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We describe a general method to identify exact, local parent Hamiltonians for trial states such as quantum
Hall or spin-liquid states, which we have used extensively during the past decade. It can be used to identify
exact parent Hamiltonians, either directly or via the construction of simpler annihilation operators from which
a parent Hamiltonian respecting all the required symmetries can be constructed. Most remarkably, however, the
method provides approximate parent Hamiltonians whenever an exact solution is not available within the space
of presumed interaction terms.
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Introduction. In the study of condensed matter systems
with conceptually or even topologically nontrivial properties
including superconductors [1], fractionally quantized Hall
fluids [2–4], or spin liquids in one [5–8] or two dimensions [9–
13] (1D or 2D), it has often been extremely helpful to resort
to trial wave functions which serve as paradigms for the
universality classes at hand. These trial wave functions are
usually amenable to analytic formulations, and instruct us on
the properties, and in particular the quantum numbers, of the
excitations above the ground state. Well-known examples of
such trial states are the BCS wave function [1], which supports
Bogoliubov quasiparticles, the Laughlin [2], Moore-Read [14],
and Read-Rezayi [15] states in the quantum Hall effect, which
support fractionally charged quasiparticles with Abelian [16]
or non-Abelian statistics [14,17], and the Gutzwiller ground
state [18–20] of the Haldane-Shastry (HS) model [5–7], which
supports spinon excitations with half-Fermi statistics.

In some cases, it is only possible to study these paradigms
using approximate parent Hamiltonians. Whenever available,
however, it is highly desirable to construct exact parent Hamil-
tonians, and thus elevate the paradigm from a wave function
to an exact model. This has been accomplished for all the
examples mentioned above [3,5,6,15,21–24], and has been
particularly rewarding in the case of the Gutzwiller ground
states of 1D spin chains, where the model turned out to be an
exact lattice realization of the SU(2)1 Wess-Zumino-Witten
(WZW) model [25–28]. This model was subsequently gener-
alized from SU(2) to SU(M,N ) supersymmetry [29,30], and
also to higher spin representations of SU(2) [8,31,32], where
the low-energy sector is described by the SU(2)k=2S WZW
model. All these developments have been inspired not by the
Gutzwiller states directly, but by its parent Hamiltonian, which
was independently discovered by Haldane and Shastry [5,6].

In this Rapid Communication, we describe a general,
numerical method to obtain exact parent Hamiltonians for
given trial wave functions, which almost trivially yields parent
Hamiltonians for the Laughlin and for the Gutzwiller wave
functions discussed above. The approach is in part similar to
recent proposals by Xi and Renard [33] as well as by Chertkov
and Clark [34]. Over the years, we have obtained results using
this method for the hierarchical quantum Hall states [35] (with

wave functions obtained either through a composite fermion
construction or through an explicit condensation of quasiparti-
cles in the hierarchy), for the non-Abelian chiral spin liquid
(NACSL) [12,13,36], and most recently, for a universality
class of fractional topological insulators [37] we propose. In
the latter two examples, the method not only revealed that
there do not exist exact parent Hamiltonians containing only
the interaction terms we considered, but provided us with
meaningful approximate parent Hamiltonians, which were
instrumental to our studies.

General method. With these introductory remarks, we now
turn to the method itself. Let |ψ0〉 be a known trial ground
state for a finite system, of a system size amenable to exact
diagonalization studies. We now wish to ask whether |ψ0〉 is
the exact ground state of a (local) model Hamiltonian specified
by a finite number L of terms Hi with unknown coefficients ai ,

H =
L∑

i=1

aiHi, (1)

and determine the coefficients. To begin with, this requires that
|ψ0〉 is an exact eigenstate,

H |ψ0〉 = E0|ψ0〉, (2)

which we write as

(H + a0)|ψ0〉 = 0. (3)

Clearly, the additional variational parameter a0 is to be inter-
preted as −E0. Defining H0 ≡ 1, we may write this compactly
as

