
Charge excitations in SU„n… spin chains: Exact results for the 1/r2 model

Ronny Thomale, Dirk Schuricht, and Martin Greiter
Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, Postfach 6980, 76128 Karlsruhe, Germany

�Received 18 July 2006; published 5 January 2007�
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the single-holon momenta, which we find fractionally spaced according to fractional statistics with statistical
parameter g=1/n.

DOI: 10.1103/PhysRevB.75.024405 PACS number�s�: 75.10.Pq, 02.30.Ik, 75.10.Jm, 05.30.Pr

I. INTRODUCTION

Since its discovery in 1988 by Haldane1 and Shastry,2 the
Haldane-Shastry model �HSM� has amply contributed to our
understanding of fractional quantization in one-dimensional
spin chains. The model provides a framework to formulate
and analyze spinons, the elementary excitations of one-
dimensional spin chains, at the level of explicit wave
functions.3,4 In particular, it was realized through this model
that spinons in SU�2� spin chains obey half-Fermi statistics.5

Kawakami6 subsequently generalized the HSM from SU�2�
spins to SU�n�, a model in which the spinon excitations obey
fractional statistics with statistical parameter �1−1/n�.7–13

The HSM was also generalized by Kuramoto and
Yokoyama14 to allow for mobile holes. The Kuramoto-
Yokoyama model �KYM� hence contains spin and charge
degrees of freedom, described by spinon and holon
excitations,15 which carry spin 1

2 but no charge and charge
+1 but no spin, respectively. While explicit wave functions
for one-holon states in the SU�2� KYM were known for
many years,16 the construction of the exact two-holon states
was achieved only recently.17 In particular, the single-holon
momenta in these states were found to be shifted by a frac-
tion of the units 2� /N appropriate for a chain with N sites,
periodic boundary conditions, and a lattice constant set to
unity. This result was interpreted as a manifestation of half-
Fermi and hence fractional statistics among the holon
excitations,18 thus confirming a conclusion reached by Ha
and Haldane15 using the asymptotic Bethe ansatz, by Kura-
moto and Kato7,8 from thermodynamics, and by Arikawa,
Yamamoto, Saiga, and Kuramoto19,20 from the electron addi-
tion spectral function of the model. Like the HSM, the KYM
can be generalized to spin symmetry SU�n�.6,15

In this article, we analyze the one-holon and two-holon
excitations of the SU�n� KYM on the level of explicit wave
functions. The article is organized as follows. In Sec. II, we
investigate the case of SU�3�. We first present the basic prop-
erties of the model including the ground state and the col-
oron excitations in the absence of holes, where the SU�3�
KYM reduces to the SU�3� HSM studied previously in a
similar framework.13 We then construct the explicit one-
holon and two-holon wave functions and derive the exact
energies and single-holon momenta. In Sec. III, we general-
ize the results to SU�n�. In particular, we review the basic
properties of the ground state and the SU�n� spinon excita-
tions before we derive the one-holon and two-holon wave

functions including their energies and momenta. In Sec. IV,
we interpret our results in terms of free holons obeying frac-
tional statistics with statistical parameter g=1/n.

II. SU(3) KURAMOTO-YOKOYAMA MODEL

A. Hamiltonian

The SU�3� Kuramoto-Yokoyama model �KYM�6 is most
conveniently formulated by embedding the one-dimensional
chain with periodic boundary conditions into the complex
plane by mapping it onto the unit circle with the sites located
at the complex positions ��=exp�i 2�

N ��, where N denotes the
number of sites and �=1, . . . ,N. For the SU�3� case, the sites
can be either singly occupied by a fermion with SU�3� spin
or empty. The Hamiltonian is given by

HSU�3� = −
�2

N2 �
�,�=1

���

N
P��

��� − ���2
, �1�

where P�� exchanges the configurations on the sites �� and
�� including a minus sign if both are fermionic. Rewriting
�1� in terms of spin and fermion creation and annihilation
operators yields

HSU�3� =
2�2

N2 �
���

N
1

��� − ���2
PG�−

1

2 �
�=b,r,g

�c��
† c�� + c��

† c���

+ J� · J� −
n�n�

3
+ n� −

1

2�PG, �2�

where we label the SU�3� spin or color index � by the colors
blue �b�, red �r�, and green �g�. The Gutzwiller projector
enforces at most single occupancy on all sites, and is explic-
itly given by

PG = �
�=1

N

�1 − n�bn�r − n�bn�g − n�rn�g + 2n�bn�rn�g� ,

�3�

where n�=c�b
† c�b+c�r

† c�r+c�g
† c�g is the charge occupation

operator at site ��. Furthermore, we have introduced J�

= 1
2���c��

† ���c��, the eight-dimensional SU�3� spin vector,
where � denotes the vector consisting of the eight Gell-Mann
matrices �see Appendix A�, and � and � are again SU�3�
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color indices. For all practical purposes, it is convenient to
express the SU�3� spin operators in terms of colorflip opera-
tors e�

���c��
† c��. The Hamiltonian �2� then becomes

HSU�3� =
2�2

N2 �
���

N
1

��� − ���2
PG�−

1

2�
�

�c��
† c�� + c��

† c���

+
1

2�
�,�

e�
��e�

�� −
n�n�

2
+ n� −

1

2�PG, �4�

where the color double sum includes terms with �=�.
The KYM is supersymmetric, i.e., the Hamiltonian �1�

commutes with the operators Jab=��a�a
† a�b, where a�a de-

notes the annihilation operator of a particle of species a �a
runs over color indices as well as empty site� at site ��. The
traceless parts of the operators Jab generate the Lie superal-
gebra su�1�3�, which includes in particular the total spin op-
erators J=��=1

N J�. In addition, the KYM possesses a super-
Yangian symmetry,15 which causes its amenability to rather
explicit solution.

B. Vacuum state

We first review the state containing no excitations, i.e.,
neither colorons nor holons. This vacuum state is the ground
state at one-third filling, where the SU�3� KYM reduces to
the SU�3� HSM. The vacuum state for N=3M �M =integer�
is constructed by Gutzwiller projection of a filled band 	or
Slater determinant �SD� state
 containing a total of N SU�3�
particles obeying Fermi statistics:

��0� = PG �
�q��qF

cqb
† cqr

† cqg
† �0� � PG��SD

N � . �5�

As ��SD
N � is an SU�3� singlet by construction and PG com-

mutes with SU�3� rotations, ��0� is an SU�3� singlet as well.
If one interprets the state �0g����=1

N c�g
† �0� as a reference

state and the colorflip operators ebg and erg as “particle cre-
ation operators,” the state �5� can be rewritten as21,22

��0� = �
�zi;wk

�0	zi;wk
ez1

bg . . . ezM1

bg ew1

rg . . . ewM2

rg �0g� , �6�

where the sum extends over all possible ways to distribute
the positions of the blue particles z1 , . . . ,zM1

and red particles
w1 , . . . ,wM2

over the N sites. The vacuum state wave func-
tion is given by

�0	zi;wk
 � �
i	j

M1

�zi − zj�2�
k	l

M2

�wk − wl�2�
i=1

M1

�
k=1

M2

�zi − wk�


�
i=1

M1

zi�
k=1

M2

wk �7�

with M1=M2=M; its energy is

E0 = −
�2

36
�N +

15

N
� . �8�

The total momentum, as defined through eip

=�0	�1zi ,�1wk
 /�0	zi ,wk
 with �1=exp�i 2�
N

�, is p=0 re-

gardless of M. For further purposes, it is important to note
that the wave function �7� can be equally expressed by any
two sets of color variables, as is shown in Appendix C.

