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An operator formalism is developed for an exactly soluble model of fractional statistics, and
used to show that a heuristic principle suggested earlier is rigorously valid in one particular case.
For a class of model hamiltonians, Laughlin’s Jastrow-type wave functions are obtained explicitly
from a filled Landau level by smooth extrapolation in quantum statistics. The gap is shown not to
close, which allows us to infer the incompressibility of the final states. The analysis is further
extended to paired Hall states at even-denominator fillings, which arise adiabatically from an
exact but unnormalizable model of superconductivity. Finally, we generalize the model to the
torus geometry, and show that theorems restricting the possibilities of quantum statistics on
closed surfaces are circumvented in the presence of a magnetic field.

1. Introduction

Recently we proposed [1] an approach to understanding the fractional quantum
Hall effect [2,3] by relating it continuously to the integer effect (adiabatic heuristic.)
The connection is made by the process of trading uniform magnetic flux for flux
localized on the particles. In this way, incompressible many-body fermions systems
at different filling fractions are continuously connected through intermediate
incompressible many-body anyon systems. Our earlier argument was frankly
heuristic.

In the meantime Girvin and collaborators [4], and others [5,6], have provided a
simple recipe for constructing model hamiltonians whose ground states can be
identified exactly, and that is very well suited to implementing our adiabatic
heuristic. In this paper we shall exploit the ideas of their construction to give a
concrete realization of our approach in a context where it is very close to being
demonstrably correct. We shall also show how the discussion can be extended to
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Fig. 1. The adiabatic heuristic, which is shown in this paper to apply rigorously for certain model

hamiltonians, connects incompressible ground states along lines of unit slope in the statistics—inverse

filling fraction plane. One such line contains the single filled Landau level and the Laughlin—Jastrow-

type states at odd-denominator fillings v = 1/m for fermions, together with similar boson states at even

denominator fillings. Another such line contains incompressible states with pairing correlations,

including a boson state at filling fraction » =1, a fermion state at v =1 /2, and (as a limiting case, for
# — — ) a singular p-wave BCS superfluid in zero magnetic field.

accommodate the paired Hall state at half filling [7], and to periodic boundary
conditions.

Many of our results are aptly summarized in fig. 1. The adiabatic heuristic,
which is exactly and explicitly implemented for the ground states of the models
discussed in this paper, trades uniform flux for particle statistics. It therefore
relates states along parallel lines of constant slope in the statistics-inverse filling
fraction plane. Starting from a ground state separated by a gap in the spectrum,
that is an incompressible state, the adiabatic theorem guarantees that slow changes
in the hamiltonian will evolve this state continuously into the ground state of the
altered hamiltonian, so long as the gap does not close. Along the line containing a
single filled Landau level of fermions one also finds the Laughlin odd-denominator
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v =1/m states for fermions, similar bosonic even-denominator states including (as
a limiting case, for m — 0) the ideal Bose-condensed superfluid, and other anyon
fractional quantized Hall states at appropriate filling fractions. Another line
contains incompressible states with pairing correlations, including a boson state at
filling fraction » = 1, a fermion state at v = 1 /2, and (as a limiting case) a singular
p-wave BCS superfluid in zero magnetic field.

Before beginning the technical discussion, it may be appropriate to mention
briefly some quasi-philosophical points, which were important in the motivation for
this work.

There can be little doubt that the leading idea of the current theory of the
fractional quantum Hall effect, namely that it is due to the formation of an
incompressible quantum liquid at suitable filling fractions, is essentially correct.
However, in our opinion the theoretical understanding of this effect leaves much to
be desired. The main foundation of the existing theory is Laughlin’s inspired guess
of a trial wave function for » = 1 /m, m odd. One then argues that it represents an
incompressible state, basically as follows. First, this wave function is so beautiful,
and does such a good job of keeping the particles apart while treating them all
symmetrically, that it clearly is very advantageous energetically. Second, wave
functions of this type can only be constructed at special, discretely different filling
fractions. Thus the liquid has preferred densities, and accommodates small density
perturbations by producing localized quasiparticles while keeping the favored
density in bulk. This argumentation has been buttressed by numerical simulations
[8], which show both that there are incompressible ground states (for realistic
interactions) at the predicted filling fraction and that these states have large
overlaps with the Laughlin states.

We feel that the case for incompressibility of the 1/m states, though quite
persuasive — especially in the light of laboratory and numerical experiments — is
not entirely crisp or transparent. The situation is much worse for the other
odd-denominator fractions.

