 + �(n)c

†,(n)
i c

†,(n)
i+1 + H.c.

)

+
L(n)−1∑
i=1

V
(n)

n
(n)
i n

(n)
i+1 +

L(n)∑
i=1

μ
(n)
i n

(n)
i

⎤
⎦. (2)

In general, one may choose different p-wave pairing terms
�(n) and hopping amplitudes J (n) in each leg of the Y junction.
For simplicity, we here assume that J (n) = 1 (thus setting the
reference scale in plots and equations below), �(1) = −�,
�(2) = �eiϕ2 , and �(3) = �eiϕ3 , with a real pairing amplitude
� > 0. The superconducting pairing phase ϕn is chosen to
coincide with the corresponding geometric angle of the nth leg
of the Y junction (cf. Fig. 1). This type of triplet pairing could,
for example, be realized in a Y junction placed in proximity to
a chiral p-wave superconductor [49]. The connection of two
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FIG. 1. Y junction of three Kitaev chains and the braiding
protocol considered here. MBSs, depicted by red and yellow spheres,
reside at the ends of segments with a topological nontrivial phase
(highlighted by blue tubes). (a) The initial state. Geometric angles
ϕi also correspond to the superconducting pairing phases of the
respective junction legs. (b) The exchange “braiding” protocol (left to
right and top to bottom), as in Ref. [26]. Red (green) arrows indicate
displacements of MBSs by contraction (extension) of the topological
chain segment, implemented by locally ramping up (down) the local
potential over the critical value μc = 2J . At the end of the braiding
protocol (right picture, bottom row), the same chain segments as in
the initial state reside in the topological phase, but the MBSs have
been exchanged.

Kitaev chain legs, both of which are in the topological (trivial)
phase, produces a single segment residing in the topological
(trivial) phase; unless the mutual phase difference between
the pairing terms of these chains equals exactly ϕi − ϕj = 0,
MBSs on the connecting site fuse, and the entire segment ends
up with the two leftover MBS residing on the free ends of
the new, larger topological segment [26]. If the mutual phase,
however, is exactly zero, MBSs on the connecting site do not
fuse and the joint segment maintains all four Majorana zero
modes (one from each end of the initial chains)—a case we
intentionally avoid in the following. In addition, we restrict our
studies to clean systems, avoiding additional complications
arising from disorder [57].

By ramping up the on-site potentials over the critical
value of μc = 2J starting from one end of the topological
segment (i.e., at the location of a Majorana zero mode),
locally one drives the system into the trivial phase. As
the ramp of potentials is successively carried out along the
chain, one thus continuously displaces the MBS alongside
with the trivial-topological domain wall. This action can
be undone by again lowering the local potentials below the
critical value, and switching the chosen sites back from the
trivial to topological phase. Finally, concerting such ramping
procedures in sequences across all three junction legs, one can
create the desired Majorana zero mode exchange or braiding
operation [26]. This process is schematically depicted in Fig. 1.
We will only study Y junctions with legs of equal length
L(n) = �, and take ϕ2 = −ϕ3 = ϕ. The initially homogeneous
potentials in the junction legs are μ(1) = μ(2) = 0 and μ(3) =
2μc, meaning that legs 1 and 2 reside in the topological, and
leg 3 in the trivial phase. In passing, we note that since the time

evolution of an initial state prepared in this way fixes a time
direction, there is a subtle time-reversal symmetry breaking
appearing in the braiding setup, as seen by reversing the sign
of ϕ in the time evolution. We thus only consider ϕ > 0 in the
following.

IV. RAMPING PROTOCOL

We investigated several ramping protocols for the succes-
sive time variation of the on-site potentials μ

(n)
i (t). The results

were found by employing a sine-squared ramp defined as

μ
(n)
j (τ ) = 2μc m

(
τ

T
[1 + α(� − 1)] − α(� − j )

)
, (3)

where τ ∈ [0,T ] denotes the time during the respective ramp-
up protocol step in Fig. 1, α is a delay coefficient, and we used
the scalar function

m(q) = sin2

(
π

2
r(q)

)
. (4)

Here, r(q) is a linear ramp of unit height and duration

r(q) = min [max(q,0),1] =
⎧⎨
⎩

0, q < 0,

q, 0 ≤ q ≤ 1,

1 q > 1.

We also show results obtained by the simpler, linear “guillo-
tine” ramp, m(q) = r(q), where the smoothening by the sine-
squared function in Eq. (4) is switched off. Both procedures
raise the on-site potentials in the nth leg, containing � sites,
from μ

(n)
init = 0 to μ

(n)
f = 2μc = 4J within the time period T .

The time required to lift the on-site potential on each individual
site is T/[1 + α(� − 1)], and the ramping is delayed by
αT/[1 + α(� − 1)] between consecutive sites. For a guillotine
ramp, the modulations of local potentials are reminiscent of
a guillotine knife passing a rectangular window (hence the
name), and α is the inclination of the knife.

The delay coefficient (inclination) can be varied between
α = 0 and α = 1, corresponding to a simultaneous ramp of
all sites or a consecutive site-by-site ramping, respectively.
In the following, we set α = 0.025 and vary the time step
T , where α−1,T � � at all times, i.e., a small ramp delay
(inclination) and slow ramp protocol. Finally, the ramp-down
is implemented as an exact time reverse of the ramp-up
protocol, with τ → T − τ in Eq. (3). The ramping (and
hence braiding) protocol is accomplished numerically by
replacing the continuous time evolution with a piecewise
time-independent Hamiltonian

T e−i
∫ T

0 HY(t)dt → T
N−1∏
j=0

e−i�t HY(j�t) (5)

leading to the time-evolved state

|ψ(t + T )〉 = T e−i
∫ t+T

t
HY(τ )dτ |ψ(t)〉

=
(
T

N−1∏
j=0

e−iHY(t+j�t)�t

)
|ψ(t)〉, (6)

where T is the time ordering operator, and HY(t) corresponds
to Eq. (2) with the time-dependent local potential μ

(n)
j →
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μ
(n)
j (t) given in Eq. (3). The time-step discretization �t/T �

1 governs the accuracy of approximation of the continuous
time-dependent Hamiltonian by a piecewise constant one, and
is chosen sufficiently small against all energy scales of the
problem, yielding a total of N = T/�t steps per braiding
sweep in Fig. 1. We have checked that runs for each given
parameter set are converged with respect to vanishing �t .
As such, the outlined braiding protocol demands a total
(final) braiding time tf = 6T , and performs a complete cyclic
evolution in the parameter space of the Hamiltonian.