C. Coloron excitations

Let N=3M −1, M1= �N−2� /3, and M2= �N+1� /3. A lo-
calized coloron at site “��” is constructed by annihilation
of a particle with color � from a Slater determinant state of
N+1 fermions before Gutzwiller projection:13

����̄
c � = PGc����SD

N+1� , �9�

where �̄ denotes the complementary color of the coloron.
The annihilation of the fermion causes an inhomogeneity in
the SU�3� spin and charge degree of freedom. The projection,
however, smoothes out the inhomogeneity in the charge de-
grees of freedom; the coloron thus possesses color, but no
charge. The wave function of a localized, e.g., anti-blue or
yellow, coloron is given by

��
c 	zi;wk
 = �

i=1

M1

��� − zi��0	zi;wk
 , �10�

with �0 as stated in �7�. Fourier transformation yields the
momentum eigenstates

��n
c� =

1

N
�
�=1

N

��̄��n���
c� , �11�

which identically vanish unless 0�n�M1. In particular, this
implies that the localized one-coloron states �9� form an
overcomplete set. It is hence not possible to interpret the
“coordinate” �� literally as the position of the coloron. The
momentum of �11� is

pn
c =

4�

3
−

2�

N
�n +

1

3
�, 0 � n � M1. �12�

The momentum eigenstates �11� are found to be exact energy
eigenstates of the Hamiltonian �1� with energies

En
c = E0 +

2

9

�2

N2 + �c�pn
c� , �13�

where the one-coloron dispersion is given by

�c�p� =
3

4
��2

9
− �p − ��2� . �14�

Colorons obey fractional statistics, the statistical parameter
between color-polarized colorons is given by g=2/3.

D. One-holon excitations

1. One-holon wave functions

If we dope holes into the SU�3� spin chain, this will cause
the existence of holons, the elementary charge excitations of
the system. In this section, we will construct the wave func-
tions of the one-holon states and prove by explicit calcula-
tion that these states are eigenstates of the Hamiltonian �1�.
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For this, consider a chain with N=3M +1 sites. A localized
holon at lattice site � is constructed as

��
ho� = c�PGc�

† ��SD
N−1� , �15�

where the color index � can be chosen arbitrarily. Compared
to the coloron, we eliminate the inhomogeneity in color
while creating an inhomogeneity in the charge distribution
after Gutzwiller projection. Thus the holon has no color but
charge e�0 �as the charge at site � is removed�. Note that
the holon is constructed as apparently being strictly localized
at the coordinate , as states �15� on neighboring coordinates
are orthogonal. In total, there are N independent states of the
form �15�.

Momentum eigenstates are constructed from �15� by Fou-
rier transformation. We will show below that only �N+5� /3
of them are energy eigenstates, and restrict ourselves to this
subset in the following. In order to describe these states by
their wave functions, we take �0g����=1

N c�g�0� as reference
state and and write the one-holon states as

��m
ho� = �

�zi;wk;h
�m

ho	zi;wk;h
chgez1

bg . . . ezM1

bg ew1

rg . . . ewM2

rg �0g� ,

�16�

where the sum extends over all possible ways to distribute
the blue coordinates zi, the red coordinates wk, and the holon
coordinate h over the N sites subject to the restriction
h�zi ,wk. The one-holon wave function is given by

�m
ho	zi;wk;h
 = hm�

i=1

M1

�h − zi��
k=1

M2

�h − wk��0	zi;wk
 .

�17�

To increase readability of the following calculations, we will
keep the distinction between M1 and M2, although we will
always set M1, M2, and M3, i.e., the numbers of blue, red,
and green particles, to be equal to M at the end. In order for
�17� to represent energy eigenstates, the integer m has to be
restricted to

0 � m � M + 1 =
N + 2

3
. �18�

For other values of m, the states ��m
ho� are not eigenstates of

the Hamiltonian �1�, although they do not vanish identically
�as the ��n

c�’s do�. Consequently, we are allowed to refer to
the states �16� with �17� as “holons” only if 0�m�M +1.

This also implies that the states �15� do not really consti-
tute “holons” localized in position space, but only basis
states which can be used to construct holons if the momen-
tum is chosen adequately. Since the states �15� are orthogo-
nal for different lattice positions , there are N=3M +1 or-
thogonal position basis states ��

ho�. These states cannot
strictly be holons, but rather constitute incoherent superposi-
tions of holons and other states. It is hence not possible to
localize a holon onto a single lattice site. The best we can do
is to take a Fourier transform of the exact eigenstates ��m

ho�
for 0�m�M +1 back into position space. The resulting “lo-
calized” holon states will be true holons but will not be lo-
calized strictly onto lattice sites.

The momentum of �16� is

pm
ho =

2�

3
+

2�

N
�m −

1

3
� . �19�

The one-holon energies are derived below to be

Em
ho = E0 −

2

9

�2

N2 + �ho�pm
ho� , �20�

where the one-holon dispersion is given by

�ho�p� = −
3

4
��2

9
− �p − ��2�,

2�

3
� p �

4�

3
. �21�

In the following subsection we will prove that the states �16�
are energy eigenstates of the Hamiltonian �1�, if �and only if�
the momentum quantum number m is restricted to �18�.

2. Derivation of the one-holon energies

To evaluate the action of HSU�3� on ��m
ho�, we first replace

e�
gge�

gg by �1−h�−e�
bb−e�

rr� �1−h�−e�
bb−e�

rr�, where h� de-
notes the hole occupation operator h�=1−n�, and rewrite the
Hamiltonian �4� as

HSU�3� =
2�2

N2 �
���

N
1

��� − ���2
�e�

bge�
gb + e�

rge�
gr + e�

bre�
rb� +

2�2

N2 �
���

N
1

��� − ���2
�e�

bbe�
bb + e�

rre�
rr + e�

bbe�
rr� −

2�2

N2 �
���

N
1

��� − ���2
�e�

bb + e�
rr�

+
2�2

N2 �
���

N
1

��� − ���2�n� −
1

2
� +

2�2

N2 �
���

N
1

��� − ���2
�e�

bb + e�
rr��1 − n��

+
2�2

N2 �
���

N
1

��� − ���2�1

2
�c�bc�b

† + c�rc�r
† � +

1

2
�c�bc�b

† + c�gc�g
† � +

1

2
�c�rc�r

† + c�gc�g
† �� . �22�

In the following we evaluate each term of �22� separately.
The first term 	e�

bge�
gb�m

ho
 	zi ;wk ;h
, which vanishes unless one of the zi’s is equal to ��, yields through Taylor expansion
�the derivative operators are understood to act on the analytic extension of the wave function�
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� �
���

N
e�

bge�
gb

��� − ���2
�m

ho�	zi;wk;h
 = �
i=1

M1

�
��i

N
��

�zi − ���2
�m

ho	. . . ,zi−1,��,zi+1, . . . ;wk;h

��

= �
i=1

M1

�
�=0

N−1
A�zi

�+1

�!