We believe the adiabatic approach suggested previously and developed here
does go a long way toward providing a crisp, transparent understanding of some
key aspects of the fractional quantized Hall effect for the 1/m states. It is possible
that some generalization of these methods will also help elucidate more general
fractions. (The adiabatic heuristic may be used — at a heuristic level — to motivate
either the hierarchical approach to other fractions, or some constructions using
higher Landau levels, in a spirit similar to Jain’s [9]. However we have not yet
managed to find a rigorous version in the more elaborate cases.) In any case, they
have provided the impetus leading to some results of independent interest:
quantized Hall states for anyons, smooth connection of anyon superfluidity to
fractional quantized Hall states, v = 1 /2 states for fermions smoothly connected to
BCS theory, and new possibilities for fractional statistics on torus, as we now shall
discuss.
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2. Exactly soluble model of fractional statistics

The analysis presented in the following sections is largely based on a model of
fractional statistics, closely related to the one which has been introduced recently
by Girvin and his collaborators [4]. This model is exactly soluble for the ground
state, and some excited states are easily identified. In this section we introduce an
attractive operator formalism to review and extend the relevant aspects of that
model.

(1) Consider the following N-particle hamiltonian in 2 + 1 dimensions:

1 N . 2
H-= EEE [(~iV,+ed;)” - eB)], (2.1)
where
206
B,=V,x4,= —— Y. 8%(r,—r) +B (2.2)
€

and #=c=1. It describes a gas of fractional statistics particles, interacting via a
delta-function potential, in the presence of an external magnetic field. If we
impose the gauge condition V, 4, = 0, we can solve eq. (2.2) for the vector potential
and obtain

0 (r.—r) X2
A= —— ) ———— +3B(r;x2%). (2.3)
me o -l
The first term in (2.3) corresponds to magnetic flux tubes attached to the particles
and implements fractional statistics with parameter 6, while the second term
merely represents a uniform magnetic background field, of magnitude B and
oriented in the negative Z-direction.
This model can be solved exactly for the ground state. To make it evident, we
introduce the creation- and annihilation-like operators

d
a;,= C_S“(+V2 ’T) C+S“,
dz;

d
T—etSel -7 — | @ Sa, 2.4
al=e ( \/—aZi)e (2.4)
Here z=x +iy, and S, is defined by
4 1 2
S,=——123Inlz;—z;|+3eB} | z1" (2.5)

i<j i
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Now the hamiltonian can be rewritten as

1
H=— Ta.. 2.6
Zi a;a, (2.6)

In this form, the strong resemblance of our problem to Landau level quantization
is evident. It follows immediately from (2.6) that those states annihilated by the
a-operators are exact eigenstates of zero energy. The vastly degenerate manifold
of ground states is therefore described by

Yolz] =flz] e~ (2.7)

where f[z]is an arbitrary entire function of the complex particle positions. These
states are, of course, not always normalizable.

(2) It is instructive to consider the commutation relations of the fundamental
operators a; and af. While these are rather clumsy in general, there is one notable
exception:

[a;, aj] = [af, a;f] =0,
ai,Za;] = [Zai, a}] =eB. (2.8)

Now we can see the precise sense in which a; and a} resemble creation and
annihilation operators. (We have refrained from normalizing them, to avoid
problems near B = 0.) Using (2.8), we obtain the higher energy eigenstates [5]

wlz)=(Zal) flz1e

a n
=e+sa(—\/§Z_a—Z_) flz] e 5, (2.9)

with energy eigenvalues E, =nw., where n is a nonnegative integer, and w, =
eB/m the cyclotron frequency. i, is not the most general eigenstate of (2.1) for
general values of 6.

Let us now digress briefly on the physical interpretation of these excitations. ¢,
describes a state with all but one of the particles in the first Landau level, and one
in the second Landau level - or, to be more precise, a linear combination of all N
possible choices for this particular particle. In other words, we can create excita-
tions into higher Landau levels, but we are unable to provide single-particle labels
for them. This peculiarity becomes more significant as we turn to higher-order
excitations. The state ,, for example, contains a large amplitude for finding two



582 M. Greiter, F. Wilczek / Quantum Hall states

particles in the second Landau level, but also a small amplitude for having only
one particle excited into the third Landau level.

