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Abstract 

Explicit wave functions for the hierarchy of fractionally quantized Hall states are proposed, and a method for integrating 
out the quasiparticle coordinates in the spherical geometry is developed. Their energies and overlaps with the exact ground 
states for small numbers of particles with Coulomb interactions are found to be excellent. We then generalize the adiabatic 
transport argument of Arovas, Schrieffer, and Wilczek to evaluate quasiparticle charges and statistics, and show that none 
of the proposed states is the exact ground state of any model Hamiltonian with two-body interactions only. 

1. Introduction 

Most of  our understanding of the fractionally quantized Hall effect is based on a highly original trial 
wave function [ 1 ] for the ground state at filling fractions 1/m, where m is an odd integer. It describes an 
incompressible quantum fluid with fractionally charged excitations, and has been shown [2] to capture the 
correct universality classes at those fillings. The hierarchy [3-5] is an extension of this picture to other rational 
filling fractions, based on the idea that the quasiparticle excitations themselves condense into a Laughlin-Jastrow 
type fluid. This procedure can be iterated, and all odd denominator filling fractions appear within this picture, 
at various levels of  the hierarchy. 

The problem with the existing formulations of the hierarchy is that they only predict the corresponding 
universality classes, specified by certain quantum numbers, but do not provide us with explicit wave functions. 
It is the aim of the present letter to fill this gap. In the following chapter, we will propose such wave functions, 
develop a method for integrating out the quasiparticle coordinates, and present the results of  extensive numerical 
studies, which provide strong evidence in support of our proposal. In the chapter thereafter, we obtain general 
formulas for the quasiparticle charges and statistics, and present preliminary results for energy gaps. We then 
present a simple proof that none of the proposed hierarchy states is the exact ground of any model Hamiltonian 
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containing two body interactions only, and conclude with comments on Jain's construction, double layer electron 
systems and paired Hall states. 

2. Microscopic formulation 

The general principles are most easily demonstrated by considering first a specific example. The simplest 
hierarchy state we can write down is a m parent state with a p daughter of quasi-holes, denoted by [m, ÷ p ] ,  
where the + sign indicates that we have quasi-holes rather then quasi-electrons. For convenience, we work in 
the spherical geometry [3]. The wave function we wish to propose for this state is 

N1 Nl N N 

 'tm,+,ltu, v] = f Ota, O] I-[ (~lk[~l--CllDk)P ~X I X  (akui--bkui) ~ I  (uiUj--NjUi) m ( 1 )  

k<l k=l i=1 i<j 

where (Ui, Ui) with i = 1 .... N are the spinor coordinates of the electrons on the sphere, (ak, bk) with k = 
1 .... N1 are those of the quasiparticles, and (Sk, bk) their complex conjugates. The interpretation of (1) is 
straight forward: we take a Laughlin l /m-state for N electrons, create N1 quasi-holes, weight the different 
quasi-hole configurations by a Jastrow factor taken to an even power p, and integrate the quasi-hole coordinates 
over the unit sphere. 

To obtain a [m, - p ]  state, we just need to replace the quasi-holes in (1) by quasi-electrons, that is, 

N1 N Nl N 

k=l i=1 k=l i=1 

This wave function would, of course, not be of much practical use if we had no method to perform the 
quasiparticle integration. Fortunately, this integration is rather straight forward. Expressing the spinor coordinates 
for a given particle in terms of the polar and azimuthal angles ~b and 0 on the sphere, a = cos2 °- e+~ ~ and 

b = sin ° e -~  ~b, and substituting f D ( a ,  b) = ~ f d ~ ,  we find 

D(a ,b )  gtn, b2s,_n, anb2s_ n n ! ( 2 S - n ) !  
= ( 2 S + 1 ) !  6nn'62S'2S" (3) 

In any given polynomials in the present context, the integer 2S is given by the number of flux quanta through 
the sphere; it is the same for all terms in an expansion, and we may absorb the (2S + 1)! on the right of  (3) 
in the overall normalization of the wave function. Thus we may, instead of performing the integration, replace 

~ Oa, b ~ 8b and then take a, b ~ O. This leaves us with a large polynomial with derivatives, which is in 
principle not significantly more difficult to expand then say a Laughlin state. 