As braiding errors are detected, there are several parameters
that can be used to control and alter the braiding process. The
ramping speed can be controlled by the time period T required
for each step of the protocol, and by the ramp delay/inclination
α. Since the latter also determines the steepness of the
trivial-topological domain wall propagating through the chain,
generally, for steeper inclinations, a slower braiding velocity
∼�/T with a larger time period T is required [50,51].

V. FIDELITY AND GEOMETRIC BRAIDING PHASE

In order to achieve an ideal braiding process, it is necessary
(but not sufficient) that the fidelity between the initial and
obtained final state equals unity. Since numerical simulations
of the full Hilbert space are costly in general, and sampling the
fidelity for many input states—in particular, if one is interested
in longer braiding sequences—is not feasible, we propose to
analyze the topological character and protection of braiding
operations for the ground states of the two parity sectors.
For this purpose, the braiding statistics are directly encoded
in the relative geometric phase factor (the braiding phase)
between final and initial states in the even- and odd-parity
sector. Braiding errors then manifest both in deviations of the
braiding fidelity from unity and of the braiding phase from
π/2. Both quantities are accessible by considering input states
|0〉 and |1〉 of the topological qubit, chosen as the ground
states of HY(t0 = 0) Eq. (2) in the respective total-parity sector.
[Note that transitions between even (e) and odd (o) total-parity
states are forbidden under unitary time evolution Eq. (6) with
a parity-conserving Hamiltonian Eq. (2).]

In order to quantify the fidelity loss during the braiding, we
introduce the loss function

wloss(tf) = 1 − F (tf)
2 = 1 − |〈ψ(tf)|ψ(t0)〉|2, (7)

where F (tf) = |〈ψ(tf)|ψ(t0)〉| is the fidelity for pure states
[58], taken between the initial and final, time-evolved state.
Note that zero loss (unit fidelity) does not necessarily imply
that the overall process is adiabatic, however, a cyclic and
completely adiabatic process should always yield wloss = 0.
Similar measures, but with an adiabatically evolved state as
a reference, have been used in Refs. [52,54]. The studies
presented in Ref. [54], however, considered only the single-
particle eigenstates of the MBS sector and investigated
transitions among them. In the simple two-Majorana braiding
setup of Fig. 1, after all, the states of different total parity are
fully decoupled and do not mix.

In order to determine the braiding phase, note that the
braiding protocol describes a cyclic evolution in the space

FIG. 2. Time evolution of the acquired exchange phases φe/o
g (t,ϕ)

(dashed/dotted lines), and the phase difference �(t,ϕ) (solid lines)
during the braiding protocol for sine-squared (top) and guillotine
ramps (bottom). We consider a Y junction with equal-size legs � = 5,
for triplet-pairing phases ϕ = π/6, π/3, π/2 and amplitude � = 1.
The braiding protocol takes a total time tf = 6T , where we choose a
time period T = 750 for each ramp-up/down step, with α = 0.025.
After complete execution of the braiding exchange, upon reaching t =
tf (dashed-dotted vertical line), an extra time evolution of duration T is
carried out with fixed Hamiltonian H (tf ). The insets show the residual
dynamic evolution of the exchange phase �(t), for t ∈ [5.8T ,7T ],
zoomed in on the y scale.

of Hamiltonian parameters, where the Hamiltonian takes
its original form at the end of the process, i.e., at time
tf = 6T . Assuming that the entire process is adiabatic, which
implies that the time-evolving state always corresponds to an
eigenstate of the instantaneous Hamiltonian, one can evaluate
a Berry phase [59] acquired during this cyclic evolution of the
system. Due to the finite ramping times, however, the braiding
process in general is nonadiabatic and we find wloss(tf) > 0. As
a consequence, the Berry phase is not rigorously applicable. In
addition, the finite fidelity error of the final state of the braiding
shows that the obtained final state is not an eigenstate of the
initial/final Hamiltonian, as the ground states in the fixed parity
sectors are nondegenerate. The latter will also manifest in a
nonconstant dynamical evolution of the acquired phase even
after the system is evolved back to the initial Hamiltonian
(cf. Fig. 2). Because quantum states that differ merely by a
phase factor give rise to the same physics and the unitary
time evolution of states under a continuous time-dependent
Hamiltonian describes a smooth curve in the Hilbert space,
one may employ the gauge- and parametrization-invariant
functional [60,61]

φg[C0] = arg〈ψ(t0)|ψ(tf)〉 − Im
∫ tf

t0

〈ψ(t)| ˙ψ(t)〉dt, (8)
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which measures the geometrical phase for the smooth open
curve of normalized (unit) vectors in the Hilbert space,
C0 = {|ψ(t)〉 ∈ N0 | t ∈ [t0,tf] ⊂ R} ⊂ N0. Here, N0 denotes
the space of normalized vectors and C0 is the projection of C0

to the so-called ray space (or projective Hilbert space), where
members that differ only by a phase factor are regarded as
equivalent [62]. Finally, since in our studies the ramping (and
hence braiding) protocol is accomplished by the piecewise
constant time-independent Hamiltonian Eqs. (5) and (6),
C0 is a continuous but generally not a smooth curve. To
determine the geometric phase numerically we hence employ
a discretized variant of the above functional [61],