(3) As with the standard Landau level problem [10], it proves convenient to
introduce a second set of fundamental operators, which can be used to classify the
vastly degenerate energy eigenstates. They are given by

a
b,‘=e+s” +\/—i_)e S
dz;
bt S V2 J +S 2
"= e 9| — _ b 1
f=¢ i (2.10)
where S, is defined
9 i 2
SbE——Zln|Zi—Zj|—z€BZ|Z;| . (2.11)
i<j i

S, differs from S, only in that the sign of B is reversed; the corresponding
operators are therefore related by

b(6, +B) = —al(6, —B),  bj(6, +B) = —a,(0, —B). (2.12)
The commutation relations of the new operators satisfy

[b.. b;] =[], b]] =0,

i Yj
[b,,{‘,b*] [Zb,, ]]—eB, (2.13)
in close analogy to (2.8), while operators belonging to different ladders obey
[a,, bf| = [a:f, b,-] =0,

[a,,%:bj] [Za,,b]—[a Zb*] [Za,,bf] (2.14)

The energy eigenstates (2.9) may now be written in terms of fundamental operators
only:

ulz]- (;af)"f[bw (215)
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(4) Tt is also possible to express the total canonical angular momentum

L= %[—irix\z] (2.16)

i=1
in terms of ladder-like operators:

2[ bib; + bb!) — (ala; + a;a}) _ONNZD (2.17)
eB ( A T 2 ' '

T 2eB
The last term reflects, in some sense, the fact that we consider the canonical rather
than the kinetical angular momentum. Even though there is, once again, a strong
similarity to the familiar case of Landau level quantization, (2.17) cannot be
verified as easily as any of the other formulas stated above. However, using the
identities (2.12), we can rewrite (2.17) as

1 6 N(N-1)
L=w—[H(0, —B)—H(8, B)] - N-— (2.18)

To conclude the proof, we only have to substitute (2.1) and carry through a few
steps of algebra.
The total angular momentum commutes with the hamiltonian,

[L,H]=0, (2.19)

consequently, the angular momentum eigenvalues can be used to classify the
degenerate energy eigenstates (2.9), even though such classification proves natu-
rally incomplete. Note that the fiducial state, obtained by setting f=0 in (2.7), is
an angular momentum eigenstate with eigenvalue zero:

LeS=0. (2.20)

It is not possible to provide a similar framework for the angular momentum of the
individual particles — reflecting the fact that not even the fiducial state of the
interacting many-particle model is an eigenstate of the angular momentum opera-
tor for any individual particle.

(5) A similar situation arises if one attempts to construct a magnetic translation
operator for an individual particle — such an operator would neither commute with
the hamiltonian, nor with its equivalent for any other particle. However, one can
construct an operator which translates all the particles simultaneously,

t(€) =exp[%2(§bi—§bi)]. (2.21)
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It commutes trivially with the hamiltonian,
[t(&), H] =0. (2.22)

Of course, two successive translations do not commute in general, as can be seen
from

1(€)t(n) =t(£+n) exp| INeB(7¢ — n)]. (2.23)

However, if the parallelogram spanned by ¢ and 7 includes n/N magnetic flux
quanta, i.e.

3NeB(m¢ —né) = 2min (2.24)

where n is an integer, t(£) and #(n) commute.
The proper generalization of the model to incorporate periodic boundary
conditions is based on quite different considerations, and is provided in sect. 5.

3. The adiabatic heuristic and odd-denominator Hall states

We now construct, along the lines just sketched, models which allow the
philosophy of the adiabatic heuristic to be implemented explicitly, so that integer
to fractional quantized Hall states are connected continuously.

(1) The adiabatic heuristic is as follows. Quantized Hall states — that is
incompressible quantum liquids — are related to other quantized Hall states
through adiabatic localization of magnetic flux: uniform flux is traded for an equal
amount of fictitious flux localized on the particles. The latter implements a change
in quantum statistics, related to the change in the filling fraction by

A—=A—. (3.1)

For suitable repulsive interactions, the gap in the excitation spectrum of the initial
state is likely to carry through as we evolve along this line in the statistics-magnetic
field plane, and new incompressible states of fermions are obtained as the
statistical parameter 0 has increased or decreased by integer multiples of 2.
The most fundamental quantized Hall states are, of course, integer fillings of
Landau levels. They are ideal points of departure, not only because their explicit
wave functions are known, but also because their incompressibility is established
on rigorous grounds. As explained elsewhere [11], explicit wave functions for other
odd-denominator Hall states can be motivated via the heuristic prescription from
filled Landau levels, together with particle-hole conjugation. In this section,
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however, we wish to focus on the simplest case only. We start with a single filled
Landau level, and obtain, according to (3.1), incompressible fermion states at
v=1/m, with m odd integer. These are, as we shall show below, the Laughlin-
Jastrow-type states.