For our wave function to be non-zero the total degree 2S of the polynomials in (ak, bk) and (ak, bk) has to 
be the same; this leads to the constraint 

p ( N l  -- 1) =N.  

The total number of Dirac flux quanta seen by the physical electrons is therefore 

2S = m ( N - 1 )  + N, = ( m 4 - 1 ) N - m ± l ,  

where the + sign corresponds to quasi-holes, and the - sign to quasi-electrons. The inverse filling fraction and 
the flux shift on the sphere, defined via 

1 
2S = - N - N s h i f t ,  (4) /t  
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are thus as predicted by Haldane [ 3 ], and consisted with the result of  exact diagonalization studies for small 
numbers of  particles. 

Before proceeding to the general case, we wish to refine our construction. I f  we take a close look at the 
trial wave function involving quasi-electrons, we note that we cannot obtain a [5, - 2 ]  state (v  = 2 /9 )  from a 
[3, - 2 ]  state (v  = 2 /5 )  by just multiplying the latter with a Jastrow factor squared, as we would expect from 
a very general argument based on an adiabatic localization of  magnetic flux [6].  To circumvent this problem, 
we are led to consider an alternative trial wave function for the quasi-electron, 

N N N 
XItm+[U'U] = [ 1-I ( b ~ - ~ / - ~ t ~ v  i H (uiUj - u j u i ) 2 ]  I - I ( u i v j - u j u i ) m - 2 '  (5)  

i=1 i<j i<j 

where the derivatives act only on the term in the square brackets. This trial wave function turns out to be 
energetically favorable over Laughl ins--which is not surprising, as it preserves the maximal possible number 
of  Jastrow factors. Indeed, when calculating the overlap between a 2 /5  state and the exact ground state for 
Coulomb interactions for N = 6, we find 0.9985 if we use Laughlin's quasi-particle and 0.9995 if we use (5) .  

Extending our construction to hierarchy wave functions in general, we write the recursion relations 

Nl N N 
xlt [m,+pl,...ot, p, ] [U, U ] = ~/[Pl ...... P'] [tga' °~b] I - [  I -[  ( akui -- bkUi) I I  ( uiUj -- ujUi) m 

k=l i=1 i<j 

N N1 N N 
Xtt[m,_pl,...a~p,,][U,U ] = 1-I (u iu j - -  njui)Xm-2xIr[pl,...a,,pn] [aa, 3b] 1-II-[(DkCgui--~lktgvi) 1-I(uiuj--UjOi) 2. (6)  

i<j k=l i=1 i<j 

Note that the quasiparticle wave function ~[pl,...~,,pA [a ,b]  is always symmetric, as all the p ' s  are even; 
xIttm,,~lpl ...... pn~ [u, v] is symmetric if m is even, or antisymmetric if  m is odd, as appropriate for an electron 

wave function [ 7 ]. 
These wave functions lead to the iterative equations 

1 or1 
v --- [m, a l p l  . . . . .  anpn] = m + [Pl ,  ot2p2 . . . . .  tenpn] 

Nshift ~ {m, alp1 . . . . .  anpn} = m -- a l  {Pl, a2p2 . . . . .  OtnPn} (7) 
[Pl ,  a2P2 . . . . .  OtnPn ] 

for inverse filling fractions and flux shifts on the sphere, and thus reproduce the universality classes predicted 

by Haldane [ 3 ]. 
For some of the most important hierarchy states, we have numerically evaluated overlaps with the exact 

ground state and energy expectation values for small numbers of  particles with Coulomb interactions. The 
results confirm the validity of  our trial wave functions; they are shown in Table 1. Note in particular, that the 
hierarchy states at v = 2 /5  and v = 3 /7  rate considerably better then Laughlin's original 1/3 state, which has 
been included for comparison. It should also be noted that a hierarchy 2 /3  state is energetically less favorable 
then the particle hole conjugate of  a Laughlin 1/3 state, while a hierarchy 2 /7  state is better then a 2 /7  state 
constructed by multiplying this particle hole conjugate by a Jastrow factor squared. 

3. Quasiparticle charge and statistics 

The elementary excitations of  the general hierarchy states (6) are just conventional quasiparticles (quasi- 
holes or quasi-electrons) in the last daughter fluid ~ tpA.  To determine their charge, we just have to observe 
how the flux-particle number relationship is altered by the presence of a quasiparticle; this yields 
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Table 1 
Overlaps and ground state energies per particle for some of the most important hierarchy states. 