φg[C̃0] = arg(〈ψ(t0)|ψ(tf)〉) − arg

( N−1∏
j=0

〈ψ(tj )|ψ(tj+1)〉
)

= − arg(〈ψ(t0)|ψ(t1)〉〈ψ(t1)|ψ(t2)〉 · · ·
· · · 〈ψ(tN−1)|ψ(tf)〉〈ψ(tf)|ψ(t0)〉), (9)

which measures the geometric phase for the closed
N + 1-sided polygon of unit vectors in the Hilbert space,
C̃0 = {|ψ(tj )〉 ∈ N0 | tj = t0 + j�t,j = 0, . . . ,N}, with
N = tf/�t . The closed polygon C̃0 parametrizes the braiding
protocol and corresponds to a projection of the time-ordered
set C̃0 onto ray space. This expression, which is cyclically
symmetric, is also referred to as the Bargmann vertex formula
for the geometric phase. For the continuous limit, �t → 0
in Eqs. (5) and (6), the expression in Eq. (9) reduces to
the continuous-time version in Eq. (8). We note that if the
fidelity between the initial and final states is exactly one (zero
loss), C0 becomes a closed curve in ray space, and φg[C0] in
Eq. (8) corresponds to the Aharonov-Anandan geometrical
phase [63]. If the entire process is adiabatic, one recovers the
conventional Berry phase [59] (for a discussion, cf. Ref. [61]).
In terms of a physical interpretation, the first and second
terms in Eqs. (8) and (9) correspond to the complete and
the local, dynamic parts of the acquired phase, respectively.
We thus explicitly exclude purely dynamic contributions, for
example, those generated by the finite hybridization energy
of MBSs [26,47,48], from our considerations. While in an
actual application of braiding in Majorana-based quantum
computation schemes [26–29], the (purely) dynamic and
the geometric parts of the obtained total phase should
be treated on equal footing (since both contribute to the
resulting computational phase of the topological qubit),
only the geometric part becomes truly universal. The latter
then directly reflects the anyonic statistics encoded in the
full many-body Hilbert space of the complex, in general
interacting system given by Eqs. (1) and (2). As we will see
below, this yields valuable information about the validity and
possible shortcomings of simple Majorana toy models of
topological superconducting systems [7,26–36].

VI. EXACT DIAGONALIZATION

The initial states |e〉 and |o〉 are chosen as the ground states
of HY(t0) in even and odd total-parity sectors, obtained through
Davidson exact diagonalization [64]. The braiding is then

carried out iteratively by applying the Arnoldi scheme [65]
to the matrix exponential in Eq. (6). Since the time-dependent
Hamiltonian conserves fermion parity, the simulation for each
total-parity sector can be carried out separately. Further, while
strictly speaking the geometric phase is only defined after the
braiding process is carried out completely and a closed loop
in parameter space is accomplished, it is convenient to define
the exchange phase at arbitrary time t of the braiding process,

�(t) = φo
g (t) − φe

g(t). (10)

Here, φe
g(t) and φo

g (t) are the individual geometrical phases
acquired during the time evolution of states |e〉 and |o〉. We
note |e〉 → eiφe

g(t)|e〉 and |o〉 → eiφo
g (t)|o〉.

We now are equipped to study the symmetric Y junction
with equal-size legs � = 5. Qualitatively similar results were
found for leg sizes � ≤ 4. At the ideal Kitaev point � = J = 1,
the lowest-energy (initial) states in the even- and odd-parity
sector correspond to |0〉 and |1〉 states of the topological qubit,
i.e., they differ in terms of the Majorana sector only. After
the exchange “braiding” of Majorana modes, in general, both
states will acquire different geometrical phases φe

g and φo
g . In

an ideal case the accumulated many-body geometrical phase
for |0〉 and |1〉 (and hence for |e〉 and |o〉) will only differ
by a nontrivial phase stemming from the protected braiding
exchange of Majoranas γL and γR. In Fig. 2 we show the
time evolution of phases φe

g(t,ϕ) and φo
g (t,ϕ), as well as

the phase difference �(t,ϕ) in Eq. (10), for sine-squared
and guillotine ramp protocols and several superconducting
pairing phases. Here, after finishing the braiding protocol at
time tf = 6T , we continue the time evolution for yet another
period T . In the fully adiabatic case, the geometrical phases
in each parity sector—and hence the difference between
them—should remain unchanged for times t > tf , i.e., when
the braiding exchange has been executed completely. In our
case, however, the phases keep evolving linearly in time (insets
in Fig. 2). We wish to emphasize that this phase evolution is
not due to purely dynamical phases as, e.g., caused by finite
Majorana hybridization [47,48], which are explicitly excluded
in Eq. (9). Instead, we can rationalize the continued nontrivial
evolution by observing that the fidelity of the obtained states
at time t = tf is not exactly one, or, equivalently, the loss
as defined in Eq. (7) is nonzero (cf. Fig. 4 and discussion).
Since in the adiabatic (hence zero-loss) limit the system should
have reached a state equivalent to the initial state but with the
Majorana zero modes exchanged, this implies that, instead, the
system no longer resides in an eigenstate of its Hamiltonian
for t ≥ tf . Such nonadiabatic spectral losses hence correspond
to a leakage of wave-function weight out of the Majorana,
and into the excited-state sector. Consequently, the state at
t ≥ tf—when projected to the (initial) qubit Hilbert space
{|0〉,|1〉}—will “dephase” with time. This finding emphasizes
the danger of nonadiabatic errors and excitations even in the
most basic braiding experiments, and cannot be alleviated by
just increasing the system size [55,56]. While the choice of
ϕ changes the time dependence of the measured phase φg,
as shown in Fig. 2, the value at tf depends only weakly on
ϕ in the range of ϕ ∈ [π/6,π/2], and the residual evolution
becomes negligible in the fully adiabatic limit. Therefore we
will constrain ourselves to the symmetric case ϕ = π/3 in
the following. Note that for the finite system size considered,
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this corresponds to the largest minimum of the time-evolving
protective gap among all other geometric configurations of Y
junctions.