(2) We now return to the formal world of the exact solutions. Suppose the bare
particles are fermions, as is appropriate for electron states. Then the most natural
choice for the characteristic function f[z] of the ground state (2.7) is the Vander-
monde determinant

flzl=T1(z-z). (3:2)

i<j
The corresponding ground-state wave function is

y[z]= ]_[(z,-—zj)nIzi—zjle/”nexp(—%eBIzilz). (3.3)

i<j

For 6 =0, y[z] describes a single filled Landau level — the initial state for the
adiabatic process. Now as we gradually evolve the statistics from fermions to
super-fermions, and take 8 from 0 to (m — 1)7, we obtain states which obviously
resemble Laughlin’s trial wave functions. In fact, their physical consequences are
identical. The flux tubes attached to the particles, each of them carrying m — 1
Dirac flux quanta, are no longer of physical significance. They can be removed by
the singular gauge transformation

A, —»A,+ VA, forallj,

ylz] > wlz] [ Texp(—ieA,), (3.4)
with
-1
A= — TEIE:jarg(zi—zj). (3.5)

This gauge transformation is called singular, because some of the A; are ill defined
if two particles sit on top of each other. However a centrifugal barrier excludes this
possibility, and no restrictions result.

The removal of the flux tubes affects the ground state only by a phase, and
yields the familiar wave functions

Unlz]=T1(2:—2)" [Texo(~3eBlz1?). (3.6)

i<j

The only change left in the hamiltonian, after adiabatic evolution and subsequent
gauge transformation, is the coefficient of the &-function potential — which is to
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say, no change at all, because this potential is zero when acting on any non-singu-
lar fermion wave function.

Strictly to comply with the heuristic prescription we have to trade real magnetic
flux into ficticious flux, instead of merely attaching the latter to the particles. We
therefore adjust the magnetic field strength according to

0
B=(1+; B,. (3.7)

Then the size of the circular droplet described by (3.3) remains constant during the
evolution. This condition will prove essential for generalizations of the analysis to
closed surfaces.

(3) The object of the exercise is of course not so much to provide an elegant
path to Laughlin’s wave functions, as to supply an argument for their incompress-
ibility. The construction is robust, if the gap in the excitation spectrum of the
initial state — then a consequence of Landau-level quantization — carries through
as we travel along in the statistics-magnetic field plane. For then — and only then —
will the adiabatic theorem of quantum mechanics [12] guarantee that the initial
ground state will indeed evolve into the final one.

This is not at all a formality. Indeed the model hamiltonian we have been
considering so far basically collapses to the hamiltonian for free fermions in a
magnetic field at fractional filling fractions, and that problem certainly does not
have an isolated incompressible ground state.

The energy gap in our model will persist only if we refine the construction in
two respects. One of the problems is essentially trivial: there is no gap associated
with quasihole excitations, and not even the initial state is strictly incompressible.
This is of no real physical significance however: we should really consider whether
there is a gap for creation of quasi-particle-quasi-hole paris. (In a more proper
treatment, where we paid more attention to boundary conditions, the single
quasihole state would be in a different Hilbert space. This emerges clearly if the
problem is formulated on a closed surface.) We can cure the formal problem with
quasi-holes by adding a pressure or chemical potential, or, even simpler, an energy
term proportional to the total angular momentum. These methods all produce, at
least for the initial state, the desired cusp in the energy versus the filling fraction.

More work is required to remove the other inadequacy, which really does
concern essential physics. The repulsive interactions essential to producing a gap
in the fractional quantized Hall states have not been included. A vast degeneracy
emerges for the final states (and also for intermediate ones; see below). The
challenge is therefore to find a local interaction potential, which singles out the
wave function (3.3) as the exact and unique ground state for each value of 6 during
the evolution.
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For the Laughlin 1/m states, the standard prescription [13] is as follows. Since
these wave functions vanish like |z, —z,| ™ as two particles approach one another,
they are manifestly annihilated by the potential

voolzla ¥ (v2) 282z, - 2,), (3.8)

i#j

and of course also by all other potentials of this form with the Laplace operator
taken to any smaller non-negative power. (The &-function is meant to be taken
over real and imaginary part separately.) Thus the wave function is an exact
eigenstate of the hamiltonian with short-range interparticle repulsions of this form
and the usual kinetic term for charged particles in an external magnetic field. Note
that the expectation value of the potential energy is positive for the sign corre-
sponding to repulsion. While a pure &-function repulsion is negligible for any
non-singular fermion wave function due to the antisymmetry of the wave function
(for spinless fermions, as we consider here exclusively), the vanishing of these
derivative interactions is a highly non-trivial property of the Laughlin wave
functions. In fact it is easy to see that the polynomial factor in the 1/m wave
function is the polynomial of least degree that is annihilated by V. Modulo
subtleties of the kind alluded to above, which could be removed by adding to the
hamiltonian a piece proportional to the total angular momentum, this makes it
quite plausible that the Laughlin wave function is incompressible. The only thing
that keeps it short of a full proof is the difficulty of verifying that the energy gap
remains finite in the thermodynamic limit. (Though this is not implausible, given
that the basic underlying interactions and correlations are short ranged.)