��

�zi
�

�m
ho

zi

�23�

=
M1

12
	N2 + 8M1

2 − 6M1�N + 1� + 3
�m
ho �24�

−
N − 3

2 �
i=1

M1

�
k=1

M2 zi

zi − wk
�m

ho + �
i�j

M1 zi
2

�zi − zj�2�m
ho �25�

+ 2�
i�j

M1

�
k=1

M2 zi
2

�zi − zj��zi − wk�
�m

ho �26�

+
1

2�
i=1

M1

�
k�l

M2 zi
2

�zi − wk��zi − wl�
�m

ho �27�

+ �
i�j

M1 2zi
2

�zi − zj��zi − h�
�m

ho −
N − 3

2 �
i=1

M1 zi

zi − h
�m

ho �28�

+ �
i=1

M1

�
k=1

M2 zi
2

�zi − wk��zi − h�
�m

ho, �29�

where we have used degzi
�m

ho	zi ;wk ;h
=N−1 and defined A��−��=1
N−1��

2���−1��−2. Evaluation of the latter yields A0= �N
−1��N−5� /12, A1=−�N−3� /2, A2=1, and A�=0 for 2	��N−1 �see Appendix D�. Furthermore, we have used

x2

�x − y��x − z�
+

y2

�y − x��y − z�
+

z2

�z − x��z − y�
= 1,

x,y,z � C . �30�

The second term 	e�
rge�

gr�m
ho
 	zi ;wk ;h
 can be treated in the same way, where the first term in �25� together with the

analogous term yields

−
N − 3

2 �
i=1

M1

�
k=1

M2 zi

zi − wk
+

N − 3

2 �
i=1

M1

�
k=1

M2 wk

zi − wk
= −

N − 3

2
M1M2.

One part of �26� and the term corresponding to �27� can be simplified with �30� to

�
i�j

M1

�
k=1

M2 � zi
2

�zi − zj��zi − wk�
+

1

2

wk
2

�zi − wk��zj − wk�
� =

1

2
M1�M1 − 1�M2,

as well as similar expressions for zi↔wk.
The third term 	e�

bre�
rb�m

ho
 	zi ;wk ;h
 leads to

� �
���

N
e�

bre�
rb

��� − ���2
�m

ho�	zi;wk;h
 = �
i=1

M1

�
k=1

M2 ziwk

�zi − wk�2�
j�i

M1 �1 +
zi − wk

zj − zi
��

l�k

M2 �1 −
zi − wk

wl − wk
��m

ho	zi;wk;h
 = �
i=1

M1

�
k=1

M2 ziwk

�zi − wk�2�m
ho

�31�

− �
i�j

M1

�
k=1

M2 ziwk

�zi − zj��zi − wk�
�m

ho − �
i=1

M1

�
k�l

M2 ziwk

�wk − zi��wk − wl�
�m

ho �32�

+ �
i=1

M1

�
k=1

M2

�
�=2

M1−1
1

�!��aj

ziwk�zi − wk��−2

�za1
− zi� ¯ �za�

− zi�
�m

ho �33�
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+ �
i=1

M1

�
k=1

M2

�
�=2

M2−1
�− 1��

�! �
�bl

ziwk�zi − wk��−2

�wb1
− wk� ¯ �wb�

− wk�
�m

ho �34�

+ �
i=1

M1

�
k=1

M2

�
�=1

M1−1

�
�=1

M2−1
�− 1��

�!�! �
�aj;bl

ziwk�zi − wk��+�−2

�za1
− zi� ¯ �za�

− zi��wb1
− wk� ¯ �wb�

− wk�
�m

ho, �35�

where �aj ��bl� is a set of integers between 1 and M1 �M2�.
The summations run over all possible ways to distribute the
zaj

�wbl
� over the blue �red� coordinates, where zi �wk� is

excluded. The two terms �33� and �34� vanish due to14

Theorem 1: Let M �3, z�C, and z1 , . . . ,zM �C distinct.
Then,

�
i=1

M
zi�zi − z�M−3

�
j�i

M

�zj − zi�

= 0. �36�

The last term �35� can be simplified using a theorem due to
Ha and Haldane:22

Theorem 2: Let �aj be a set of distinct integers between
1 and M1, and �bl a set of distinct integers between 1 and
M2. Then,

�
i=1

M1

�
k=1

M2

�
�=1

M1−1

�
�=1

M2−1

�
�aj;bl

�− 1��

�!�!



ziwk�zi − wk��+�−2

�za1
− zi� ¯ �za�

− zi��wb1
− wk� ¯ �wb�

− wk�

= − �
�=1

min�M1,M2�

�M1 − ���M2 − �� .

Furthermore, the two terms in �32�, together with the remain-
der of �26� and the corresponding expression from the sec-
ond term of the Hamiltonian, can be simplified to
M1M2�M1+M2−2��m

ho/2.
The second and third line of �22� yield

�
���

N e�
bbe�

bb + e�
rre�

rr + e�
bbe�

rr − e�
bb − e�

rr + n� −
1

2

��� − ���2
�m

ho	zi;wk;h


=
1

2
	M1�M1 − 1� + M2�M2 − 1�
�m

ho − �
i�j

M1 zi
2

�zi − zj�2�m
ho

− �
k�l

M2 wk
2

�wk − wl�2�m
ho − �

i=1

M1

�
k=1

M2 ziwk

�zi − wk�2�m
ho

−
N2 − 1

12
�M1 + M2 −

N

2
+ 1��m

ho, �37�

by which the remainder of �25�, its counterpart from the
second term, and �31� are canceled.

The fourth line of �22� yields

�
���

N �e�
bb + e�

rr��1 − n��
��� − ���2

�m
ho	zi;wk;h


= ��
i=1

M1 1

�zi − h�2
+ �

k=1

M2 1

�wk − h�2��m
ho. �38�

We will now evaluate the charge kinetic terms, which
include the technical improvements compared to previous
calculations. We will use a Taylor expansion as in �23�. For
the treatment of the charge kinetic terms it is crucial that the
fermionic creation and annihilation operators appearing in
the expansion match with the variables of the analytically
extended wave function. We wish to stress that the one-holon
wave function �17� can, as the ground state wave function,
be equally expressed by an arbitrary pair of sets of color
variables. In �22� we have thus written the charge kinetic
terms in a symmetricized way. For the first term we get

� �
���

N
1

2

c�bc�b
† + c�rc�r

†

��� − ���2
�m

ho�	zi;wk;h
 = � �
���

N
c�vc�v

†

��� − ���2
�m

ho�	v1, . . . ,vM1+M2
;h


= �
��h

N
��

m

�h − ���2
�m

ho	v1, . . . ,vM1+M2
;��


��
m

= �
�=0

M1+M2

�
��h

N
��

m��� − h��

�!�h − ���2
��

���
� ���m

ho	v1, . . . ,vM1+M2
;��


��
m ��

��=h
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= �
�=0

M1+M2 B�
mhm+�

�!