VII. BRAIDING ERRORS

There are several sources of errors that destroy the perfect
quantization of the braiding phase during the nonadiabatic,
unitary time evolution of the system. One is seen as a reduced
fidelity due to the spectral losses (cf. Fig. 4 and the discussion
above), which are expected to be larger for a smaller protective
gap (∼�), lower ramp time T , and rougher ramp functions.
Further, the condition of exponential localization of the two
Majorana zero modes is invalidated when the MBS localization
length becomes comparable with the chain size (see Fig. 3). In
this case, the hybridization between MBSs is not exponentially
small and the braiding phase encodes effects stemming from
this hybridization. The minimal protective gap as well as
Majorana localization length both depend on the p-wave
pairing amplitude �. The localization length in the infinitely
long Kitaev chain, for which exact results are easily obtained,
is given by ξ∞(�) = 1/ ln

√
(J + |�|)/(J − |�|) in the case

of μ = 0. In Fig. 3(a) we show ξ∞(�) and the finite-length
ξ (�,L) as a function of �. The latter is determined by
fitting the weights of the fermionic representation of the
MBSs to an exponentially decaying function modulated by
Friedel oscillations with period π [42]. L = 11 and L = 6
chain sizes correspond to the maximal and minimal length of
the topological regions during the braiding in the symmetric
Y junction with equal-size legs � = 5 (cf. Fig. 1). Perfectly
localized MBSs, ξ → 0, are obtained at J = � = 1. For � <

1, MBSs acquire a finite width that increases with decreasing
values of �, and the localization length ξ (�) diverges for

FIG. 3. Localization length ξ and hybridization energy ε of Ma-
jorana edge modes in a Kitaev chain with μ = 0. (a) MBS localization
length for infinite-size, ξ (�), and finite-size Kitaev chains, ξ (�,L),
as a function of pairing amplitude �. Results for the infinitely long
(bold gray curve) and finite Kitaev chains match closely already for
modest L = 11 (dashed curve) and L = 6 (dashed-dotted curve). (b)
MBS hybridization energy ε(�,L) for finite-size Kitaev chains. (c)
Semilog plot of scaled MBS hybridization energy ε(�,L)/4� vs
scaled inverse localization length L/ξ (�,L). For comparable L and
ξ (�,L) there is a clear deviation from the exponential dependence
(upper left corner).

vanishing �. We note that the numerical result ξ (�,L = 6)
starts to deviate from ξ∞(�) at � � 0.5, indicating that MBSs
are no longer isolated and the independent-particle picture
[8,26] for the edge modes breaks down. In Fig. 3(b) we show
the MBS hybridization energy ε(�,L) for six, eight, and ten
sites versus the pairing amplitude �. Combining the data
corresponding to Figs. 3(a) and 3(b) in Fig. 3(c), we show
that the scaled MBS hybridization energy ε(�,L)/4� displays
an exponential dependence on the scaled inverse localization
length L/ξ (�,L) for ξ (�,L) � L, with noticeable deviations
for L being comparable to ξ (�,L).

In Fig. 4 we show the braiding phase and fidelity losses
as a function of the Majorana localization length ξ (�) for
the two ramp protocols and various step times T . Data in
Fig. 4 (bottom row) show that fidelity losses, Eq. (7), reduce
by orders of magnitude upon increasing the ramping time
period T from 250 to 3000. In addition, losses can be reduced
significantly (by a power of 2) upon employing the smoother
sine-squared ramp function (first derivative is continuous)
instead of the simpler guillotine one (first derivative jumps),
agreeing with the power-law scaling identified by Knapp
et al. [56]. Similarly, nonadiabatic effects measured directly
in the exchange phase Eq. (10) (see Fig. 4, top), which
can be assessed by the strength of phase variations as a
function of the braiding parameters (i.e., the sensitivity of
the braiding phase against small deviations in the protocol),
become smaller. In the adiabatic limit for large T , these
fluctuations become negligible and one obtains smooth curves
�(ξ,�, . . . ). In addition to the guillotine and sine-squared
ramping, we have also used the infinitely differentiable
function m(r) = e−1/r/(e−1/r + e−1/(1−r)) leading to the same
phase as the sine-squared protocol, while the fidelity errors are
even smaller.

The braiding phase is stable and closest to π/2, independent
of T , for the ideal parameter set � = J = 1. As expected, for
nonideal values � < 1, stable braiding phases are obtained
only for larger times T . There are, however, significant
deviations from the desired π/2 braiding phase starting from
ξ > 1 (corresponding to � < 0.7), which persist largely
independent of the protocol time T or smoothness of the
ramp function. These can be identified with a breakdown
of the independent-particle picture of Majorana braiding,
where ideal braiding statistics no longer apply. We emphasize
again that these phase deviations are not a remnant of
purely dynamic errors, as we only consider the geometric
part of the exchange phase in Eq. (9). Further, even though
the braiding process appears quasiadiabatic for T ≥ 500 (or
T ≥ 1500 for the guillotine ramp), only the exchange phase
itself encodes this dramatic breakdown of braiding, while
fidelity losses even for large ξ are substantially smaller
compared to faster braiding. Matching the Majorana wave-
function weights or checking for adiabacity alone may thus
be too loose a criterion for successful Majorana braiding
protocols [52,54].

