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1. Introduction

With the quantum theory, as it was called at the time, nearing its first centennial anniversary, it is a
rare opportunity to study a one-dimensional ideal oscillator which has not been solved long ago. The
motion of a (non-relativistic) quantum particle with a linear dispersion, �p=v· |p|, where p=ℏk is the
momentum and v is a parameter, in a linearly confining potential V(x)=F· |x|, where x is the position
and the constant force F again a parameter, however, appears to provide an example. While the problem
may look trivial at first, it is not. The usual method of quantization by replacing either p→−iℏ ∂

∂x
or x→iℏ ∂

∂p cannot be applied directly, as one cannot sensibly define the absolute value of a differential

operator.
The problem is not just of academic interest, but even of relevance to a recent experiment [1,2].

Spinons, the fractionally quantized and elementary excitations in antiferromagnetic spin chains, are
well known to disperse linearly at low energies, with v proportional to the antiferromagnetic exchange
constant J along the chains [3]. Spinons carry the spin of an electron but no charge. Since the anti-
particle for a spinon is just another spinon with its spin reversed, the spectrum has only a positive
energy branch. As one couples two chains antiferromagnetically [4], the coupling J⊥ will induce a linear
. All rights reserved.
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confinement potential between pairs of spinons, as the rungs between two spinons become effectively
decorrelated [5,6]. To a very first approximation, the energy gap in the spin ladder is hence given by the
ground state energy of the bi-linear oscillator
where

Carryi

We ex
the lo

which

Let us
H = v jp j + F jx j ; ð1Þ

we study in this article. The ground state is symmetric under one-dimensional parity x→−x and
which
corresponds to a spinon pair in the triplet channel, while the first excited state is antisymmetric under
x→−x and corresponds to the lowest singlet excitation in the spin ladder. It the context of this problem,
it is hence desirable to knowwhat the lowest eigenvalues of Eq. (1) are. From dimensional considerations,
it is immediately clear that they must scale like

ffiffiffiffiffiffiffiffiffi
ℏvF

p
.

2. Quasi-classical approach

Even though the usual method of quantization cannot be applied directly, the problem can still be
approached quasi-classically. Applying the Bohr–Sommerfeld quantization condition [7]
1
2πℏ

∮pdx = n +
1
2
; ð2Þ

the integration extends over the entire classical orbit, results with pðxÞ = En−F jx j
v

in

1
2πℏ

4
Z En = F

0

En−Fx
v

dx = n +
1
2
: ð3Þ

ng out the integration yields

En =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π n +

1
2

� �s
⋅
ffiffiffiffiffiffiffiffi
ℏvF

p
: ð4Þ

pect this to constitute a reasonable approximation for the higher energy levels, but probably not for
w lying ones. Indeed, this is what we will find as we solve the problem numerically below.
3. Mathematical formulation

Before proceeding with the numerical solution, let us rewrite the eigenvalue equation Hψ(x)=Eψ(x) as
a differential (and integral) equation in position space. For convenience, we consider the dimensionless
Hamiltonian
H = jk j + jx j ; ð5Þ

is obtained from Eq. (1) by rescaling

Hffiffiffiffiffiffiffiffi
ℏvF

p →H;

ffiffiffiffiffiffi
ℏv
F

r
k→k; and

ffiffiffiffiffiffi
F
ℏv

r
x→x: ð6Þ

denote the eigenvalues of Eq. (5) by λ and the eigenfunctions by ϕ(x). With

ϕ̃ kð Þ≡ 1ffiffiffiffiffiffi
2π

p
Z ∞

−∞
ϕ xð Þe−ikxdx; ð7Þ

ϕ xð Þ = 1ffiffiffiffiffiffi
2π

p
Z ∞

−∞
ϕ̃ kð Þeikxdk; ð8Þ
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y write

jk jϕ xð Þ = 1ffiffiffiffiffiffi
2π

p
Z ∞

−∞
k sign kð Þϕ̃ kð Þeikxdk

= −i
∂
∂x

1ffiffiffiffiffiffi
2π

p
Z ∞

−∞
sign kð Þϕ̃ kð Þeikxdk

= −i
∂
∂x

1ffiffiffiffiffiffi
2π

p
Z ∞

−∞
s̃ x−x′ð Þϕ x′ð Þdx′;