The relevant uniqueness property of the states (3.3) during the adiabatic
evolution is clearly that they vanish like

|Zi_zj|1+0/ﬂ'
as particles approach each other. This feature suggests, as a first thought, that in
interpolating between the states we ought to consider fractional powers of the
derivative operators in interaction potentials of the general form (3.8). However
fractional derivatives are non-local operators, and a hamiltonian including them
could well be considered unphysical.

On reflection, one comes to realize that a much better solution is possible. To
appreciate this — one of our major points in the present paper — let us step back a
moment to take a broader view of the problem.

In the course of our adiabatic procedure, we might move, for example, between
fermions at filling fractions v =1 and v =1/3 through intermediate anyons at
intermediate filling fractions. At the start, there is a natural isolated state — the
full Landau level. At the end, we have arrived for all intents and purposes back at
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the same (kinetic) hamiltonian, but as a result of the change in filling fraction
there is no longer a natural isolated state. As we have seen, the “natural”
continuation of the full Landau level, according to (3.2) and (3.3), leads to the
Laughlin state. Where do the additional states, degenerate with it, come from?

In fact they are not difficult to trace. They come from holomorphic functions
f(z) in (2.7) that include inverse powers of difference z;—z;. Although at the
starting point these are excluded, because they led to non-normalizable states, as
soon as we depart from this point they must be included. The normalization
integral

1
fdzzl Izlzlzo/"
z

is finite for any positive 8, though very large for small 6. Starting after 8 /7 =2 we
must also include inverse third powers, and so forth. All these states are exact
eigenstates of the model hamiltonian (2.1).

The distinguishing characteristic of the additional states is to have very large
amplitudes at small particle separations. Thus we may suppress them with a
repulsive potential emphasizing short distances — which we obtain by adequate
generalization of (3.8).

Let us first recall the precise role of the Laplace operators in V¢, Its
significance becomes transparent only when we integrate in position space, as we
do to evaluate matrix elements: each laplacian peels off a factor |z; —z;| 2 from
the wave function, through integration by parts. The wave function is annihilated
by the potential, if there is at least one power of |z, — z].I left once all derivatives
are stripped off the &-function. Similarly, we can peel off a fractional power
|z, —z;1 from the wave function if we replace the laplacian in a general potential
(3.8) by the operator

|z, —z,12775(v?)", (3.9)

t

where p is an integer such that 2p — e > 0. We are therefore led to consider

Vizla ¥ lz;— 217 "(V2) 6% (2, - z;). (3.10)

i#+j

A local interaction potential of this form — in conjunction with a suitable energy
term proportional to the total angular momentum, as explained above — singles out
the wave functions (3.3) as unique and exact ground states during the entire
evolution.
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It is worth noting that the desired result may also be accomplished with the
inverse power potential

8/m

8*(z;—z;) (3.11)

Viiz]a Y

i<j

i %
instead of V[z]. Of course the product of an inverse power with a §-function is not
an entirely reputable mathematical object. However, this difficulty can be circum-
vented by a suitable limiting procedure. For example, we may replace the é-func-

tion in (3.11) with one of its standard realizations,

1 1

8%(z) = lim —exp(— —|z| 2),
e—0 TTe €

and multiply it by a factor e ~</!?|, to regulate the singularity at the origin. (Since

the important values of z inside the gaussian representing the §-function are of

order |z | ~ Ve, this regulator does not significantly distort it.)

(4) Thus we have explained how to derive the final wave function, and shown
why we expect them to be incompressible. It is our believe that the existence and
incompressibility of fractional quantized Hall states for screened Coulomb interac-
tions, as they appear in realistic samples, can be understood along exactly this line
of reasoning. The analysis presented here provides evidence that the adiabatic
localization of flux onto particles (the adiabatic heuristic) can in fact be regarded
as the underlying physical principle of the fractional quantum Hall effect. It traces
the incompressibility of the fractional states to the incompressibility of a single full
Landau level in an explicit and elementary way, using the adiabatic theorem of
quantum mechanics. As a bonus, it predicts the existence of a line of anyon
quantized Hall states, with the statistical parameter of the anyons related to the
filling fraction according to (3.1).

4. Paired Hall states at even denominator fillings

Additional applications of the adiabatic heuristic arise in connection with a
generically new phase of matter, the paired Hall state, as we shall discuss now.

(1) Assume that the bare particles described by the ground state (2.7) of the
Girvin model are bosons. Then the most obvious choice for the characteristic
function would be f[z]= 1. Unfortunately, no new states are obtained by starting
there: as we evolve into the statistics-magnetic field plane, we just reproduce the
line of Laughlin—Jastrow states discussed above. It is of some interest to note,
however, that this construction relates the full Landau level of fermions, and other
quantized Hall states in a magnetic field, to the very simplest superfluid: the Bose
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condensed ground state in zero magnetic field, with all particles at zero momen-
tum.