VIII. PROJECTED EVOLUTION

In order to clarify the results in the slow (large T ) braiding
limit, we also performed simulations where we project, after
each time step, the time-evolved state on the ground state of
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FIG. 4. Exchange phase �(ξ ; �,ϕ,T ) (top row) and loss of fidelity w
e/o

loss(ξ ; �,ϕ,T ) (bottom row) vs MBS localization length ξ (�), for
sine-squared (black diamonds) and guillotine ramps (red circles). We consider a symmetric Y junction (ϕ = π/3) with equal-size legs � = 5.
Plots from left to right correspond to execution of the braiding protocol with ramping time periods of T = 250, 500, 750, 1500, and 3000,
respectively, with α = 0.025. Data points (left to right) for each plot correspond to pairing amplitudes � = 1.0, . . . ,0.3 in steps 0.05, which
translates to increasing MBS localization length ξ (�) from left to right. The loss of fidelity (bottom row) in even and odd total-parity sectors
is shown by solid and open symbols, respectively.

the instantaneous time-independent Hamiltonian. In addition,
we performed a state tracking as described in Ref. [66],
which resembles the previous approach provided no ground-
state level crossings occur. Finally, we also evaluated the
geometrical phase, Eq. (9), considering only the instantaneous
ground states of the piecewise constant time-independent
Hamiltonian, which corresponds to the adiabatic evolution of
the system for the studied case. The results are summarized
in Fig. 5. In all cases we recover our results corresponding to
the slow limit, showing that our results persist in the adiabatic
limit.

FIG. 5. Exchange phase �(ξ ; �,ϕ,T ) vs MBS localization length
ξ (�), for unitary (black diamonds), ground-state projected (cyan
crosses), and adiabatic braiding process (blue pluses). As in Fig. 4,
the braiding protocol is applied to a symmetric Y junction (ϕ = π/3)
with equal-size legs � = 5, using the sine-squared ramp with time
period T = 750 and α = 0.025. Data points (left to right) for each
plot correspond to pairing amplitudes � = 1.0, . . . ,0.3 in steps of
0.05, which translates to increasing MBS localization length ξ (�)
from left to right. Lines are guides to the eye.

IX. INTERACTIONS

Finally, we investigate the influence of a nearest-neighbor
interaction V �= 0 [see Eqs. (1) and (2)] on the braiding
operation. In general, interactions in Majorana systems modify
the localization length and change the bulk energy gap
[41–43,45]. Large values of interaction strength V of either
sign eliminate the topological phase. Here, we only consider
values V for which the topological phase is not destroyed
at μ = 0, and where μ = 4 is still large enough to drive
the corresponding junction leg into the trivial phase. In
Fig. 6, we plot the braiding phase �(V ; �,ϕ,T ) and loss
of fidelity w

e/o

loss(V ; �,ϕ,T ) as a function of V . We consider
a symmetric Y junction with equal-size legs � = 5, now
with pairing strengths � = 1.0, 0.8, and 1.1. We only show
results for the sine-squared ramp function with T = 750,
which in the noninteracting case was found to be sufficient to
ensure close-to-adiabatic conditions (cf. Fig. 4). The Majorana
localization length ξ (V ; �,L) is depicted for Kitaev chains
of up to L = 22 sites, and obtained by fitting the weights
of the free fermionic representation of the MBS [42]. For
the ideal parameter set � = J = 1, the Majorana localization
length increases with either increasing repulsive or attractive
interaction V . This effect turns out to be larger for an attractive
potential, where ξ > 1 for |V | > 0.35, and the braiding
phase starts to deviate significantly from π/2. For � = 0.8,
the minimum of ξ (V ; � = 0.8,L) is shifted to V ≈ −0.35,
where for the given T one also observes a stabilization of
the correct braiding phase. For large � = 1.1, the situation is
reversed since then repulsive interactions lead to a reduction of
the effective superconducting gap, pushing the system closer
to the ideal point �eff = J . The fidelity losses mainly depend
on the braiding velocity ∼�/T , and hence remain of a similar
magnitude for moderate V . As a weak trend, we find that
small attractive or repulsive interactions play a stabilizing role
for the braiding operation, depending on the relative size of
the bare couplings J and �. Again, these effects appear not

094307-7



MICHAEL SEKANIA et al. PHYSICAL REVIEW B 96, 094307 (2017)

0.46

0.48

0.5

0.52

0.54

|Φ
(V

; Δ
,ϕ

,T
) 

/ π
| Δ = 0.8

Δ = 1.0
Δ = 1.1

e,  Δ = 0.8
o,  Δ = 0.8

10
-11

10
-10

10
-9

10
-8

w
e/

o
lo

ss
(V

; Δ
,ϕ

,T
) e,  Δ = 1.0

o,  Δ = 1.0
e,  Δ = 1.1
o,  Δ = 1.1

Δ=0.8, L=22
Δ=0.8, L=11
Δ=0.8, L= 6

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
V

0

0.5

1

1.5

ξ(
V

; Δ
, L

)

Δ=1.0, L=22
Δ=1.0, L=11
Δ=1.0, L= 6

Δ=1.1, L=22
Δ=1.1, L=11
Δ=1.1, L= 6

T = 750

FIG. 6. Exchange phase �(V ; �,ϕ,T ) (upper plot) and loss of
fidelity w

e/o

loss(V ; �,ϕ,T ) (middle plot) vs interaction strength V for
pairing amplitudes � = 1.0 (black diamonds), � = 0.8 (red circles),
and � = 1.1 (cyan squares). As in Fig. 4, the braiding protocol is
applied to a symmetric Y junction (ϕ = π/3) with equal-size legs � =
5, using the sine-squared ramp with time period T = 750 and α =
0.025. The bottom plot shows the MBS localization length ξ (V ; �,L)
vs interaction strength V for a Kitaev chain with L = 22, 11, and 6
sites (solid, dashed, and dotted lines). Again, we consider pairing
amplitudes � = 1.0 (black), � = 0.8 (red), and � = 1.1 (cyan).

to be systematically encoded in spectral losses alone, which
one can investigate by tracking the Majorana wave-function
weights [54], but rather follow directly the behavior of the
MBS localization length ξ (cf. both Figs. 4 and 6).