L∑
i=0

aiHi |ψ0〉 = 0. (4)

Since we are interested in identifying parent Hamiltonians
for highly correlated many-body states, and the number of
translationally invariant m-body terms Hi for a system with
N sites scales roughly as Nm−1, the dimension of the Hilbert
space for system sizes with more than about four particles will
in general be larger than the number of terms L. This means
that some special principle must be at work for each solution of
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(4). In most applications, there are one or several solutions due
to conserved quantities (e.g., total spin in a spin system, total
angular momentum for quantized Hall fluids on the sphere),
and an additional one if an exact parent Hamiltonian exists.

To find these solutions, we define the state vectors |ψi〉 ≡
Hi |ψ0〉, and multiply (4) from the left with the corresponding
dual 〈ψj |. With Mji ≡ 〈ψj |ψi〉, this yields

L∑
i=0

Mjiai = 0 for j = 0, 1, . . . , L. (5)

Obviously, there is one solution of (5) for each zero eigenvalue
of the L + 1 dimensional, Hermitian matrix Mji . Substitution
of the corresponding eigenvectors ai into (4) yields operators
annihilating the ground state, which enable us to extract the
desired parent Hamiltonian (1). If det Mji �= 0, (5) has only
the trivial solution ai = 0, and no exact parent Hamiltonian or
parent operator exists within the space spanned by the operators
Hi . Even though this may come across as a trivial observation,
the models one can obtain with this method are in general
highly nontrivial.

Possibly the most outstanding feature is that, according
to our long-standing experience, the method usually yields
a highly nontrivial approximate parent Hamiltonian if no
exact one exists within the operator space spanned by the
Hi’s. In these cases, there are likewise one or several zero
eigenvalues due to conserved quantities, and one small or very
small nonzero eigenvalue. The eigenstate corresponding to this
eigenvalue defines the approximate Hamiltonian.

An obvious drawback is that the method guarantees that
|ψ0〉 is an exact or approximate eigenstate of H , but not that it
is the ground state. This has hence to be verified a posteriori by
exact numerical diagonalization of H . Our experience here is
that whenever an exact parent Hamiltonian exists, it will have
|ψ0〉 as its unique ground state. In the case of approximate
solutions, we have sometimes encountered situations where
the method suggested operators for which |ψ0〉 has only been
an approximate eigenstate, not the ground state. In the cases
we have studied, however, it was always possible to find a
suitable set of operators Hi such that the method converged on
an approximate parent Hamiltonian for the ground state.

Example: The Haldane-Shastry Hamiltonian. The ground
state of the model can be obtained by Gutzwiller projection
from a completely filled one-dimensional band, which in total
contains as many spin- 1

2 fermions as there are lattice sites
[18–20],

∣∣ψHS
0

〉 = PGW

∣∣ψN
SD

〉
,

∣∣ψN
SD

〉 ≡
∏
q∈I

c
†
q↑c

†
q↓|0〉, (6)

where the interval I contains M = N
2 adjacent momenta, and

the Gutzwiller projector PGW eliminates doubly occupied sites.
While it is irrelevant to the applicability of the numerically

executed method proposed above, a different formulation of the
Gutzwiller ground state is convenient for the discussion below.
Consider a spin- 1

2 chain with periodic boundary conditions and
an even number of sites N on a unit circle embedded in the

complex plane:

N sites with spin- 1
2 on unit circle:

ηα = ei 2π
N

α with α = 1, . . . , N.