��

�h���m
ho	z1, . . . ,zM1

;w1, . . . ,wM2
;h


hm �
= ��N2 − 1

12
+

m�m − N�
2

�hm − �N − 1

2
− m�hm+1 �

�h
+

1

2
hm+2 �2

�h2��m
ho	zi;wk;h


hm

= �N2 − 1

12
+

m�m − N�
2

��m
ho − �N − 1

2
− m���

i=1

M1 h

h − zi
+ �

k=1

M2 h

h − wk
��m

ho

+
1

2��
i�j

M1 h2

�h − zi��h − zj�
+ �

i=1

M1

�
k=1

M2 2h2

�h − zi��h − wk�
+ �

k�l

M2 h2

�h − wk��h − wl�
��m

ho,

�39�

where the vi’s denote the union of the blue and
the red coordinates, and we have introduced
B�

m=−��=1
N−1��

m+1���−1��−2. Evaluation of the latter yields
B0

m= �N2−1� /12+m�m−N� /2, B1
m=m− �N−1� /2, B2

m=1, and
B�=0 for 3�� and 0�m� �N+2� /3 �see Appendix D�. The
restriction �18� of the allowed momentum values follows
from the B series in �39�, since B��0 for 3�� and �N
+2� /3	m, in which case the calculations above are not fea-
sible anymore.

For the evaluation of the remaining two charge kinetic
terms we re-express the wave function �m

ho by the other pairs
of sets of color variables �see Appendix C�. We then proceed
as in �39�, where we replace the green variables by the blue
and red ones using the identities of Appendix E. Doing so,
we finally arrive at

� �
���

N
1

2

c�bc�b
† + c�gc�g

†

��� − ���2
�m

ho�	zi;wk;h


= �N2 − 1

12
+

m�m − N�
2

��m
ho − �N − 1

2
− m�


�C1 − �
k=1

M2 h

h − wk
��m

ho +
1

2�C1
2 − C2 − 2C1�

k=1

M2 h

h − wk

+ 2�
k=1

M2 h2

�h − wk�2 + �
k�l

M2 h2

�h − wk��h − wl�
��m

ho, �40�

as well as

� �
���

N
1

2

c�rc�r
† + c�gc�g

†

��� − ���2
�m

ho�	zi;wk;h


= �N2 − 1

12
+

m�m − N�
2

��m
ho − �N − 1

2
− m�


�C1 − �
i=1

M1 h

h − zi
��m

ho +
1

2�C1
2 − C2 − 2C1�

i=1

M1 h

h − zi

+ 2�
i=1

M1 h2

�h − zi�2 + �
i�j

M1 h2

�h − zi��h − zj�
��m

ho. �41�

In �40� and �41� we have defined the constants
C1=��=1

N−11 / �1−���= �N−1� /2 and C2=��=1
N−11 / �1−���2

=−�N2−6N+5� /12 �see Appendix D�.
Now there occur several simplifications. The first term in

�28� together with the appropriate terms in �39� and �41�
yield

�
i�j

M1 2zi
2

�zi − zj��zi − h�
+ �

i�j

M1 h2

�h − zi��h − zj�
= M1�M1 − 1� ,

�42�

and the similar expression for zi↔wk leads to M2�M2−1�.
Furthermore, �29�, its counterpart from the second term, and
the appropriate term in �39� result in

�
i=1

M1

�
k=1

M2 zi
2

�zi − wk��zi − h�
+ �

i=1

M1

�
k=1

M2 wk
2

�wk − zi��wk − h�

+ �
i=1

M1

�
k=1

M2 h2

�h − zi��h − wk�
= M1M2. �43�

Finally, the remainder of �28�, the first term of �38�, and the
remaining off-diagonal terms of �41� yield

−
N − 3

2 �
i=1

M1 zi

zi − h
+ �

i=1

M1 1

�zi − h�2
−

N − 1

2 �
i=1

M1 h

h − zi

+ �
i=1

M1 h2

�h − zi�2 = − M1
N − 3

2
, �44�

and the similar expression for zi↔wk.
Summing up all terms, we obtain

HSU�3���m
ho� = Em

ho��m
ho� �45�

with
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Em = −
2�2

N2 � 1

72
N3 +

1

24
N −

1

18
−

3

2
m�m −

N + 2

3
�� ,

�46�

where we have set M1=M2=M = �N−1� /3. Using �19�, Em

can now be easily brought into the form �20�.

E. Two-holon excitations

1. Momentum eigenstates

We will now investigate the two-holon eigenstates. For
this, let the number of sites be given by N=3M +2. The state
with two localized holons is constructed as

��12

ho � = c1�c2�PGc1�
† c2�

† ��SD
N−2� . �47�

Similar to the one-holon case, these localized states �47� do
not really represent “holons” localized in position space, and
we can refer to true physical holons only in momentum
space. The two-holon momentum eigenstates will be most
easily described by their wave functions

�mn
ho 	zi;wk;h1,h2


= �h1 − h2��h1
mh2

n + h1
nh2

m��
i=1

M1

�h1 − zi��h2 − zi�


�
k=1

M2

�h1 − wk��h2 − wk��0	zi;wk
 , �48�

where h1,2 denote the holon coordinates and the integers m
and n are restricted to

0 � n � m � M + 1 =
N + 1

3
. �49�

This restriction will be derived below.

The two-holon state represented by �48� is

��mn
ho � = �

�zi;wk;h1,h2
�mn

ho 	zi;wk;h1,h2



ch1gch2gez1

bg . . . ezM1

bg ew1

rg . . . ewM2

rg �0g� , �50�

where the sum contains the restriction h1,2�zi ,wk. The total
momentum of the states �50� is found to be

pmn
ho =

4�

3
+

2�

N
�m + n −

1

3
� mod 2� . �51�

In the following two subsections we construct the two-
holon energy eigenstates starting from �47�. The used strat-
egy is similar to the construction of the two-holon states in
the SU�2� KYM.17

2. Action of HSU„3… on the momentum eigenstates

In order to derive the action of the Hamiltonian on the
momentum eigenstates �50�, we first define the auxiliary
wave functions

�mn	zi;wk;h1,h2
 = h1
mh2

n�
i=1

M1

�h1 − zi��h2 − zi��
k=1

M2

�h1 − wk�


�h2 − wk��0	zi;wk
 � �h1h2
�0	zi;wk
 ,

�52�

which can be used to express the wave functions �48� as

�mn
ho = �m+1,n + �n+1,m − �m,n+1 − �n,m+1. �53�

In agreement to the one-holon case, we use �22� for the
Hamiltonian and concentrate on the terms which differ from
the ones above. The first term 	e�

bge�
gb�mn
	zi ;wk ;h1 ,h2


yields

� �
���

N
e�

bge�
gb

��� − ���2
�mn�	zi;wk;h1,h2
 = �

i=1

M1

�
�=0

N−1
A�zi

�+1

�!