51 

v [ m, t~1 pl... ] N 2S+ 1 (xt'trial [XI'ex) Etrial Eex 

1/3 [3] 6 16 0.9964 -0.44995 -0.45017 
2/5 [3,-2] 6 12 0.9995 -0.50036 -0.50040 

8 17 0.9988 -0.48017 -0.48024 
3/7 [3 , -2 , -2 ]  6 10 0.9981 -0.53950 -0.53964 
2/3 [1,+2] 8 13 0.9939 -0.53372 -0.53415 

_ 0.9990 a) ~0.53408 a) 
2/7 [3,+2] 6 20 0.9906 -0.40415 -0.40436 

- -  0.9856 b) -0.40405 b) 
2/9 [5,-2] 6 22 0.9915 -0.38695 -0.38714 

a) Particle hole conjugate of Laughlin 1/3 state. 
b) Particle hole conjugate of Laughlin 1/3 times Jastrow factor squared. 

(Pl ..... anpn) ( - 1 )  n eel • a2" ..." an 
e* ~ (m, ot~pl . . . . .  anpn) = - a l  [m, celpl . . . . .  anPn] = denominator of  filling fraction v ' (8) 

where a negative sign is meant to indicate that a quasi-hole in the last daughter fluid corresponds to a quasi- 
electron in the electron fluid and vice versa. For example, the charge of  a quasiparticle in a 2 /5  state is 
e* = i /5 .  

Turning to the quasiparticle statistics, let us first recall the adiabatic transport argument of  Arovas, Schrieffer, 
and Wilczek [8] for Laughlin-Jastrow type states. The quasiparticle charge e* is obtained by equating the 
geometric phase "y acquired by the wave function as a quasi-hole is adiabatically carried around a closed loop 
with the corresponding Aharonov-Bohm phase, 

/ " i (~b,7, [ ~l~b~)  = -2~re*~b, 

where ~b is the flux through the loop measured in Dirac quanta. Evaluation of  the geometric phase yields 
= -27r  (N), where (N) is the average number of  particles inside the loop. Thus e* = 1/m. I f  there is a second 

quasi-hole in the loop, there will be a deficit of  1/m in (N), and we obtain an additional phase Ay  = 27r/m. 
This additional phase is identified as quasiparticle statistics 0 -- 1/m. 

This argument can be generalized to the hierarchy; the only difference is that the geometric phase depends 
now on the average number (Nn) of  those quasiparticles in the loop which condense as the last daughter fluid, 

"y = - 2 ~ ' ( -  1 ) n al  • a2 . . . . .  an (Nn).  

The statistics depends thus on how (Nn) is altered by the presence of  a quasiparticle excitation in the loop; that 
is to say, on the amount we have to shift Nn on the sphere to accommodate a quasiparticle while keeping 2S 
fixed. This yields 

0 = (m '  a lP l  .. . . .  °tnPn) (9) 
I(m, otlpl . . . . .  Otn-lPn-I ) l ' 

where (m, o~lpl...) are the quasiparticle charges given by (8).  This result is consistent with Halperin's pre- 
dictions [5] and with conclusions drawn from the effective field theory [9] .  To give an example, the mutual 
statistics o f  the elementary quasiparticle excitations in a 2 /5  state is 0 = 3/5.  This might look implausible at 
first sight. To make it plausible, let us consider pairs of  these quasiparticles. They will have charge 2 /5  and 
statistics 4 × 3/5  = 12/5 ~ 2/5,  since each particle in a pair will pick up a statistical phase from each of  the 
particles in any other pair. The statistics of  this excitation is thus consistent with the statistics of  the charge 2 /5  
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quasiparticle we would obtain by directly inserting a Laughlin quasiparticle in the parent fluid. This consistency, 
which carries through for quasiparticles constructed by inserting flux tubes at any level of  a general hierarchy 
state, is most essential to the consistency of  the whole theory. For otherwise we could combine quasi-electrons 
and quasi-holes at different levels of  the hierarchy to form new excitations which carry statistics but no charge, 
and our charged quasiparticles might no longer be the elementary excitations. 