The ground state (6) can be written as∣∣ψHS
0

〉 =
∑

{z1,...,zM }
ψHS

0 (z1, . . . , zM )S+
z1

. . . S+
zM

| ↓↓ . . . ↓︸ ︷︷ ︸
N spins ↓

〉,

(7)

where the sum extends over all possible ways to distribute the
M = N

2 ↑-spin coordinates zi on the unit circle and

ψHS
0 (z1, . . . , zM ) =

M∏
i<i

(zi − zj )2
M∏
i=1

zi . (8)

We now search numerically for an exact parent Hamiltonian
which is invariant under all the symmetries of the ground state,
i.e., translations, SU(2) spin rotations, time reversal (T ), and
parity (P ). It is further reasonable to first try an ansatz with
two-body interactions only. [In fact, the only SU(2) invariant
three-spin interaction term for spin- 1

2 is iSα (Sβ × Sγ ), which
violates T .] Following the notation in (1), we write

H =
N/2∑
i=1

aiHi, Hi =
N∑

α=1

Sα Sα+i . (9)

Numerical execution of the steps described above for a chain
with N � 8 sites yields two zero eigenvalues of the matrix Mji

of (5). The corresponding eigenvectors yield, upon rewriting
in a more convenient form, the ground-state annihilation
operators

H a = S2
tot, Stot ≡

N∑
α=1

Sα, (10)

and

H b = −E0 +
(

2π

N

)2 N∑
α<β

Sα Sβ

|ηα − ηβ |2 , (11)

where |ηα − ηβ | is the chord distance between the sites α and
β, and E0 = −π2

24 (N + 5
N

). While H a just confirms that the
ground state is a spin singlet, H b is the model Hamiltonian
discovered by Haldane and Shastry [5,6].

First generalization: Ground-state annihilation operators.
While the method in its most direct form works extremely well
for 1D models (such as spin chains or 2D electrons confined
to a Landau level) with two-body interactions, and is still
feasible for 1D models with three-body interactions, it is less
so for higher dimensions. In some instances it can be extremely
helpful to employ the method to identify not the coefficients in
a model Hamiltonian directly, but in an annihilation operator
for the ground state. Such an operator can be much simpler than
the Hamiltonian, is not required to share any of the symmetries
of the ground state, and does not need to be Hermitian. Once the
operator is known, it is usually possible to construct a local and
positive semidefinite parent Hamiltonian from it. Returning to
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our example of the HS model, an operator of this kind is

�α =
N−1∑
i=1

aα,i Hα,i , Hα,i = S−
α S−

α+i . (12)

Note that even though the operators Hα,i are no longer
Hermitian, the matrices Mα,ji of (5) still are. We now find
three zero eigenvalues for each α, which yield the ground-state
annihilation operators

�a
α = S−

α S−
tot, (13)

where we have used (S−
α )2 = 0,

�b
α =

N∑
β=1
β �=α

1

ηα − ηβ

S−
α S−

β , and �c
α = (

�b
α

)∗
. (14)

It is then an elementary exercise [8] to show that the T and
P invariant scalar component [scalar with regard to SU(2)
spin rotations] of the translationally invariant, Hermitian, and
semidefinite positive operator

Hintermediate =
N∑

α=1

�b
α

†
�b

α (15)

is, up to an overall normalization, equal to (11). Since �c
α is

just the T or P conjugate of �b
α , it yields the same parent

Hamiltonian.
The advantages of an approach via an annihilation operator

of the kind (12) over the direct approach (9) become apparent
as we consider models which are not as readily obtained as the
HS model (11). Consider the higher spin S generalizations [38]
of the Gutzwiller state,

∣∣ψS
0

〉 = (
�HS

0 [a†, b†]
)2S |0〉, (16)

where �HS
0 [a†, b†] is the operator generating the HS ground

state in terms of Schwinger bosons, such that
∣∣ψHS

0

〉 = �HS
0 [a†, b†]|0〉. (17)

If we view the HS ground state (8) as a bosonic Laughlin
state for spin-flip operators, we would view (16) as a bosonic
Read-Rezayi state for renormalized spin flips. For (16), we
can numerically determine the coefficients ai in (12) with
Hα,i = (S−

α )2SS−
α+i , which then turn out to be equivalent to

those found in (13) and (14) for spin- 1
2 . Following the same

steps as above, this yields the parent Hamiltonian [8]

