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Two-leg t-J ladder: A spin liquid generated by Gutzwiller projection of magnetic bands

Martin Greiter*
Department of Physics, Stanford University, Stanford, California 94305

~Received 24 January 2002; published 28 March 2002!

The ground state of the two-leg Heisenberg ladder is identified as a resonating-valence-band-RVB type spin
liquid, which is generated by Gutzwiller projection of tight-binding bands with fluxp per plaquet. Explicit trial
wave functions for the magnon and hole excitations are formulated in terms of spinons and holons. The
spinon-holon bound state is shown to violateP and T. This is interpreted as a manifestation of fractional
statistics.
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Itinerant antiferromagnets confined to coupled chains
t-J ladders, have enjoyed enormous popularity over the p
few years.1–8 They provide the simplest example of a gene
spin liquid in dimensions greater than one, and the only
ample thereof which is presently fully amenable to numeri
methods.~It is furthermore widely believed that they cons
tute the first step towards understanding the two-dimensio
t-J model starting from one dimension, but I rather belie
the two-leg ladder to be just a special case.! These models
are approximately realized in (VO)2P2O7, SrCu2O3, and
Sr142xCaxCu24O41, and hence accessible to experiment.

The t-J Hamiltonian for the ladder is given by

Ht2J52 (
^ i j &s

t i j cis
† cj s1

1

2 (̂
i j &

Ji j Si•Sj , ~1!

where (t i j ,Ji j )5(t,J) if i and j are nearest neighbors alon
one of the chains, and (t' ,J') if they are nearest neighbor
across the rungs; each pair^ i j & is summed over twice and n
doubly occupied sites are allowed.

One of the most striking features of the undoped two-
t-J ladder is the persistence of a spin gapD'J'/2 in the
weak coupling limit J'!J. ~For sufficiently strong cou-
plings J'.J, the system can be described by a perturba
expansion around the strong coupling limit consisting of s
glets across the rungs,9 which yields a spin gapD'J'2J
1 1

2 J2/J' ; a weak coupling expansion starting from deco
pled chains, however, is not possible, as the individual s
chains are quantum critical in the sense that the tiniest
turbation can change the universality class.! In this paper, we
will formulate a microscopic theory of the two-legt-J lad-
der, which is universally valid atall ratios J' /J, in terms of
explicit spin liquid trial wave functions for the ground stat
magnon~spinon-spinon bound state!, and the hole~holon-
spinon bound state! excitations.

The trial wave function for the ground state of the Heise
berg ladder, thet-J ladder without any holes, is constructe
as follows. Consider a tight binding ladder with fluxp per
plaquet, hopping terms of magnitudet̃ along the chains, and
t̃' across the rungs. In the gauge depicted in Fig. 1, we w
the single particle Bloch statescq( j )5eiq•Rjuq( j ), where
the uq( j ) are strictly periodic in both real and momentu
space and obey
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H̃qS uq~1!

uq~2!
D 5ẼqS uq~1!

uq~2!
D , ~2!

where

H̃q52 t̃ S cosqx me2 iqy

meiqy 2cosqx
D ~3!

with m[ t̃'/2t̃ . Since Eq.~2! is a two-dimensional Dirac
equation, i.e.,H̃q

2 is diagonal, we immediately obtain th

eigenvaluesẼq562 t̃Acos2qx1m2. The coupling between
the tight-binding chains hence induces an energy gap
magnitude 2t̃' . We now fill the lower band twice, once with
up-spin electrons, and once with down-spin electrons;
resulting Slater determinantucSD& is obviously a spin singlet.
The spin liquid trial wave function for the Heisenberg ladd
with J' /J5 t̃' / t̃ is obtained by eliminating all the doubl
occupied sites via Gutzwiller projection

uc trial&5PGucSD&. ~4!

Since the Gutzwiller projectorPG commutes with the tota
spin operator,uc trial& is also a singlet. This trial wave func
tion is as accurate an approximation as the Haldane-Sha
state10 for the one-dimensional Heisenberg chain in the we
coupling limit J' /J50, and exact in the strong couplin
limit J' /J→`; the approximation has its worst point at is
tropic coupling~see Table I!.11,12

There are essentially two ways of constructing spinon a
holon excitations for spin liquids~they are obtained from
each other by annihilating or creating an electron on
spinon or holon site!. The first one is Anderson’s projectio
technique:13 inhomogenities in both spin and charge crea

FIG. 1. Flux band structure of a tight binding ladder with fluxp

per plaquet fort̃' / t̃ 50 ~dotted lines! and t̃' / t̃ 51 ~solid lines!.