Another interesting choice, which gives something essentially new, is to start
once more with exactly one filled Landau level. For bosons, this is implemented by
taking f[z] a product of a pfaffian and a Vandermonde determinant,

1
Z;7Z; ) i<

f[Z]zpf( )l—[(z,-—zj), (4.1)

where

1 1
Pf( )s,o/{ Il —-—} (4.2)
Z;—Z; ieven Z;_1 —Z;

The operator & indicates antisymmetrization over all (N — 1)!! different possible
choices of breaking an even number of particles N up into pairs. f[z]is a product
of two antisymmetric entities, and thus symmetric, as required for boson statistics.
Note also that it is an entire function of the complex particle positions z;,. The
filling factor in the thermodynamic (large N) limit is insensitive to the pfaffian, as
can be seen from a simple angular momentum argument.

The analysis below is very similar to the one presented in sect. 3. The full wave
function during the adiabatic evolution is given by

1
¥[z] =Pf( )]—[(z,-—zj)l_[ l zi—zjIO/”nexp(—%eBlzilz), (4.3)
Z; = Zj i< i<y i

where the external magnetic field is adjusted such that the total amount of flux per

unit area (i.e. the sum of real and ficticious magnetic flux) remains constant,
]
B=|1+—]B,. (4.4)
aw

The focus of our attention below is on those final points where Fermi statistics is
recovered, at 8§ = (2n — 1), with n integer (n > 0 since B > 0).

(2) The most peculiar of these fermion states is the very first one: n =0, or
# = —. It is obtained from the initial state (the Landau level filled with bosons)
by evolving backwards in statistics — all the way until the point where the entire
magnetic field is converted into fictitious flux tubes. The latter are removed via a
singular gauge transformation, in close analogy to (3.4). The new ground state is
described by the pfaffian factor alone,

v lz] =Pf( ) (4.5)

z;—z;
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It is an exact zero energy eigenstate of the transformed hamiltonian

1 ™
Hyo= o N (=i%) = — L8%(ri=r)). (4.6)

i#j

In fact, we have obtained an exact model of BCS pairing (which may not look
familiar, though, because it is formulated in position rather than momentum
space). The pfaffian ground state can be obtained from a BCS product wave
function by projecting out a definite number of particles, as pointed out by Dyson
[14] a long time ago. Note that the interaction is now attractive, and that the
S-function in position space corresponds to a constant potential in momentum
space.
The exactness of the solution may also be verified directly with the identity

(which is to be interpreted as a prescription for integrating smooth functions which
vanish at the origin, slightly generalizing the usual definition of distributions).

Unfortunately, ¢, is not normalizable and therefore without evident physical
meaning by itself. Formally, it attempts to describe a BCS superconductor with a
short-range pairing potential so strong that the potential energy gained is large
enough to compensate entirely for the total kinetic energy of the system.

(3) The real virtue of this solution is its heuristic connection with paired Hall
states at filling fractions v =1/2n, into which it can be continuously deformed.
We obtain such states for # = (2n — 1), one for each positive value of the integer
n,

i<

(/Jn[Z]=Pf( )n(zi—zj)znr[exp(—%eBlz,-IZ). (4.7)

1
z;—z;
They are exact eigenstates of

1 _ , (@n—-1)m
H,,=ﬁzi:(—zvi—eA,-) +‘i§52(n—ri) (4.8)
with
A, = %B(r,— X Z).

Physically, these wave functions describe Laughlin states modulated by a strong
attractive pairing correlation — which is to say, the very strong anti-correlation
implicit in Laughlin’s states are partially ameliorated.
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Pairing is conventionally associated with an attractive interaction. Our exact
solution, however, makes it very clear that this association is not inevitable. As we
travel through statistics-magnetic field space, the coefficient of the delta-function
potential in the hamiltonian changes continuously with 6. It is attractive for the
unnormalizable superconductor, vanishes as we pass through boson statistics, and
remains repulsive as we reach the Hall states. The pairing in the Hall states
evidently does not require an attractive interaction; rather, it arises indirectly as a
necessary accessory of Jastrow—Laughlin correlations at even-denominator filling
fractions.

(4) Just as in the case of the 1/m states discussed in sect. 3, the construction
here is robust only if a gap in the excitation spectrum is maintained during the
adiabatic evolution. This is accomplished by adding an energy term proportional to
the total angular momentum in conjunction with a suitable local interaction
potential.