X. DISCUSSION AND CONCLUSIONS

Previous studies of Majorana braiding have predominantly
focused on effective models of the low-energy (Majorana)
sector [26,48], introducing nonadiabatic effects and other
sources of errors on an effective but not microscopic level
[47,50,51,67]. Alternatively, the fidelity of the dynamically
evolved state was considered with respect to some ideal,
adiabatic reference state [52–54]. Resulting estimates for the
minimal protocol time for near-adiabatic time evolution in
Majorana systems were obtained by many groups [50–54].
As an overarching implication, until recently, it was assumed
that by just executing the braiding manipulations sufficiently
slowly (but fast compared to the Majorana hybridization
energy), one could recover the ideal operation completely.
Those studies, however, explicitly disregard the generation
and propagation of nonadiabatic excitations, which may occur
not only due to an overall nonadiabacity of the braiding but
also due to the lack of smoothness of the ramp function [56]. In
turn, the propagation of (quasiparticle) excitations can directly
affect the geometric braiding phase [55].

In our work, instead of further extending previous stud-
ies to more complex setups and protocols [29,52,53], we

have revisited the most elementary case of a single MBS
braiding operation in a Y junction of three Kitaev chains
[26]. We considered the full Hilbert space, including the
quasiparticle background beyond the low-energy Majorana
sector, and investigated several error sources that destroy
the perfect braiding phase during the nonadiabatic, unitary
time evolution of the system. By adopting the Bargmann
vertex formula for the geometric phase, customarily used in
the characterization of geometric quantum gate operations
[61], we identified explicitly the MBS braiding phase, and
analyzed its behavior during the braid. We then accounted
for both spectral losses (through the fidelity) and direct
braiding phase errors (by calculating the geometric phase
evolution explicitly) in a numerically exact framework, in
order to understand in detail how nonadiabacity, the Majo-
rana mode localization, and interactions affect the braiding
operation.

We find that due to the induced nonadiabatic leakage of
wave-function weight out of the ground state into excited states
of the final Hamiltonian, the acquired braiding phase does
not remain constant and evolves linearly in time even after
the braiding process is finished (cf. Fig. 2). Consequently,
the final (qubit) state will “dephase” with time, even in the
zero-temperature case considered here. While spectral losses
can be reduced by orders of magnitude through increasing
the ramping time period T or considering smoother ramp
functions (cf. Fig. 4), it is clear that in extended protocols
necessary for serious quantum computations, nonadiabatic
errors will accumulate. Our results, based on a numerically
exact treatment of the full Hilbert space, thus support and
extend the findings of Pedrocchi and DiVincenzo [55] and
Knapp et al. [56] that employed an effective description of
the low-energy Majorana sector (including the quasiparticle
background via baths/dissipation).

By varying the superconducting wire bulk gap, we addition-
ally resolved how the localization length of individual Majo-
rana zero modes affects the braiding operation, beyond simple
dynamical errors induced through a finite MBS hybridization
[47,54]. For the studied Y-junction configuration in Fig. 1,
a MBS localization length ξ > 1 already causes significant
deviations from the perfect braiding phase π/2, since the
independent-particle picture of Majorana braiding [7,8,26]
breaks down. We emphasize that this finite-size breakdown
occurs independent of adiabacity (cf. Fig. 4). It implies that
measures of adiabacity—such as the fidelity or Majorana
wave-function weights alone—may suggest overoptimistic
efficiencies of the braiding operation. At the same time,
the behavior in Fig. 4 shows how an extraction of the
geometric phase Eq. (9) can yield valuable information about
the anyonic statistics encoded in the many-body states of
a complex system. Finally, the nearest-neighbor interaction
in the wires is found to predominantly affect the braiding
operation through its impact on the wire bulk gap. Depending
on the noninteracting gap versus hopping strength, for weak
attractive (repulsive) interactions, the braiding operation is
more stable due to a change of the effective supercon-
ducting gap and the reduction of the MBS localization
length (cf. Refs. [41–43]).

In summary, finite operation times and nonideal parameter
settings in (simple) Majorana braiding schemes pose serious
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constraints on the accuracy of braiding operations. We found
that even for the ideal case of a closed, zero-temperature
Kitaev chain system, nonadiabatic errors and finite Majorana
hybridization can become bottlenecks for the fidelity and
feasibility of (extended) Majorana braiding routines towards
quantum computation. An accumulation of nonadiabatic errors
has to be avoided, likely leading to unfavorable finite-time
scaling if no explicit quasiparticle relaxation mechanism is
included. The optimal engineering of dissipation out of the
excited-state sector, such as the trapping of quasiparticles, as
well as measurement-based (dissipative) topological quantum
computation schemes [33–35] may thus behave favorably in
comparison to conventional adiabatic-manipulation schemes
[26,29,30] (cf. Ref. [56]). Similarly, finite Majorana overlaps
have to be avoided to high accuracy, since these directly
affect the braiding statistics encoded in the low-energy sector
of the system—in fact, the braiding statistics become “non-
Majorana” (cf. Fig. 4 and the discussion). As an order of
magnitude comparison, we note that current-date nanowire
and iron-chain architectures [21–25] find localization versus
device lengths of ξ/L � 0.2 . . . 1, where our numerics indicate
that assuming individual Majoranas (in terms of their braiding
statistics) might be too optimistic. Advancing towards longer

nanowire devices or a reduction of the MBS localization
length, also for the sake of measurement-based qubit experi-
ments [33–35], is thus clearly desirable.