The energy gap is given by 2t̃' .
©2002 The American Physical Society43-1
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before Gutzwiller projection yield inhomogenities in sp
only after projection. Anderson writes a state with tw
spinons localized at sitesi and j

uc i↑, j↓&5PGci↑
† cj↑ucSD&. ~5!

In the case of the ladder, however, the spinons are not
particles, but bound into pairs by a linear confineme
force.14 To obtain the magnon trial wave function

ucmagnon~k!&5(
i , j

f i , j~k!uc i↑, j↑&, ~6!

a hence nontrivial internal wave functionf i , j (k) for the
spinon-spinon bound state is required.

It is therefore expedient to use the second method, wh
has been successful in describing the fractionally char

FIG. 2. Magnetic tight-binding configuration for a holon of th
chiral spin liquid~a! as proposed by Rokhsar~cutting all the links to
a given site and adjusting the flux according to Rokhsar’s loop ru
generates a stationary holon ors holon! or ~b! by combining this
flux adjustment with Anderson’s projection technique~only the
phases of the hopping parameters around the holon site are
justed!.

TABLE I. Energy expectation values and nearest neighbor s
correlations for the spin liquid trial wave functions in comparis
with the exact ground states of a 2310 Heisenberg ladder with
periodic boundary conditions, as well as overlaps between
wave functions and exact ground states. Throughout this article
energies quoted are in units of max(J' ,J). The boundary phase
before Gutzwiller projection has been 0.

J' /J Etot % over- ^SW iSW j& i ^SW iSW j&'

exact trial off lap exact trial exact trial

0 -9.031 -9.015 0.2 0.997 -0.452 -0.451 0.000 0.0
0.1 -9.062 -9.024 0.4 0.986 -0.450 -0.451 -0.062 -0.0
0.2 -9.155 -9.073 0.9 0.969 -0.445 -0.449 -0.123 -0.0
0.5 -9.755 -9.568 1.9 0.952 -0.420 -0.413 -0.269 -0.2
1 -11.577 -11.346 2.0 0.941 -0.354 -0.302 -0.450 -0.5
2 -8.594 -8.444 1.8 0.957 -0.222 -0.143 -0.638 -0.7
5 -7.664 -7.594 0.9 0.981 -0.085 -0.029 -0.732 -0.7
10 -7.539 -7.513 0.3 0.993 -0.040 -0.007 -0.746 -0.7
` -7.500 -7.500 0.0 1.000 0.000 0.000 -0.750 -0.7
13444
ee
t

h
d

solitons in polyacytelene:15 Rokhsar16 constructs elementary
excitations of spin liquids via localized midgap states, wh
are either occupied by a single electron~spinon! or left un-
occupied~holon!. The topology of the ladder dictates th
midgap states can only be created in pairs, which implies
we automatically obtain spinon-spinon~or holon! bound
states rather then isolated spinons~or holons!. This general
observation, however, leaves us still with a large numbe
possible choices for the midgap states; most construct

s

ad-

FIG. 3. Magnetic tight-binding configurations and the corr
sponding density of states for the ladder with a spinon bound to~a!
a stationarys holon or~b! a mobile holon before Gutzwiller projec
tion. Only the latter flux configuration violatesP andT.
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TABLE II. Energy expectation values including individual con
tributions to the kinetic energy from chains and rungs and overl
for the trial wave functions describing holon-spinon bound state
comparison with the exact one hole eigenstates for a period
38 ladder witht' /J'5t/J51 for three ratiosJ' /J. The energies
are in units of max(J' ,J); the transverse momentum is alwaysky

50, as aky5p state corresponds to a hole~holon-spinon bound
state! plus a magnon~spinon-spinon bound state!. The trial wave
functions are given byuc trial&5N(uc1&1auc2&), where uc1& is
the trial wave function constructed with the flux configuratio
shown in Fig. 3~b! and uc2& its P or T conjugate. The boundary
phase for the flux band structure before projection has been 0
the chain containing the holon, andp for the other chain.

J' /J Etot % over- Et i
Et'

kx /p exact trial off lap exact trial exact trial

0 -7.40 -6.88 7.1 0.560 -1.51 -0.45 0.04 0.0
1/4 -7.92 -7.83 1.1 0.975 -1.63 -1.62 0.01 0.0

0.2 1/2 -8.17 -8.07 1.2 0.952 -1.89 -1.87 -0.02 0.0
3/4 -7.59 -7.22 4.9 0.540 -1.49 -1.01 -0.10 0.0
1 -7.21 -5.98 17 0.000 -1.55 0.45 -0.09 0.0

0 -9.04 -8.36 7.6 0.776 -0.88 0.42 -0.38 -0.8
1/4 -9.46 -8.91 5.8 0.849 -1.21 -0.47 -0.45 -0.6