The uniqueness property we shall exploit in constructing the latter is as follows:
the amplitudes for the paired Hall states at » = 1/2n vanish at least like

I 2n 2n—1
z;—z;17" 2, =z,

or like

|Z,'_Zj|2n_l' |Zi_zk|2n
as two arbitrary particles (we label them j and k) approach a third particle
(labeled by i). Thus wave functions are annijhilated by the three-body potential

voLzla ¥ (V2" (832~ 2)8%(2— 20)), (4.9)

triples

and of course also by all other potentials of this form with the Laplace operator
taken to any smaller non-negative power. In fact, this potential may be considered
as a generalization of (3.8), for it is equally effective in isolating an incompressible
ground state from the remaining parts of the spectrum.

It is now rather straightforward to generalize V[ z] to the intermediate anyon
states — following the prescription developed in sect. 3. For non-negative values of
0, the paired Hall states (4.3) are singled out uniquely by

Viz]a Z |(Zi_zj)(zi—zk)Ipie/ﬂ'(viz)p(az(zi_Zj)az(zi_Zk))’ (4.10)

triples

where p is an integer such that 2p — 8 /7 > 0 during the entire evolution. (No
additional interaction is required for negative values of 8.)

(5) Thus the construction is robust everywhere except at the point 8 = — 7 (the
superconductor), when the ground state (4.3) ceases to be normalizable. The
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question of what happens near this particular point can be addressed from a
different point of view: one starts with a free gas of fermions, and treats the onset
of the adiabatic process as a perturbation. Careful analysis of the residual interac-
tions reveals then that they do indeed trigger a p-wave pairing instability, and that
the strength of the pairing increases with the induced change in quantum statistics
A6.

5. Generalization to periodic boundary conditions

Finally, we will generalize the exactly soluble anyon model and the applications
discussed in sects. 3 and 4 to the torus geometry (related studies have been carried
out by Iengo and Lechner [15]).

(1) The starting point for our discussion is the construction of Laughlin-Jastrow
states on the torus, as first obtained by Haldane and Rezayi [16]. For the sake of
consistency with the previous sections, we use symmetric rather then Landau
gauge:

A(r) = 1B(rx2). (5.1)

The standard formalism for Landau-level quantization, as we employ it in this
number, is contained in the more general formalism developed in sect. 2 for the
exact model: it is the special case when no flux is attached to the particles,
obtained by setting 8 = 0. The operators a; and al, and b, and b] now obey the
proper commutation relations for independent creation and annihilation opera-
tors.

Periodic boundary conditions are imposed by

t(€) w[z] =e%y[z] foralli; a=1,2, (5.2)

where £, and £, are two nonparallel displacements in the complex plane, ¢, and

¢, are boundary phases, and #,(¢) is the magnetic translation operator for the ith
particle,

1 _
1,(£) =exp[ﬁ(§b,»—§b?)]. (5.3)

Note that 7,(¢) commutes trivially with the hamiltonian. The periodic boundary
conditions require further that ¢(£,) and ,(¢,) commute, i.e. the parallelogram
spanned by ¢, and £, must contain an integer number of magnetic flux quanta,
which we call N,.
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The wave functions subject to (5.2) are, because of the magnetic field, not
strictly periodic, but only quasiperiodic,

(2,2, €y, 2y) = exp[—%eB(gaZ,- - _azi)] €Y ( 21y Zirens Zn)-
(5.4)
For convenience, we set the principal displacements ¢, =1 and £, =7, with

Im(7) >0, and call the area bounded by the four points z=1(+1+7) the
principal region. The magnetic field strength is now given by

_ 2xby

CIm(7)

eB (5.5)

Note that N, is also equal to the number of states in the first Landau level.
Following ref. [16], we obtain for Laughlin’s 1/m states for N particles (with
N, =mN)

dfm[Z]=f[Z]_1:[16xp(—%eB|z,-|2) (5.6)

with
m N m N
flz]1=exp(iKZ) [ 19, (Z - Z,17) [ 19, 4(z, — z;17) TTexp(+jeBz?),
v—1 i<j i=1

(5.7)

where ﬂ%,%(zlﬂr) is the odd Jacobi theta function [17]. The theta functions are
defined in general by

+ o0
ﬁa,b(z | 7_) — Z e-n‘i(n+a)27 e27ri(n +a)z+b) (58)

n= —w
and satisfy the quasiperiodicity relations
9,,(z+1|7)= ez’r""ﬁ‘a’b( z|T),
G (z+Tlr)y=¢""" 6'2”"(”1’)19“,1,(2 [ 7). (5.9)
Z denotes the center-of-mass coordinate

Z=1Yz,.
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All the center-of-mass zeros Z, are located in the principal region. The sum of the
center-of-mass zeros and the real parameter K are subject to the boundary
conditions

(- I)N"’ exp(iK) = e'®,
(—1)™ exp(iKt) exp(ZWiZZV) = ¢/, (5.10)

For fixed values of the boundary phases, the equations (5.10) possess a total of m?
solutions for K and X, Z,; no further restrictions for the allowed choices of the
individual Z, result. However, all these distinct solutions yield only m linearly
independent states, as can be seen from a very general argument.