In the end, our results nevertheless show that for long
enough wires (or short enough MBS localization lengths),
and for reasonably smooth and adiabatic protocols, ideal
Majorana braiding might be observed. An analysis of braiding
and computation protocols in extended Majorana wire net-
works [31–35] will be subject to future work, using more
sophisticated techniques applicable to larger system sizes.
Clearly, these measurement-based schemes for topological
quantum computation should face the same detailed numerical
investigation and scrutiny as the direct braiding and adiabatic-
manipulation schemes.

ACKNOWLEDGMENTS

We thank A. Akhmerov, M. Burrello, R. Egger, S. Frolov,
T. Karzig, and R. Lutchyn for fruitful discussions. This work
was supported by DFG-SFB 1170 and ERC-StG-Thomale-
TOPOLECTRICS-336012. M.S. acknowledges support by the
Rustaveli National Science Foundation through Grant No.
FR/265/6-100/14.

[1] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[2] M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27,

124003 (2012).
[3] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113

(2013).
[4] S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum Inf. 1,

15001 (2015).
[5] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[6] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[7] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[8] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[9] A. Kitaev, Ann. Phys. 321, 2 (2006).

[10] M. Greiter and R. Thomale, Phys. Rev. Lett. 102, 207203
(2009).

[11] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[12] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[13] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[14] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,

Phys. Rev. B 88, 020407(R) (2013).
[15] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).
[16] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795

(2012).
[17] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.

Shtrikman, Nat. Phys. 8, 887 (2012).
[18] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and

H. Q. Xu, Nano Lett. 12, 6414 (2012).
[19] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.

Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Phys. Rev. B 87,
241401(R) (2013).

[20] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.
H. MacDonald, B. A. Bernevig, and A. Yazdani, Science 346,
602 (2014).

[21] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Nature (London) 531, 206 (2016).

[22] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus,
Science 354, 1557 (2016).

[23] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, T.
Glatzel, D. Loss, and E. Meyer, npj Quantum Inf. 2, 16035
(2016).

[24] B. E. Feldman, M. T. Randeria, J. Li, S. Jeon, Y. Xie, Z. Wang,
I. K. Drozdov, B. A. Bernevig, and A. Yazdani, Nat. Phys. 13,
286 (2017).

[25] H. Zhang et al., Nat. Commun. 8, 16025 (2017).
[26] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher,

Nat. Phys. 7, 412 (2011).
[27] B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and C.

W. J. Beenakker, New J. Phys. 14, 035019 (2012).
[28] J. Li, T. Neupert, B. A. Bernevig, and A. Yazdani, Nat. Commun.

7, 10395 (2016).
[29] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.

Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Mar-
cus, K. Flensberg, and J. Alicea, Phys. Rev. X 6, 031016
(2016).

[30] T. Hyart, B. van Heck, I. C. Fulga, M. Burrello, A. R. Akhmerov,
and C. W. J. Beenakker, Phys. Rev. B 88, 035121 (2013).

[31] L. A. Landau, S. Plugge, E. Sela, A. Altland, S. M. Albrecht,
and R. Egger, Phys. Rev. Lett. 116, 050501 (2016).

[32] S. Plugge, L. A. Landau, E. Sela, A. Altland, K. Flensberg, and
R. Egger, Phys. Rev. B 94, 174514 (2016).

094307-9

https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.102.207203
https://doi.org/10.1103/PhysRevLett.102.207203
https://doi.org/10.1103/PhysRevLett.102.207203
https://doi.org/10.1103/PhysRevLett.102.207203
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1038/ncomms10395
https://doi.org/10.1038/ncomms10395
https://doi.org/10.1038/ncomms10395
https://doi.org/10.1038/ncomms10395
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514


MICHAEL SEKANIA et al. PHYSICAL REVIEW B 96, 094307 (2017)

[33] S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, New J.
Phys. 19, 012001 (2017).

[34] S. Vijay and L. Fu, Phys. Rev. B 94, 235446 (2016).
[35] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.

Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg,
C. M. Marcus, and M. H. Freedman, Phys. Rev. B 95, 235305
(2017).

[36] S. Hoffman, C. Schrade, J. Klinovaja, and D. Loss, Phys. Rev.
B 94, 045316 (2016).

[37] S. Vijay, T. H. Hsieh, and L. Fu, Phys. Rev. X 5, 041038 (2015).
[38] S. Vijay and L. Fu, Phys. Scr. T168, 014002 (2016).
[39] C. V. Kraus, P. Zoller, and M. A. Baranov, Phys. Rev. Lett. 111,

203001 (2013).
[40] C. Laflamme, M. A. Baranov, P. Zoller, and C. V. Kraus, Phys.

Rev. A 89, 022319 (2014).
[41] S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, Phys.

Rev. Lett. 107, 036801 (2011).
[42] E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher,

Phys. Rev. B 84, 014503 (2011).
[43] E. Sela, A. Altland, and A. Rosch, Phys. Rev. B 84, 085114

(2011).
[44] F. Hassler and D. Schuricht, New J. Phys. 14, 125018 (2012).
[45] R. Thomale, S. Rachel, and P. Schmitteckert, Phys. Rev. B 88,

161103(R) (2013).
[46] M. Greiter, V. Schnells, and R. Thomale, Ann. Phys. 351, 1026

(2014).
[47] M. Cheng, V. Galitski, and S. Das Sarma, Phys. Rev. B 84,

104529 (2011).
[48] D. J. Clarke, J. D. Sau, and S. Tewari, Phys. Rev. B 84, 035120

(2011).
[49] B. I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea, and F. von

Oppen, Phys. Rev. B 85, 144501 (2012).
[50] T. Karzig, G. Refael, and F. von Oppen, Phys. Rev. X 3, 041017

(2013).