��

�zi
�

�mn

zi

=
M1

12
�N2 + 8M1

2 − 6M1�N + 1� + 3��mn

−
N − 3

2 �
i=1

M1

�
k=1

M2 zi

zi − wk
�mn + �

i�j

M1 zi
2

�zi − zj�2�mn �54�

+ 2�
i�j

M1

�
k=1

M2 zi
2

�zi − zj��zi − wk�
�m

ho +
1

2�
i=1

M1

�
k�l

M2 zi
2

�zi − wk��zi − wl�
�mn �55�

+ �0�
i=1

M1 �1

2
zi

2 �2

�zi
2 + �

j�i

M1 2zi
2

zi − zj

�

�zi
−

N − 3

2
zi

�

�zi
��h1h2

�56�
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+ �0�
i=1

M1

�
k=1

M2 zi
2

zi − wk

�

�zi
�h1h2

. �57�

Now, �54� and �55� can be treated as in the one-holon calculation, whereas lines �56� and �57� explicitly yield using �30�

�
i=1

M1 �1 −
h1

2

�h1 − h2��h1 − zi�
−

h2
2

�h2 − h1��h2 − zi�
��mn + �

i�j

M1 �1 −
h1

2

�h1 − zi��h1 − zj�
��mn + �

i�j

M1 �1 −
h2

2

�h2 − zi��h2 − zj�
��mn

−
N − 3

2 �
i

M1 �1 −
h1

h1 − zi
��mn −

N − 3

2 �
i

M1 �1 −
h2

h2 − zi
��mn + �

i=1

M1

�
k=1

M2 �1 −
wk

2

�wk − zi��wk − h1�
−

h1
2

�h1 − zi��h1 − wk�
��mn

+ �
i=1

M1

�
k=1

M2 �1 −
wk

2

�wk − zi��wk − h2�
−

h2
2

�h2 − zi��h2 − wk�
��mn. �58�

The term 	e�
rge�

gr�mn
	zi ;wk ;h1 ,h2
 leads to the analog result with zi and wk interchanged. Furthermore, the terms
	e�

bre�
rb�mn
	zi ;wk ;h1 ,h2
 as well as the second and third lines of �22� are unchanged as compared to the one-holon case. The

fourth line of �22� yields

�
���

N
e�

bb + e�
rr

��� − ���2
�1 − n���mn = ���

i=1

M1 1

�zi − h1�2
+ �

k=1

M2 1

�wk − h2�2� + �h1 ↔ h2��mn, �59�

where �h1↔h2 denotes the reappearance of the preceding terms in curly brackets with h1 and h2 interchanged.
For the charge kinetic terms we obtain in analogy to the one-holon states

� �
���

N
1

2

c�bc�b
† + c�rc�r

†

��� − ���2
�mn�	zi;wk;h1,h2


= � �
�=h1,h2

�
���

N
c�vc�v

†

��� − ���2
�mn�	vi;h1,h2


= �
�=0

M1+M2 B�
mh1

m+�

�!

��

�h1
���mn

h1
m � + �

�=0

M1+M2 B�
nh2

n+�

�!

��

�h2
���mn

h2
n �

= ��N2 − 1

6
+

m�m − N�
2

+
n�n − N�

2
�h1

mh2
n − �N − 1

2
− m�h1

m+1h2
n �

�h1
− �N − 1

2
− n�h1

mh2
n+1 �

�h2
+

1

2
h1

m+2h2
n �2

�h1
2

+
1

2
h1

mh2
n+2 �2

�h2
2� �mn

h1
mh2

n = �N2 − 1

6
+

m�m − N�
2

+
n�n − N�

2
− �N − 1

2
− m���

i=1

M1 h2

h2 − zi
+ �

k=1

M2 h2

h2 − wk
� − �N − 1

2
− n�


��
i=1

M1 h1

h1 − zi
+ �

k=1

M2 h1

h1 − wk
� + � 1

2�
i�j

M1 h1
2

�h1 − zi��h1 − zj�
+ �

i=1

M1

�
k=1

M2 h1
2

�h1 − zi��h1 − wk�
+

1

2�
k�l

M2 h1
2

�h1 − wk��h1 − wl�
�

+ �h1 ↔ h2��mn. �60�

In this term, the restriction of the allowed momentum eigenvalues �49� follows from the B series as in the one-holon case.
The other charge kinetic terms are treated by using the fact that the two-holon wave function can be expressed by either

pairs of color variables, as is shown in Appendix C. The terms involving green variables are rewritten in terms of the zi’s and
wk’s by the identities given in Appendix E. Thus we finally deduce for the sum of the three charge kinetic terms
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� �
���

N

�
�

c��c��
†

��� − ���2
�mn�	zi;wk;h1,h2
 = �N2 − 1

2
+

3

2
m�m − N� +

3

2
n�n − N� + �n + m��N − 2� − 2C1

2 − 2C2 − �m − n�
h1 + h2

h1 − h2

+ �−
N − 1

2
��

i=1

M1 h1

h1 − zi
+ �

k=1

M2 h1

h1 − wk
� + �

k=1

M2 h1
2

�h1 − wk�2 +
h1

h1 − h2
��

i=1

M1 h1

h1 − zi

+ �
k=1

M2 h1

h1 − wk
� + �

i=1

M1 h1
2

�h1 − zi�2 + �
i�j

M1 h1
2

�h1 − zi��h1 − zj�
+ �

i=1

M1

�
k=1

M2 h1
2

�h1 − zi��h1 − wk�

+ �
k�l

M2 h1
2

�h1 − wk��h1 − wl�
+ 2

h1
2

�h1 − h2�2� + �h1 ↔ h2��nm
ho , �61�

where the constants C1 and C2 are defined as above.
As can be readily verified, all nondiagonal terms cancel.

Summing up the diagonal contributions, we obtain the action
of HSU�3� on the auxiliary wave functions �mn,

HSU�3��mn =
2�2

N2 � 1

72
�− 40 + 33N − N3� +

3

2
m�m − N�

+
3

2
n�n − N� + �n + m��N − 2� + 2

h1
2 + h2

2

�h1 − h2�2

− �m − n�
h1 + h2

h1 − h2
��mn. �62�

Using �53�, we thus deduce

HSU�3��mn
ho = −

�2

36
�N +

3

N
+

4

N2��mn
ho +

3�2

N2 ��m −
N + 1

3
�m

+ �n −
N + 1

3
�n +

m − n

3
��mn

ho +
2�2

N2 �m − n�


 �
�=1

��m−n�/2�
�m−�,n+�

ho , �63�

where we have used x+y
x−y �xmyn−xnym�=2�l=0

m−nxm−lyn+l− �xmyn

+xnym� and � � denotes the floor function, i.e., �x� is the largest
integer l�x. First, note that the action of the Hamiltonian on
�mn

ho is trigonal, i.e., the “scattering” in the last line is only to
smaller values of m−n. Second, �63� shows that the states
�mn

ho form a nonorthogonal set, out of which we can construct
an orthogonal basis of eigenfunctions as is shown in the
following.