ð9Þ

sign kð Þ = + 1 k≥0
− 1 kb0

�

sign function and

s̃ xð Þ = 1ffiffiffiffiffiffi
2π

p lim
�→0

Z ∞

−∞
sign kð Þe−� jk j eikxdk

=
2iffiffiffiffiffiffi
2π

p lim
�→0

x
x2 + �2

=
2iffiffiffiffiffiffi
2π

p P 1
x
;

ð10Þ

P denotes the principal part, is the Fourier transform thereof. The eigenfunctions ϕ(x) with
alues λ of Eq. (5) are hence the solutions of

1
π

∂
∂xP

Z ∞

−∞

ϕ x′ð Þ
x−x′

dx′ + jx jϕ xð Þ = λϕ xð Þ ð11Þ

Eq. (11) provides a clear mathematical formulation of the problem, we are not aware of any method
e it analytically, nor consider it a viable starting point for numerical work.
4. Numerical solution

To solve Eq. (5) numerically, we exactly diagonalize a finite Hamiltonian matrix we obtain through
discretization of position space with a suitably chosen cutoff.

Let this discrete Hilbert space consist of N sites, with the positions
xi = a i−N + 1
2

� �
ð12Þ

i=1, 2, …N and a is the lattice constant. The cutoff |xc|=Na/2 in real space implies a cutoff

λc =
Na
2

ð13Þ

potential energy in Eq. (5), which must be chosen significantly larger than the largest eigenvalue

wish to evaluate reliably. (From Eq. (4), we expect λn to be of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π n + 1

2

� �r
.) On the other hand,

ssically allowed part of the Hilbert space will contain only of the order of N/λc sites for the ground
which implies that we must further require λc≪N.
state,

The lattice provides us simultaneously with a cutoff in momentum space, −π≤ak≤π. We may hence
expand |k| in a Fourier series,
jak j = b0
2

+ ∑
∞

m=1
bmcos makð Þ ð14Þ
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as one
notati
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we ob
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bm =
1
π

Z π

−π
dk jk jcos mkð Þ =

π m = 0

− 4
π

1
m2 modd

0 otherwise

;

8>>><
>>>:

ð15Þ

may easily verify through integration by parts. We proceed by writing Eq. (5) in second quantized
on,

H = ∑
k

jk jc†kck + ∑
i

jxi jc†i ci

=
1
a
∑
k

jak jc†kck + a∑
i
ji−N + 1

2 jc†i ci ð16Þ

c†k =
1ffiffiffiffi
N

p ∑
i
eikxi c†i ; c†i =

1ffiffiffiffi
N

p ∑
k
e−ikxi c†k: ð17Þ

∑
k
cos makð Þc†kck =

1
2
∑
i

c†i ci + m + h:c:
� �

; ð18Þ

tain

H = ∑
N

i;j=1
c†i hijcj ð19Þ

hij =

N
2λc

π
2

+
2λc

N ji−N + 1
2 j i = j

− N
2λc

2
π

1
i−jð Þ2 i−jodd

0 otherwise

;

8>>>>>><
>>>>>>:

ð20Þ

we have substituted 2λc

N
for a.
where

Numerical diagonalization of hij yields the eigenvalues λn and eigenfunctions ϕn(xi) of Eq. (5), and
hence the eigenvalues and eigenfunctions
En = λn

ffiffiffiffiffiffiffiffi
ℏvF

p
; ψn xð Þ = ϕn

ffiffiffiffiffiffi
F
ℏv

r
x

 !
ð21Þ

(1). The results for N=20,001, λc=20 are listed in Table 1 and Figs. 1 and 2. (We have chosen an odd
of Eq.
number for N, because this means that the position x=0, where the potential |x| is not differentiable,
coincides with a lattice point. Including this point improves the convergence of the eigenvalues and
functions for n even.) From Table 1, we see that the quasi-classically obtained eigenvalues converge
towards the numerically obtained values as n is increased.