1 1/2 -9.89 -9.52 3.7 0.894 -1.54 -1.23 -0.59 -0.5
3/4 -9.84 -9.47 3.8 0.917 -1.35 -0.99 -0.81 -0.7
1 -9.67 -9.19 5.0 0.917 -1.07 -0.42 -0.98 -0.8

0 -6.20 -6.12 1.3 0.981 0.13 0.19 -0.96 -1.0
1/4 -6.25 -6.18 1.1 0.984 0.08 0.11 -0.97 -0.9

5 1/2 -6.38 -6.33 0.7 0.987 -0.05 -0.04 -0.98 -0.9
3/4 -6.50 -6.46 0.7 0.988 -0.17 -0.16 -0.99 -0.9
1 -6.55 -6.50 0.7 0.988 -0.21 -0.19 -1.00 -1.0
3-2
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yield satisfactory magnon, but only very few acceptable h
trial wave functions. To identify those, let us step back a
take a broader view.

The spin liquid proposed above is, in fact, a special c
of the Kalmeyer-Laughlin chiral spin liquid,17 obtained by
imposing a periodic boundary condition with a periodicity
only two lattice spacings in they direction. This chiral spin
liquid may be generated from a tight-binding lattice with flu
p per plaquet and hopping magnitudest̃ and 1

2 t̃' in x andy
directions, respectively; theP andT violating diagonal hop-
ping elements, which are otherwise required to open an
ergy gap, cancel due to the boundary condition.

Spinons and holons for the chiral spin liquid may be co
structed via Anderson’s method or via midgap states; Ro
sar creates a midgap state in the flux band structure be
projection by cutting all the links to a given site and adju
ing the flux according to his loop rules, which require th
the kinetic energy on the loops around each plaquet is m
mal @see Fig. 2~a!#. The resulting holon is not nearly as mo
bile as Anderson’s, but optimal with regard to the magne
energy; it adequately describes stationary charge excitati
We call it a stationary holon or ‘‘s holon.’’ To obtain the
generic and mobile holon, we create a midgap state by
justing the flux according to Rokhsar’s procedure~i.e., we
create a defect of fluxp around the holon site! without cut-
ting any links ~i.e., we adjust the hopping phases witho
adjusting the magnitudes!, and then project such that this si
is unoccupied@see Fig. 2~b!#. This holon is equivalent to
Anderson’s in the case of the chiral spin liquid, but mo
generally applicable.

The flux configurations used to constructs-holon-spinon
and holon-spinon bound states for the ladder are show

TABLE III. As in Table II, but now for spinon-spinon bound
states~magnons! with ky5p obtained by creation of an electron
the holon site. Forkx50, spinetto-spinon bound states yield bet
trial wave functions~the energy is only 0.4% off atJ' /J50.2, and
2.7% off atJ' /J51).

J' /J Etot % over- EJi
EJ'

kx /p exact trial off lap exact trial exact trial

0 -6.31 -5.86 7.2 0.844 -6.23 -5.70 -0.09 -0.1
1/4 -6.16 -6.13 0.4 0.994 -6.08 -6.08 -0.08 -0.0

0.2 1/2 -5.60 -5.56 0.7 0.983 -5.44 -5.47 -0.16 -0.
3/4 -5.96 -5.89 1.1 0.961 -5.70 -5.73 -0.26 -0.1
1 -6.98 -6.94 0.6 0.990 -6.73 -6.76 -0.25 -0.1

0 -7.33 -6.99 4.6 0.885 -5.11 -3.79 -2.22 -3.2
1/4 -7.24 -7.01 3.1 0.927 -4.78 -3.74 -2.46 -3.2

1 1/2 -7.28 -7.13 2.0 0.961 -4.11 -3.44 -3.18 -3.6
3/4 -7.96 -7.87 1.1 0.981 -4.56 -4.22 -3.39 -3.6
1 -8.73 -8.63 1.1 0.982 -5.68 -5.36 -3.04 -3.2

0 -4.91 -4.86 1.0 0.986 -0.04 0.12 -4.88 -4.9
1/4 -4.96 -4.92 0.9 0.988 -0.07 0.07 -4.89 -4.9

5 1/2 -5.09 -5.06 0.6 0.991 -0.18 -0.08 -4.91 -4.9
3/4 -5.24 -5.20 0.7 0.991 -0.34 -0.23 -4.90 -4.9
1 -5.31 -5.26 0.9 0.987 -0.43 -0.28 -4.88 -4.9
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Figs. 3~a! and 3~b!. In the case of thes holon, we cut all the
links to a given site; as the topology of the ladder does
provide a context for a flux adjustment around this site,
obtain a second midgap state, and hence a spinon, loca
nearby. This trial wave function describes a stationary ho
To construct a mobile hole, we create the midgap states
only adjusting the flux, and project such that the holon site
unoccupied; as we are creating two rather than one mid
state, we remove fluxp/2 from each neighboring plaquet.18