3. Energy eigenstates

Using the ansatz

��mn
ho � = �

�=0

��m−n�/2�
a�

mn��m−�,n+�
ho � �64�

for the diagonalization of �63�, we obtain the recursion rela-
tion

a�
mn = −

1

3��� + m − n − 1
3��l=0

�−1

�n − m − 2l�al
mn, a0

mn = 1,

�65�

which defines the two-holon energy eigenstates �64�. The
corresponding energies are given by

Emn
ho = −

�2

36
�N +

3

N
+

4

N2� +
3�2

N2 ��m −
N + 1

3
�m

+ �n −
N + 1

3
�n +

m − n

3
� , �66�

where the momentum quantum numbers are restricted to the
interval �49� and the total momentum is given by �51�.

The two-holon energies can be rewritten using the one-
holon dispersion �21� as

Emn
ho = E0 −

4

9

�2

N2 + �ho�pm
ho� + �ho�pn

ho� , �67�

where we have introduced single-holon momenta according
to

pm
ho =

2�

3
+

2�

N
m, pn

ho =
2�

3
+

2�

N
�n −

1

3
� . �68�

We will discuss the physical interpretation of this assignment
in Sec. IV.

III. SU„n… KURAMOTO-YOKOYAMA MODEL

In this section we extend our investigations to the SU�n�
KYM. We will concentrate on stating the results and make
only short remarks on the calculation, since the decisive
methods were already discussed in detail for the SU�3� case.

A. Hamiltonian

Consider an underdoped chain with at most one particle
per lattice site carrying an internal SU�n� quantum number
which transforms according to the fundamental representa-
tion n of SU�n�. Starting from the general expression �1� for
the SU�n� KYM, the Hamiltonian can be rewritten as
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HSU�n� =
2�2

N2 �
���

N
1

��� − ���2
PG�−

1

2�
�

�c��
† c�� + c��

† c���

+
1

2�
�,�

e�
��e�

�� −
n�n�

2
+ n� −

1

2�PG, �69�

where the summation index � runs over all flavors 1 , . . . ,n,
and the Gutzwiller projector PG enforces at most single oc-
cupancy on all lattice sites. The model possesses an SU�1 �n�
symmetry generated by the traceless parts of the operators
Jab=��a�a

† a�b, where a�a annihilates a particle of flavor a at
site ��, as well as a super-Yangian symmetry.15

B. Vacuum state

We first consider the state containing no excitations. We
use a polarized state of particles of flavor n as reference state
and label the coordinates of the particles of flavor �, 1��
�n−1, by zi

� ,1� i�M�. It can be shown that the states with
wave functions21

�0	zi
�
 = �

�=1

n−1

�
i	j

M�

�zi
� − zj

��2 �
�	�

n−1

�
i=1

M�

�
j=1

M�

�zi
� − zj

���
�=1

n−1

�
i=1

M�

zi
�

�70�

constitute exact eigenstates22 of the Hamiltonian �69�. For
N=nM, M�=M, i.e., at one nth filling, �70� is the ground
state of �69� with energy

E0 = −
�2

12
�n − 2

n
N +

2n − 1

N
� . �71�

The momentum is p= �n−1��M mod 2�, i.e., p=0 for n odd
and p=0 or p=� otherwise.

C. Spinon excitations

For N=nM −1, localized SU�n� spinons are represented
by the wave function13

��
sp	zi

�
 = �
i=1

M1

��� − zi
1��0	zi

�
 , �72�

where M1=M −1 and M2= . . . =Mn−1=M. The spinons trans-
form according to the representation n̄ under SU�n� transfor-
mations. Momentum eigenstates are constructed via Fourier
transformation, the spinon momenta are given by

p�
sp =

n − 1

n
�N −

2�

N
�� +

n − 1

2n
� mod 2� , �73�

where the momentum quantum number � is restricted to 0
���M1. The momenta �73� fill the interval 	− �

n , �
n

 for n

even and M odd, or the interval 	�− �
n ,�+ �

n

 otherwise. The

one-spinon energies are given by

Em
sp = E0 +

n2 − 1

12n

�2

N2 + �sp�p�
sp� , �74�

with

�sp�p� = �
n

4
��2

n2 − p2� , if n even and M odd,

n

4
��2

n2 − �p − ��2� , otherwise. �
�75�

SU�n� spinons obey fractional statistics, the statistical
parameter between spin-polarized spinons is given by
g= �n−1� /n.

D. One-holon excitations

For N=nM +1 one can show by a straightforward gener-
alization of the SU�3� calculations that the one-holon states
represented by the wave functions

��
ho	z�;h
 = h��

�=1

n−1

�
i=1

M�

�h − zi
���0	z�
 �76�

are eigenstates of the Hamiltonian �69�. In �76�, h denotes
the holon coordinate, M1= . . . =Mn−1=M, and the momen-
tum quantum number � is restricted to

0 � � �
N + n − 1

n
. �77�

The state corresponding to �69� is constructed in analogy to
�16�. The one-holon momenta are given by

p�
ho =

n − 1

n
�N +

2�

N
�� −

n − 1

2n
� mod 2� , �78�

which fill the interval 	− �
n , �

n

 for n even and M odd, or the

interval 	�− �
n ,�+ �

n

 otherwise �either n odd or M even or

both�. The one-holon energies are

Em
ho = E0 −

n2 − 1

12n

�2

N2 + �ho�p�
ho� , �79�

with the single-holon dispersion �see Fig. 1�:

�ho�p� = �−
n

4
��2

n2 − p2� , if n even and M odd,

−
n

4
��2

n2 − �p − ��2� , otherwise. �
�80�

FIG. 1. SU�n� holon dispersion. �a� n even. The allowed mo-
menta fill the interval 	− �

n , �

n

 for M odd and 	�− �

n ,�+ �

n

 for M

even. �b� n odd. The allowed momenta fill the interval 	�− �

n ,�
+ �

n

.
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E. Two-holon excitations

Consider a chain with N=nM +2 lattice sites. The two-
holon momentum eigenstates are represented by the wave
function

���
ho 	z�;h1,h2
 = �h1 − h2��h1

�h2
� + h1

�h2
��


�
�=1

n−1

�
i=1

M�

�h1 − zi
���h2 − zi

���0	zi;wk
 ,

�81�

where the momentum quantum numbers � and � are re-
stricted to

0 � � � � �
N + n − 2

n
. �82�

The total momentum is given by

p��
ho =

n − 1

n
�N +

2�

N
�� + � −

n − 2

n
� mod 2� . �83�

As in the SU�3� case, the momentum eigenstates �81� form a
nonorthogonal basis. The two-holon energy eigenstates are
obtained using the ansatz

����
ho � = �

�=0

���−��/2�
a�

�����−�,�+�
ho � , �84�

where the recursion relation for the coefficients a�
�� is found

to be

a�
�� = −

1

n��� + � − � −
1

n
��

�=0

�−1

�� − � − 2��a�
��, a0

�� = 1.