The eigenfunctions obtained numerically can be approximated by
ϕn xð Þ = xnexp −an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + b2n

q
+ cn

� �
ð22Þ



for n=

for n=
obtain
sugge
and as

Table 1
Eigenvaluesλn for n=0,…, 19obtained byexact diagonalization of Eq. (20) forN=20,001,λc=20. Fromthe scaling behaviorwithN and
comparisons of different values for λc, we estimate the error due to the finite size to be less than±0.00002 for n even and±0.00001 for n
odd. For comparison, we also list the quasi-classical values (Eq. (4)).

m λ2m λ2m+1 λ2m λ2m+1

Numerically Quasi-classically

0 1.10408 2.23229 1.2533 2.1708
1 2.77281 3.33002 2.8025 3.3160
2 3.75118 4.16416 3.7599 4.1568
3 4.51300 4.85855 4.5189 4.8541
4 5.16402 5.46623 5.1675 5.4631
5 5.74065 6.01303 5.7434 6.0107
6 6.26457 6.51426 6.2666 6.5124
7 6.74763 6.97965 6.7493 6.9782
8 7.19841 7.41595 7.1997 7.4147
9 7.62246 7.82800 7.6236 7.8269

Fi
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0, 1 and by

ϕn xð Þ = xn−2 d2n−x2
� �

exp −an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + b2n

q
+ cn

� �
ð23Þ

2, 3, with parameters an, bn, cn, and dn listed in Table 2. Comparisons of these fits to the numerically
ed eigenfunctions are shown in Fig. 3. The fits are not as good an approximation as Fig. 3 may
st, however, as they fall off as exp(−a|x|) while the true eigenfunctions ϕn(x) fall off as 1/x3 for n even
1/x4 for n odd as x→∞.
g. 1. The first four symmetric eigenfunctions ϕn(−x)=ϕn(x) for n even obtained numerically for N=20,001, λc=20.



Fig. 2. The first four antisymmetric eigenfunctions ϕn(−x)=−ϕn(x) for n odd obtained numerically for N=20,001, λc=20.
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This asymptotic behavior of the eigenfunctions can be understood physically through second order
perturbation theory. If we consider a small region around a point x≫λ (i.e., very far away from the
classically allowed region for the eigenstate with energy λ), the amplitude there will be governed by
scattering into this region from the classically allowed region, which contains almost the entire amplitude
of the state. From Eq. (20), this scattering is proportional to
Table 2
Parame
for N=

n

k
1
2
3

Z λn + λt

−λn−λt

ϕn x′ð Þ
x−x′ð Þ2 dx

′∝

1
x2

n even

1
x3

n odd
;

8>><
>>: ð24Þ

λt is a cutoff to ensure that we include the tail immediately surrounding the classically allowed
where
region in the integral (from Figs. 1 and 2, we see that λt=3 would be a reasonable choice). With the
potential energy in the region we consider given by |x|, the amplitude for finding the particle there will be
proportional to 1/x3 for n even and as 1/x4 for n odd.
ters obtained numerically from fitting Eqs. (22) and (23) to the functions ϕn(x) obtained by exact diagonalization of Eq. (20)
20,001, λc=20.

an bn cn dn

1.1849 0.57196 0.4681
1.7443 0.96843 1.9494
1.9517 0.94194 2.2398 0.64431
2.2842 1.17617 2.9428 1.15453
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The numerical work reported here indicates that, within the limits of accuracy, the solutions are
differentiable at x=0, i.e., the expansion of ϕn(x) around x=0 does not contain a term proportional to |x|
for n even or x|x| for n odd. Unfortunately, we have not been able to reach a conclusion regarding higher
terms, and cannot tell whether there are terms proportional to x2|x| for n even or x3|x| for n odd.