The explicit wave functions proposed above can further be used to calculate quasiparticle energies, and in 
particular energy gaps. One way to estimate the gap for systems with small numbers of  particles is to insert a 
quasi-electron at the north and a quasi-hole at the south pole of  the sphere; for our 2 /5  state, we find energy 
gaps of  0.07569 and 0.06970 for N = 6 and 8, respectively, which ought to be compared with 0.07505 and 
0.6809 obtained by exact diagonalization of the corresponding Hamiltonians. 

4. Model Hamiltonian 

The question we wish to address next is whether we can construct a model Hamiltonian involving two body 
potentials only which singles out any of our hierarchy states as unique and exact ground state. Let us assume 
such a Hamiltonian would exist, and write nl¢,)= 0. In a finite geometry, any two body interaction between 
particles in the lowest Landau level can be parametrized by a finite number of  pseudopotentials vt, which just 
denote the potential energy cost of  having relative angular momenta l between two particles. Thus we may 

write 

2S 2S 

n[~ll > = (~-~ Ulnl)[~p> = ~ u I (Blimp)) = 0. ( 1 0 )  

l=0 l=0 

For the explicit wave functions proposed above we find numerically that there is only one nontrivial solution 

to (10):  

vt = ( 2 S -  l) ( 2 S -  l +  1) + const. (11) 

This solution, however, corresponds to a Hamiltonian equal to the square of  the total angular momentum of  the 
many body wave function on the sphere, H = Lt2t, and can therefore not be used to distinguish one trial wave 
function from another. Thus we have shown that there is no model Hamiltonian involving two body potentials 
only which singles out any of  our hierarchy states as the unique ground state. The same is true for the trial 
wave functions proposed by Halperin [ 10] and Jain [ 11 ]. 

In this context it is perhaps propitious to note that interesting new possibilities arise as one considers many 
body interaction potentials [ 12]. For example, one can identify the exact ground state of  a model Hamiltonian 
which demands that the wave function vanishes as the sixth power as three particles approach each other; this 

state has filling fraction 2/5.  

5. Comments 

We wish to conclude with a few comments: 
a) Comparing ground state energies and overlaps of  our hierarchy wave functions with the trial wave functions 

proposed by Jain [ 11 ], we find that Jain's 2 /5  state is slightly better than ours. We conjecture that the reason 
for this is as follows: The improved trial wave function for the quasi-electron (5) is still not the best in town; 
the pair wave function proposed by Halperin [ 10] and the trial wave function proposed by Jain [ 11 ] are even 
better. In fact, we conjecture that these two are identical, as indicated by expansions of  the wave functions for 
v = 1/3 on the sphere up to N = 6. Now suppose we wish to construct a hierarchy 2 /5  state along the lines of  
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(6) ,  but with Jain's trial wave function for the quasi-electron instead of  (5) .  For a 2 /5  state, we need half as 
many quasiparticles as there are electrons in the liquid - -  but this is to say, the starting point for this state is 
two filled Landau levels! In this context, it is of  course not clear what one could mean by a condensation of  the 
quasi-particles into a p = 2 daughter fluid, as they are already condensed in the sense that they occupy all the 
states in the second Landau level. It is clear, however, that the trial wave function one obtains in the end will 
be identical to the one proposed by Jain. We are thus led to conjecture that Jain's trial wave function for the 
2 /5  state is identical to a hierarchy state constructed with Halperin's pair wave function for the quasi-electron. 

b) The generalization of  our wave functions to the hierarchy of  double layer electron systems [ 13] follows 
without incident. 

c) The methods developed above can be used to construct a trial wave functions for other universality classes 
as well, most noteworthy among them paired Hall states [ 10,14]: 

/ *  n 

~pmhs[U, V] = , A . / D [ a ,  b]  I X  ( a i b j  - a i b j )  m 
i<j 

x ( (u ia i  _ ui~i ) (Ui+na i _ Ui+n~i)) 2 I I ( u i U i + n  - Ui+nUi) , ( 1 2 )  
i=1 i=1 

where ,,4 denotes antisymmetrization, n is the number of  electron pairs with center-of-mass coordinates (ai, bi), 
and rn is an even integer related to the filling fraction via ~, = 4/m. 
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