The flux configuration now violatesP andT, and the holon-
spinon bound state carries a chirality quantum numb
which is 1 for the configuration shown in Fig. 3~b!, and
2 for its complex conjugate; states of opposite chiralit
map into each other underP or T. The final trial wave func-
tions for the hole is a linear superposition of the holo
spinon bound states of both chiralities at each momentu

FIG. 4. Dispersions for a single~a! hole ~holon-spinon bound
state! and ~b! magnon~spinon-spinon bound state! as predicted by
the spin liquid proposed here in comparison with the exact disp
sions for a 238 ladder withJ'5J5t'5t51 ~see Tables II and
III ! and periodic~or antiperiodic! boundary conditions. The dotte
lines correspond to the individual1 and 2 chirality trial wave
functions@generated from the tight-binding configuration shown
Fig. 3~b! and itsP or T conjugate, respectively#.

TABLE IV. As in Table II, but now with J' /J5t' /t51 for
different ratios t/J. The momentum is (kx ,ky)5(p/2,0), which
corresponds to the ground state of the 238 ladder with periodic
boundary conditions. Fort/J<0.5, data fors-holon-spinon bound
states are shown as well, marked with an asterisk; these adequ
describe stationary holes (t50).

t/J Etot % over- Et i
Et'

exact trial off lap exact trial exact trial

0 -8.18 -7.88 3.7 0.888 0.00 0.00 0.00 0.0
* -8.00 2.2 0.938 0.00 0.00

0.2 -8.37 -8.14 2.8 0.927 -0.17 -0.14 -0.10 -0.1
* -8.12 2.9 0.923 0.00 -0.13

0.5 -8.87 -8.63 2.7 0.929 -0.65 -0.53 -0.28 -0.3
* -8.32 6.3 0.862 0.00 -0.32

1 -9.89 -9.52 3.7 0.894 -1.54 -1.23 -0.59 -0.5
2 -12.1 -11.3 6.5 0.797 -3.36 -2.63 -1.31 -1.0
5 -19.5 -16.8 14 0.585 -8.86 -6.84 -3.76 -2.3
3-3
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uchole~k!&5N(
j

eir j k~ uc j
1&1a~k!uc j

2&), ~7!

where r j is the holon cordinate anda(k) is a variational
parameter. Magnons or spinon-spinon bound states are
tained from the holon-spinon bound states by creating
electron at the holon site, which forms a spin triplet with th
spinon bound to it.

Numerical comparisons of the trial wave functions fo
holes and magnons with the exact eigenstates are prese
in Fig. 4 and in Tables II–IV. The hole trial wave function
for t' /J'5t/J51 ~see Table II! are excellent at stong cou-
pling, and less accurate at isotropic coupling; for weak co
pling, they are excellent only at momenta close to the on
hole ground states, as there is a large amplitude to find a h
and a magnon rather than just a hole at other momenta.
holon-spinon bound state wave functions adequately
scribe the hole whent andJ are comparable~see Table IV!;
for t!J, thes-holon-spinon bound state is more appropriat
while holes with sufficiently larget are detrimental to anti-
ferromagnetic correlations and eventually destabilize t
spin liquid.19 The trial wave functions for the magnons ar
generally satisfactory~see Table III!.

The P and T violation of the localized holon-spinon
bound states, or the appearance of a chirality quantum nu
ber, is a physical property of the system; any real trial wa
-
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ia
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e
or
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function for the localized hole would yield a dispersionEk

}cos(kx), and thus be inconsistent with the dispersion
tained by exact diagonalization@bottom curve in Fig. 4~a!#.20

The chirality quantum number is a manifestation of the fr
tional statistics21 of spinons and holons17,22 in dimensions
greater than one; it determines the sign of the statis
phases acquired as they encircle each other.

A state with two holons is a superposition of two holo
spinon bound states and a holon-holon bound state, w
are connected through virtual processes of annihilation
creation of spinon pairs in singlet configurations. These p
cesses mediate an effective pairing force between holes

In conclusion, we have shown that the Heisenberg
lightly doped t-J ladder can be adequately described b
Gutzwiller-type spin liquid generated from magnetic ban
This enabled us to construct explicit wave functions
spinons and holons, which are confined in pairs to form m
nons or holes. Possibly the most striking result is theP andT
violation of the hole, which indicates that spinons and hol
carry fractional statistics.
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