[51] M. S. Scheurer and A. Shnirman, Phys. Rev. B 88, 064515
(2013).

[52] T. Karzig, A. Rahmani, F. von Oppen, and G. Refael, Phys. Rev.
B 91, 201404 (2015).

[53] T. Karzig, F. Pientka, G. Refael, and F. von Oppen, Phys. Rev.
B 91, 201102(R) (2015).

[54] C. S. Amorim, K. Ebihara, A. Yamakage, Y. Tanaka, and M.
Sato, Phys. Rev. B 91, 174305 (2015).

[55] F. L. Pedrocchi and D. P. DiVincenzo, Phys. Rev. Lett. 115,
120402 (2015).

[56] C. Knapp, M. Zaletel, D. E. Liu, M. Cheng, P. Bonderson, and
C. Nayak, Phys. Rev. X 6, 041003 (2016).

[57] V. Khemani, R. Nandkishore, and S. L. Sondhi, Nat. Phys. 11,
560 (2015).

[58] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[59] M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
[60] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339

(1988).
[61] N. Mukunda and R. Simon, Ann. Phys. 228, 205 (1993).
[62] An equivalence class of states in ray space is a projection

operator |ψ〉〈ψ | to the equivalence class represented by |ψ〉.
This is a natural projection that maps each vector to the ray on
which it lies.

[63] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593
(1987).

[64] M. Sadkane and R. B. Sidje, Numer. Algorithms 20, 217
(1999).

[65] C. Moler and C. V. Loan, SIAM Rev. 45, 3 (2003).
[66] M. Moliner and P. Schmitteckert, Phys. Rev. Lett. 111, 120602

(2013).
[67] I. C. Fulga, B. van Heck, M. Burrello, and T. Hyart, Phys. Rev.

B 88, 155435 (2013).

094307-10

https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.94.045316
https://doi.org/10.1103/PhysRevB.94.045316
https://doi.org/10.1103/PhysRevB.94.045316
https://doi.org/10.1103/PhysRevB.94.045316
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1088/0031-8949/T168/1/014002
https://doi.org/10.1088/0031-8949/T168/1/014002
https://doi.org/10.1088/0031-8949/T168/1/014002
https://doi.org/10.1088/0031-8949/T168/1/014002
https://doi.org/10.1103/PhysRevLett.111.203001
https://doi.org/10.1103/PhysRevLett.111.203001
https://doi.org/10.1103/PhysRevLett.111.203001
https://doi.org/10.1103/PhysRevLett.111.203001
https://doi.org/10.1103/PhysRevA.89.022319
https://doi.org/10.1103/PhysRevA.89.022319
https://doi.org/10.1103/PhysRevA.89.022319
https://doi.org/10.1103/PhysRevA.89.022319
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1016/j.aop.2014.08.013
https://doi.org/10.1016/j.aop.2014.08.013
https://doi.org/10.1016/j.aop.2014.08.013
https://doi.org/10.1016/j.aop.2014.08.013
https://doi.org/10.1103/PhysRevB.84.104529
https://doi.org/10.1103/PhysRevB.84.104529
https://doi.org/10.1103/PhysRevB.84.104529
https://doi.org/10.1103/PhysRevB.84.104529
https://doi.org/10.1103/PhysRevB.84.035120
https://doi.org/10.1103/PhysRevB.84.035120
https://doi.org/10.1103/PhysRevB.84.035120
https://doi.org/10.1103/PhysRevB.84.035120
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1103/PhysRevX.3.041017
https://doi.org/10.1103/PhysRevX.3.041017
https://doi.org/10.1103/PhysRevX.3.041017
https://doi.org/10.1103/PhysRevX.3.041017
https://doi.org/10.1103/PhysRevB.88.064515
https://doi.org/10.1103/PhysRevB.88.064515
https://doi.org/10.1103/PhysRevB.88.064515
https://doi.org/10.1103/PhysRevB.88.064515
https://doi.org/10.1103/PhysRevB.91.201404
https://doi.org/10.1103/PhysRevB.91.201404
https://doi.org/10.1103/PhysRevB.91.201404
https://doi.org/10.1103/PhysRevB.91.201404
https://doi.org/10.1103/PhysRevB.91.201102
https://doi.org/10.1103/PhysRevB.91.201102
https://doi.org/10.1103/PhysRevB.91.201102
https://doi.org/10.1103/PhysRevB.91.201102
https://doi.org/10.1103/PhysRevB.91.174305
https://doi.org/10.1103/PhysRevB.91.174305
https://doi.org/10.1103/PhysRevB.91.174305
https://doi.org/10.1103/PhysRevB.91.174305
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1103/PhysRevX.6.041003
https://doi.org/10.1103/PhysRevX.6.041003
https://doi.org/10.1103/PhysRevX.6.041003
https://doi.org/10.1103/PhysRevX.6.041003
https://doi.org/10.1038/nphys3344
https://doi.org/10.1038/nphys3344
https://doi.org/10.1038/nphys3344
https://doi.org/10.1038/nphys3344
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1006/aphy.1993.1093
https://doi.org/10.1006/aphy.1993.1093
https://doi.org/10.1006/aphy.1993.1093
https://doi.org/10.1006/aphy.1993.1093
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1023/A:1019199700323
https://doi.org/10.1023/A:1019199700323
https://doi.org/10.1023/A:1019199700323
https://doi.org/10.1023/A:1019199700323
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1103/PhysRevLett.111.120602
https://doi.org/10.1103/PhysRevLett.111.120602
https://doi.org/10.1103/PhysRevLett.111.120602
https://doi.org/10.1103/PhysRevLett.111.120602
https://doi.org/10.1103/PhysRevB.88.155435
https://doi.org/10.1103/PhysRevB.88.155435
https://doi.org/10.1103/PhysRevB.88.155435
https://doi.org/10.1103/PhysRevB.88.155435