5. Further considerations

It would be highly desirable to identify the exact eigenvalues and functions of Eq. (5). Unfortunately, we
have as of yet not even succeeded in obtaining those for the ground state. A few thoughts on this problem,
however, are possibly worth mentioning.

5.1. Fourier symmetry

As the Hamiltonian (5) maps onto itself under Fourier transformation, and all the eigenstates are non-
degenerate, the eigenfunctions ϕ(x) must likewise map into itself under Fourier transformation (7),
Fig. 3. J
crosses
ϕ̃n xð Þ = −ið Þnϕn xð Þ: ð25Þ

ondition is directly fulfilled by certain functions, like the Gaussian eigenfunctions of the harmonic� 	
This c
oscillator H = 1

2
k2 + x2 ,
ϕn xð Þ = x− ∂
∂x

� �n

exp − x2

2

 !
;

uxtapositions of the first four eigenfunctions ϕn(x) obtained numerically (lines) with the fits described in the text (black
).
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function

ϕ0 xð Þ = 1
cosh

ffiffiffiffi
π
2

q
x

� �
:

genfunctions of Eq. (5), however, do not need to be of any such particular form. For example, the

ϕn xð Þ = in φ̃n xð Þ + φn xð Þ ð26Þ

es Eq. (25) in general, as Eq. (7) implies ˜̃φnðxÞ = φnð−xÞ = ð−1ÞnφnðxÞ.
satisfi
It is conceivable that the function φ(x) displays the required asymptotic behavior mentioned above,

while the Fourier transform φ̃(x) falls off more rapidly. A first guess for the ground state along these lines
might be
φ0 xð Þ = 1

x2 + a2
� 	3=2 ; ð27Þ

ts Fourier transform given by a modified Bessel function of the second kind,

φ̃0 xð Þ =
ffiffiffi
2
π

r
jx j
a

K1 a jx jð Þ: ð28Þ

≈1.172, this provides a very reasonable approximation, but does not solve the problem exactly.
5.2. Asymptotic behavior

Even though we are unable to solve Eq. (11), we can use it to determine the asymptotic behavior of the
solutions ϕn(x) as x→∞ accurately. Let us first consider even eigenfunctions ϕn(−x)=ϕn(x). Then Eq. (11)
becomes
1
π

∂
∂xP

Z ∞

0

2xϕn x′ð Þ
x2−x′2

dx′ + jx jϕn xð Þ = λnϕn xð Þ; ð29Þ

+∞, we obtain

− 2
π
1
x2

Z ∞

0
ϕn x′ð Þdx′ + O

1
x4

� �
+ x−λnð Þϕn xð Þ = 0: ð30Þ

qs. (7) and (25), however, we may write

Z ∞

−∞
ϕn xð Þdx =

ffiffiffiffiffiffi
2π

p
ϕ̃n 0ð Þ = −ið Þn

ffiffiffiffiffiffi
2π

p
ϕn 0ð Þ; ð31Þ

nce obtain for n even

ϕn xð Þ = −1ð Þn=2
ffiffiffi
2
π

r
ϕn 0ð Þ 1

x3
+

λn

x4
+ O

1
x5

� �� �
: ð32Þ
Similarly, we write Eq. (11) for the odd eigenfunctions ϕn(−x)=−ϕn(x)
1
π

∂
∂xP

Z ∞

0

2x′ϕn x′ð Þ
x2−x′2

dx′ + jx jϕn xð Þ = λnϕn xð Þ; ð33Þ
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+∞, we obtain

− 4
π
1
x3

Z ∞

0
x′ϕn x′ð Þdx′ + O

1
x5

� �
+ x−λnð Þϕn xð Þ = 0 ð34Þ

Eqs. (7) and (25), the integral becomes

Z ∞

−∞
xϕn xð Þdx =

ffiffiffiffiffiffi
2π

p
⋅i ∂∂k ϕ̃n kð Þj

k=0

= −ið Þn−1 ffiffiffiffiffiffi
2π

p
ϕ′
n 0ð Þ:

ð35Þ

ields for n odd

ϕn xð Þ = −1ð Þ
n−1ð Þ
2 2

ffiffiffi
2
π

r
ϕ′
n 0ð Þ 1

x4
+

λn

x5
+ O

1
x6

� �� �
: 36

ymptotic behavior emphasizes how different the bi-linear oscillator (5) is from the well known
nic oscillator.
5.3. Integral relations

We can apply some general properties of Hilbert transformations, defined as [8]
H f½ � xð Þ≡ 1
π
P
Z ∞

−∞

f x′ð Þ
x−x′

dx′; ð37Þ

P denotes the principle part, to rewrite Eq. (11). With

∂
∂xH f½ � xð Þ = H f ′

h i
xð Þ; ð38Þ

H H f½ �½ � xð Þ = −f xð Þ; ð39Þ

tain

∂ϕn xð Þ
∂x +

1
π
P
Z ∞

−∞

λn− jx′ jð Þϕn x′ð Þ
x−x′

dx′ = 0: ð40Þ
Expanding the integral in the limit x→∞, we obtain for n even
∂ϕn xð Þ
∂x =

2
π
1
x

Z ∞

0
λn−xð Þϕn xð Þdx + O

1
x3

� �
: ð41Þ
With Eq. (32), this implies
Z ∞

0
x−λnð Þϕn xð Þdx = 0; ð42Þ



and w

With E

and w
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ith Eq. (31)

Z ∞

0
xϕn xð Þdx = −1ð Þn=2

ffiffiffi
π
2

r
λnϕn 0ð Þ: ð43Þ
Similarly, we obtain in this limit for n odd
∂ϕn xð Þ
∂x =

2
π
1
x2

Z ∞

0
x λn−xð Þϕn xð Þdx + O

1
x4

� �
: ð44Þ

q. (36), this implies
Z ∞

0
x x−λnð Þϕn xð Þdx = 0; ð45Þ

ith Eq. (35)

Z ∞

0
x2ϕn xð Þdx = −1ð Þ

n−1ð Þ
2

ffiffiffi
π
2

r
λnϕn 0ð Þ: ð46Þ
6. Conclusion

We have succeeded in solving the bi-linear oscillator H=v|p|+F|x| both quasi-classically and
numerically. In an attempt to solve it analytically as well, we have derived a differential and integral
equation, and obtained the asymptotic behavior for large x. We further formulated several conditions the
solutions must satisfy. The problem of obtaining an analytical solution, however, is still open.

Acknowledgments

I am grateful to R. von Baltz, W. Lang, A.D. Mirlin, and P. Wölfle for their valuable discussions of this
problem.

References

[1] B. Lake, A.M. Tsvelik, S. Notbohm, D.A. Tennant, T.G. Perring, M. Reehuis, C. Sekar, G. Krabbes, B. Büchner, Nat. Phys. 6 (2009) 50.
[2] M. Greiter, Nat. Phys. 6 (2009) 5.
[3] T. Giamarchi, Quantum Physics in One Dimension, Oxford University Press, Oxford, 2004.
[4] E. Dagotto, T.M. Rice, Science 271 (1996) 618.
[5] D.G. Shelton, A.A. Nersesyan, A.M. Tsvelik, Phys. Rev. B 53 (1996) 8521.
[6] M. Greiter, Phys. Rev. B 66 (2002) 054505.
[7] L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Butterworth-Heinemann, Oxford, 1981.
[8] A. Erdélyi (Ed.), Tables of Integral Transforms, vol. II, McGraw-Hill, New York, 1954.


	On the linear dispersion–linear potential quantum oscillator
	Introduction
	Quasi-classical approach
	Mathematical formulation
	Numerical solution
	Further considerations
	Fourier symmetry
	Asymptotic behavior
	Integral relations

	Conclusion
	Acknowledgments
	References