�85�

The two-holon energies are given by

E��
ho = −

�2

12n
��n − 2�N + �2n2 − 13n + 24�

1

N

− 4�n2 − 6n + 8�
1

N2� +
n�2

N2 ��� −
N + n − 2

n
��

+ �� −
N + n − 2

n
�� +

� − �

n
� . �86�

Using the single-holon dispersions �80�, the energy eigenval-
ues of �86� can be rewritten as

E��
ho = E0 −

n2 − 1

6n

�2

N2 + �ho�p�
ho� + �ho�p�

ho� , �87�

where we have introduced single-holon momenta according
to

p�
ho = −

�

n
+

2�

N
�� −

n − 3

2n
� ,

p�
ho = −

�

n
+

2�

N
�� −

n − 1

2n
� , �88�

and restricted ourselves to momenta − �
n � p�

ho� p�
ho�

�
n for

simplicity.

IV. FRACTIONAL STATISTICS

Fractional statistics in one dimension was originally intro-
duced by Haldane5 in terms of nontrivial state counting rules.
Recently, it was realized that the fractional statistics of
spinons and holons in the KYM manifests itself also in spe-
cific quantization rules for the individual spinon and holon
momenta.17,18,23 Here we apply this interpretation to the ho-
lon excitations of the SU�n� KYM.

First, consider holons in the SU�3� KYM. As we have
seen in �67�, the two-holon energies are simply given by the
sum of the kinetic energies of the individual holons �and the
ground state energy�. This shows that the holons in the SU�3�
KYM are free, which is supported by conclusions drawn
from the asymptotic Bethe ansatz.24 Furthermore, the mo-
mentum spacing between the individual holon momenta in
�68� is

pm − pn =
2�

N
�1

3
+ ��, � � N0, �89�

which reflects the fractional statistics of the holons with sta-
tistical parameter g=1/3. This result is consistent with con-
clusions reached by Kuramoto and Kato7,8 from thermody-
namics, and by Arikawa, Yamamoto, Saiga, and Kuramoto25

from the charge dynamics of the model.
For holons in the SU�n� KYM, the situation is similar.

From �87� we deduce that the holons are free, whereas the
momentum spacings

pm − pn =
2�

N
�1

n
+ ��, � � N0, �90�

obtained from �88� show that holons in the SU�n� KYM
obey fractional statistics with statistical parameter g=1/n.

Derived in the context of the KYM, this result has impli-
cations for SU�n� spin chains in general. In the KYM, where
the holons are free in the sense that they only interact
through their fractional statistics, the individual holon mo-
menta are good quantum numbers. They assume fractionally
spaced values, which for two holons are given by �90�. As
the statistics of the holons is a quantum invariant and as such
independent of the details of the model, the fractional spac-
ings are of universal validity as well. If we were to supple-
ment the KYM by a potential interaction between the holons,
this interaction would introduce scattering matrix elements
between the exact eigenstates we obtained and labeled ac-
cording to their fractionally spaced single-particle momenta.
These momenta would hence no longer constitute good
quantum numbers. The new eigenstates would be superposi-
tions of states with different single-particle momenta, which
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individually, however, would still possess the fractionally
shifted values. The effect of the interaction would hence be
to turn the integer � on the right-hand side of �90� into a
superposition of integers, while leaving the fractional mo-
mentum spacing 2� /Nn unchanged.

Note that regardless of n, the sum of the statistical param-
eters of spinons and holons always equals the fermionic
value 1,

gsp + gho =
n − 1

n
+

1

n
= 1, �91�

a result consistent with the concept of spin-charge separation
characteristic of these models.

Finally, as models with SU�n� symmetry in general are
frequently studied because of simplifying features, it is sug-
gestive to ask whether the large-n limit deserves special at-
tention in the model we have studied here as well. Briefly,
the answer is no. No part of our calculation simplifies in this
limit, as we obtain terms similar to the ones encountered
above regardless of the value of n. In the limit n→�, g
→0 implies that the exclusion statistics between holons
tends toward bosons. This does not mean, however, that the
holons in this limit behave like free bosons, but rather that
their momentum spacings shrink with the nth part of the
Brillouin zone they are confined to.

V. CONCLUSIONS

In conclusion, we have constructed the explicit wave
functions of the one- and two-holon excitations of the SU�n�
KYM and derived their exact energies. The holons are non-
interacting or free, but obey fractional statistics with param-
eter g=1/n, which manifests itself in the quantization of the
single-holon momenta, which is a general feature of frac-
tional charge excitations in SU�n� spin chains.
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APPENDIX A: GELL-MANN MATRICES

The Gell-Mann matrices are explicitly given by26

�1 = �0 1 0

1 0 0

0 0 0
�, �2 = �0 − i 0

i 0 0

0 0 0
�, �3 = �1 0 0

0 − 1 0

0 0 0
� ,

�4 = �0 0 1

0 0 0

1 0 0
�, �5 = �0 0 − i

0 0 0

i 0 0
�, �6 = �0 0 0

0 0 1

0 1 0
� ,

�7 = �0 0 0

0 0 − i

0 i 0
�, �8 =

1
�3�1 0 0

0 1 0

0 0 − 2
� .

They are normalized as tr ��a�b�=2�ab and satisfy the com-
mutation relations 	�a ,�b
=2fabc�c. The structure constants

fabc are totally antisymmetric and obey Jacobi’s identity

fabcfcde + fbdcfcae + fdacfcbe = 0.

Explicitly, the nonvanishing structure constants are given by
f123= i, f147= f246= f257= f345=−f156=−f367= i /2, f458= f678

= i�3/2, and 45 others obtained by permutations of the indi-
ces.

The SU�3� spin operators can be expressed in terms of the
colorflip operators and the charge occupation operator as

J� · J� � �
A=1

8

J�
AJ�

A =
1

2�
��

3

e�
��e�

�� −
1

6
n�n�.