HS = 2π2

N2

⎡
⎢⎢⎢⎣

N∑
α �=β

Sα Sβ

|ηα − ηβ |2 − 1

2(S + 1)(2S + 3)

×
N∑

α, β, γ

α �=β, γ

(Sα Sβ )(Sα Sγ ) + (Sα Sγ )(Sα Sβ )

(η̄α − η̄β )(ηα − ηγ )

⎤
⎥⎥⎥⎦, (18)

with ground-state energy

ES
0 = −2π2

N2

S(S + 1)2

2S + 3

N (N2 + 5)

12
. (19)

Obviously, it would be much more difficult to obtain the
coefficients in (18) directly with our numerical method than
it is with annihilation operators. The direct method, however,
does convey the information that an exact parent Hamiltonian
with three-body terms of the form in (18) does exist for the
higher spin states.

Second generalization: Approximate parent Hamiltonians.
Possibly the most important feature of our method is that it
delivers approximate parent Hamiltonians whenever an exact
parent Hamiltonian for the trial ground state is not available
in the space spanned by the terms Hi one considers. More
often than not, this situation arises because no simple, local,
analytically amenable parent Hamiltonian exists for the state
in question. Examples for such a situation are provided by the
hierarchy wave functions of the quantized Hall effect, which is
also the instance where one of us applied this method first [35],
or for the NACSL [12].

As explained in the context of the general method above, in
situations where no exact, but an approximate, parent Hamilto-
nian can be constructed with the terms Hi included in (1), the
eigenvector associated with the smallest nonzero eigenvalue
of Mji usually provides such an approximate Hamiltonian
H . The result, however, will slightly depend on the relative
normalizations wi of the operators Hi used in the numerical
procedure. In this context, however, the optimal solution will
depend on what one desires to optimize. This could be the
relative variance of the ground-state energy

〈ψ0|H 2|ψ0〉 − 〈ψ0|H |ψ0〉2

〈ψ0|H |ψ0〉2 , (20)

the overlap 〈ψ |ψ0〉 between the exact ground state |ψ〉 of H

and the reference trial state |ψ0〉, or the similarity between the
correlators hi = 〈ψ |Hi |ψ〉 and h0,i = 〈ψ0|Hi |ψ0〉. [When we
applied the method to the NACSL [12], our point was to show
that we can find a local, approximate Hamiltonian with a gap
between the three (in the thermodynamic limit topologically
degenerate) ground states and the remaining spectrum. The
size of this gap was hence a parameter we considered as well.]

In most applications we studied, the most naive application
of the method designed for the identification of an exact
parent Hamiltonian provided us with remarkably accurate
approximations whenever no exact solutions were available.
If one then desires to optimize the Hamiltonian specified by
the set of parameters [ai] ≡ (a0, a1, . . . , aL) further, one may
apply a Newton scheme as follows. We illustrate the method
here for an optimization of the similarity in the correlators, as
this usually optimizes variance and overlap as well. To begin
with, we choose a set of weights [wi], and another set [w′

i],
where only a single weight wj differs by a small parameter δj .
We then evaluate the corresponding coefficients [ai] and [a′

i],
and from there [hi] and [h′

i]. This yields the j th row of the
derivative matrix

∂hi

∂wj

≡ h′
i − hi

δj

.
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As a next step, we solve the linear equation

L∑
j=0

∂hi

∂wj

�wj = h0,i − hi

for the shifts �wj we would require if we assume a linear
dependence. The procedure can then be repeated with the
adjusted weights [wi + �wi] until it has converged. In the
examples we considered, however, a single iteration was
sufficient. Whenever adjustments of the weights [wi] are
insufficient to induce the desired changes in the correlators,
one possible route is to follow the same steps with infinitesimal
variations in the coefficients [ai]. Usually, one needs to adjust
nuances of the method to the problem one is considering. For
example, it is sometimes better to include w0 and a0 in the
optimization, while in other situations it is better to take a0

constant, if not zero to start with. We have also encountered
examples where the optimization worked better when we
adjusted the weights not on a linear, but on a logarithmic scale,
a change which is fully implemented by taking ewi Hi instead
of wiHi for the renormalized operators in H = ∑

i aiwiHi and
|ψi〉 = wiHi |ψ0〉. The procedure we have outlined here hence
should be taken mostly as an inspiration to find an adequate
algorithm for the problem one is interested in.