APPENDIX B: USEFUL FORMULAS

For derivations see, for example, Refs. 4 and 13

�i�

��
N = 1, �

�=1

N

��
m = N�0m, �

�=1

N

�� = �− 1�N−1. �B1�

�ii�

1

��� − ���2
= −

����

��� − ���2 . �B2�

�iii�

�
�=1

N

�� − ��� = �N − 1. �B3�

�iv�

�
���

N

��� − ��� = lim
�→��

�N − 1

� − ��

=
N

��

. �B4�

�v�

�
�=1

N−1
��

m

�� − 1
=

N + 1

2
− m, 1 � m � N . �B5�

�vi�

�
�=1

N−1
��

m

��� − 1�2
= − �

�=1

N−1
��

m+1

��� − 1�2 =
N2 − 1

12
+

m�m − N�
2

,

0 � m � N . �B6�

APPENDIX C: REPRESENTATION OF WAVE
FUNCTIONS

It is shown that the wave functions can, up to a minus
sign, be expressed by any two sets of color variables. First,
the wave function of the vacuum state �7� can be rewritten
using green �u� variables as
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�0	zi;wk
 = �− 1�M1	�M1−1�/2
�
i�j

M1

�zi − zj��
k	l

M2

�wk − wl�2�
i=1

M1

�
k=1

M2

�zi − wk��
i=1

M1

zi�
k=1

M2

wk = �− 1�M1	�M1−1�/2



�− 1�M1M2

�
i=1

M1

zi�
k=1

M2

wk�
k	l

M2

�wk − wl�2�
i=1

M1 N

zi

�
i=1

M1

�
s=1

M3

�us − zi�

= �− 1�M1	�M1−1�/2
�− 1�M1M2

�
k=1

M2

wk�
k	l

M2

�wk − wl�2NM1

�
i=1

M1

�
s=1

M3

�us − zi�

, �C1�

where we have used �B4�. Accordingly, if we express �0 in terms of green and red variables, we find

�0	us;wk
 = �− 1�M3	�M3−1�/2
�
s�t

M3

�us − ut��
k	l

M2

�wk − wl�2�
s=1

M3

�
k=1

M2

�us − wk��
s=1

M3

us�
k=1

M2

wk

= �− 1�M3	�M3−1�/2
�− 1�M2M3

�
s=1

M3

us�
k=1

M2

wk�
k	l

M2

�wk − wl�2�
s=1

M3 N

us

�
i=1

M1

�
s=1

M3

�us − zi�

= �− 1�M3	�M3−1�/2
�− 1�M2M3�− 1�M1M3

�
k=1

M2

wk�
k	l

M2

�wk − wl�2NM3

�
i=1

M1

�
s=1

M3

�us − zi�

= �− 1�M2
�0	zi;wk
 , �C2�

where we again used �B4�, and finally set M1=M2=M3=M.
The same line of argument can be applied to the one-holon wave functions �17�

�m
ho	zi;wk;h
 = �− 1�M1	�M1−1�/2
�− 1�M1M2hn

�
k=1

M2

�h − wk��
k=1

M2

wk�
k,l

k	l

M2

�wk − wl�2NM1

�
i=1

M1

�
s=1

M3

�us − zi�

, �C3�

whereas starting with green and red variables yields

�m
ho	us;wk;h
 = �− 1�M3	�M3−1�/2
�− 1�M1M3�− 1�M2M3hn

�
k=1

M2

�h − wk��
k=1

M2

wk �
k,l�101�

k	l

M2

�wk − wl�2NM3

�
i=1

M1

�
s=1

M3

�us − zi�

= �− 1�M2
�m

ho	zi;wk;h
 . �C4�

In the same way we find for the two-holon wave functions
�48�

�mn
ho 	zi;wk;h1,h2
 = �− 1�M2

�mn
ho 	us;wk;h1,h2
 . �C5�

Thus, the holon wave functions can be expressed by any two
sets of color indices. All statements generalize to SU�n�.

APPENDIX D: B SERIES

The B series is defined as

B�
m = − �

�=1

N−1

��
m+1��� − 1��−2, �D1�

where 0���2�N−1� /3. Now, B0
m equals �B6�, B1

m=m− �N
−1� /2 for 0�m	N by �B6�, and B2

m=1 for 0�m	N+1 by
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�B1�. Furthermore, for 3���2�N−1� /3 we find

B�
m = �0, for 0 � m �

N + 2

3
,

N� � − 2

N − m − 1
� , for

N + 2

3
	 m � N .� �D2�

Proof:

B�
m = − �

�=1

N−1

��
m+1�

k=0

�−2 �� − 2

k
��− 1��−k−2��

k

= − �
k=0

�−2 �� − 2

k
��− 1��−k�1 − �

�=1

N

��
m+k+1�

= − �
k=0

�−2 �� − 2

k
��− 1��−k�1 − N�m,N−k−1� .

Thus, for 0�m� �N+2� /3, B�
m vanishes, as the sums of the

binomial coefficients of even sites and odd sites equal each
other. For �N+2� /3	m, however, B�

m�0, and thus the Tay-
lor expansion appearing in the calculations of the charge ki-
netic terms contains higher order derivatives.

The remaining constants are deduced from A�=B�
1, C1

=B1
N−1, and C2=−B0

N−1.

APPENDIX E: DERIVATIVE IDENTITIES

If one holon is present, we use for the simplification of the
charge kinetic terms

�
s=1

M3 h

h − us
= �

��h

N
h

h − ��

− �
i=1

M1 h

h − zi
− �

k=1

M2 h

h − wk

=
N − 1

2
− �

i=1

M1 h

h − zi
− �

k=1

M2 h

h − wk
, �E1�

as well as

�
s�t

M3 h2

�h − us��h − ut�

= �
s,t

M3 h2

�h − us��h − ut�
− �

s=1

M3 h2

�h − us�2

= C1
2 − C2 + �

i=1

M1 2h2

�h − zi�2 + �
k=1

M2 2h2

�h − wk�2 − C1�
i=1

M1 2h

h − zi

− C1�
k=1

M2 2h

h − wk
+ �

i�j

M1 h2

�h − zi��h − zj�

+ �
k�l

M2 h2

�h − wk��h − wl�
+ �

i=1

M1

�
k=1

M2 2h2

�h − zi��h − wk�
,

�E2�

with the constants C1 and C2 as above.
For the two-holon case, we apply the identity

�
s�t

h1
2

�h1 − us��h1 − ut�
= − C2 + �

i=1

M1 h1
2

�h1 − zi�2 + �
k=1

M2 h1
2

�h1 − wk�2 +
h1

2

�h1 − h2�2 + �C1 − �
i=1

M1 h1

h1 − zi
− �

k=1

M2 h1

h1 − wk
−

h1

h1 − h2
�


 �C1 − �
j=1

M1 h1

h1 − zj
− �

l=1

M2 h1

h1 − wl
−

h1

h1 − h2
�

= − C2 + C1
2 + �

i�j

h1
2

�h1 − zi��h1 − zj�
+ �

k�l

h1
2

�h1 − wk��h1 − wl�
+ �

i=1

M1 2h1
2

�h1 − zi�2 + �
k=1

M2 2h1
2

�h1 − wk�2 +
2h1

2

�h1 − h2�2

− C1
2h1

h1 − h2
+ �

i=1

M1

�
k=1

M2 2h1
2

�h1 − zi��h1 − wk�
− C1�

i=1

M1 2h1

h1 − zi
− C1�

k=1

M2 2h1

h1 − wk

+
2h1

h1 − h2
��

i=1

M1 h1

h1 − zi
+ �

k=1

M2 h1

h1 − wk
� , �E3�

and the similar result for h1↔h2. All identities presented above directly generalize to SU�n�.
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