The approximate method we just outlined is heuristic
and crude, but has been highly successful in our experi-
ence. The reader might ask at this point whether a more
scholarly approach does not offer itself. One possible av-
enue we have explored is to minimize the variance (20) by
maximizing 〈ψ0|H |ψ0〉2 subject to the constraints 〈ψ0|ψ0〉 =
〈ψ0|H 2|ψ0〉 = 1 with H given by (1). This yields

L∑
i=1

Mjiai = −Mj0a0 for j = 1, . . . , L, (21)

where a0 is now a normalization constant given by

a−2
0 =

L∑
i,j=1

M0i (M
−1)ijMj0. (22)

Note that since a0 only affects the overall normalization of
the parent Hamiltonian, we do not need to evaluate (22) in
practical applications. Instead, we may set a0 = 1 in (21). In
some of the examples we have investigated, the Hamiltonian
corresponding to the solution of (21) for ai was more accurate
than the one obtained with the previous method, i.e., via the
lowest nonzero eigenvalue of (5). In general, however, this
method has not been as stable and robust as the previous one.

Conclusion. We have introduced a method to identify
where available exact, but in general approximate, parent
Hamiltonians for known trial wave functions. It is particularly
useful when the trial states describe paradigms of fractionally
quantized or topologically ordered, many-particle states. In the
examples we studied, the most naive application of the method
provided us already with compelling approximative Hamilto-
nians whenever exact Hamiltonians did not exist within the
space of the interaction terms we considered. Since the effort
required to optimize these approximations is very manageable,
we explained and illustrated one optimization procedure in
detail. Different physical problems usually require different
approximations, and the procedure we outline is not universally
applicable. We do believe, however, that the method in general
will be of vital use in many different areas of physics that con-
cern themselves with trial states, and yet unknown microscopic
models associated with them.

This work was supported by the European Research
Council (ERC) under Grant ERC-StG-Thomale-
TOPOLECTRICS-336012.

[1] J. R. Schrieffer, Theory of Superconductivity (Benjamin/
Addison-Wesley, New York, 1964).

[2] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[3] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[4] J. Jain, Composite Fermions (Cambridge University Press, Cam-

bridge, U.K., 2007).
[5] F. D. M. Haldane, Phys. Rev. Lett. 60, 635 (1988).
[6] B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).
[7] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard, and V.

Pasquier, Phys. Rev. Lett. 69, 2021 (1992).
[8] M. Greiter, Mapping of Parent Hamiltonians, Springer Tracts in

Modern Physics Vol. 244 (Springer, Berlin, 2011).
[9] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095

(1987).
[10] R. B. Laughlin and Z. Zou, Phys. Rev. B 41, 664 (1990).
[11] D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Phys.

Rev. Lett. 99, 097202 (2007).
[12] M. Greiter and R. Thomale, Phys. Rev. Lett. 102, 207203 (2009).
[13] M. Greiter, D. F. Schroeter, and R. Thomale, Phys. Rev. B 89,

165125 (2014).
[14] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[15] N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).

[16] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53,
722 (1984).

[17] A. Stern, Ann. Phys. 323, 204 (2008).
[18] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
[19] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987).
[20] F. Gebhard and D. Vollhardt, Phys. Rev. Lett. 59, 1472

(1987).
[21] R. Richardson, Phys. Lett. 3, 277 (1963).
[22] R. Richardson, J. Math. Phys 18, 1802 (1977).
[23] M. Greiter, X. G. Wen, and F. Wilczek, Nucl. Phys. B 374, 567

(1992).
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