Indeed, the abstract properties we require of the center-of-mass part F(Z) of
the wave function, viz. the product of the first two factors in (5.7), is that it is entire
and that it has exactly m zeroes in the principal region. Given one such solution F,
its ratio F /F with any other solution F is a meromorphic truly periodic function
on the torus, with at most simple poles at m prescribed points (namely the zeroes
of F). It is a standard theorem in complex function theory — a very special case of
the Riemann—Roch theorem — that the space of such functions is m dimensional,
including the constant function (sece e.g. ref. [18]). Consequently, a Laughlin 1/m
state subject to periodic boundary conditions is m-fold degenerate.

We have gone into some detail regarding this apparently esoteric subject of
degeneracies, both because it is important in the higher theory of the Hall states,
and because some special features of the adiabatic procedure and the v =1/2
state are tied up with it, as we shall soon see.

(2) The generalization of the exact model to the torus geometry is based on the
observation that a wave function with the key properties of the Laughlin 1/m state
may be obtained on any geometry, including the torus, from the wave function of a
filled Landau level by raising the latter to the mth power,

Galz]= ([ 2])". (5.11)

Indeed, this wave function is entire, satisfies the appropriate boundary conditions,
and has zeroes of order m as particles approach. This method does not display the
full scope of possible choices for the center-of-mass zeroes, and consequently does
not reveal the degeneracy of the states obtained. Nevertheless, it leads to fully
consistent wave functions. The boundary phases are mapped according to

b, > mo,. (5.12)

Note also that the magnetic field for i, is m times stronger then for ;.
An observation similar to (5.11) can also be made for the exact model: the
ground state for arbitrary values of the statistical parameter 6 is obtained by taking
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the product of the fiducial state (the state for 8 = 0) with the absolute value of the
wave function for a single filled Landau level raised to a fractional power:

wlz] =wo_olz]- lu[2]1°77. (5-13)

Again, this relation is not specific to any geometry. Of course, any generalization
following this method requires knowledge of how to generalize the fiducial state

‘/fe=0[z]=f[Z]HeXP(_%€BOIZ,-|2) (5.14)

(or more precisely the characteristic function f) to the desired geometry, here the
torus. Note that the boundary conditions of ¢, as specified by the quasiperiodicity
relation (5.4), are identical to those of ,_.

With these simple observations, it becomes conceptually straightforward to
obtain the generalized hamiltonian for the anyon model. From (5.13), the torus
ground state ¢ retains the general form

wlz]=flz] e, (5.15)

but S, is now consistent with periodic boundary conditions,

]
S, = —;lnlwl[zll+%eBoZ|z,-l2
o 1 2
= ——(lnlﬁ%’%(Z—ZOl7)|+ Zlnlﬁ%}(zi—zjlf)l) + 3eBY_ 1z;1%, (5.16)
™ i<j ’ i

where

eB =

2R (142, (5.17)

Im(7)

From §,, we obtain the operators

2
al=e*S (—\5—) e S (5.18)
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and thus the hamiltonian
1
H=—Y ala,. (5.19)
m

Note that a; and a! do not obey the commutation relations (2.8) any more. It is
instructive to rewrite (5.19) in the physically more transparent form

H= %;[(—i V,+ed,)’ —eB,], (5.20)

where

=9

26 ¢
B,=V,X4;=—— Y (SZ(Z—ZO+n+m7)
€ pm=-—o

+ ), 8%(z;,—z;+n +m~r))+B. (5.21)

J*i

The hamiltonian on the torus is therefore almost what one would have anticipated
naively from (2.1). The only peculiarity is its explicit dependence on the center-of-
mass zero Z,. On reflection, however, one comes to realize that this dependence is
inevitable. For otherwise the ground-state degeneracy would vary with 6, and one
could interpolate continuously between states having different degeneracies, which
is absurd.

(3) Now let us reconsider the particular applications elaborated in the previous
two sections — the lines of the Laughlin—Jastrow-type states and of the paired Hall
states, for the toroidal geometry. By virtue of the formalism just developed, the
problem of generalizing them to the torus geometry reduces to the problem of
adapting the corresponding fiducial states.

This is trivial in the first of the two cases, for the initial state there is just a filled
Landau level. The intermediate anyon states are therefore given by (5.15) with

flz]=exp(iKZ)9, (Z - Z,17) [ 1911(z,— z;|7) [ Texp(+ geBz}). (5.22)

i<j i
Note that the boundary phases ¢, are specified by K and Z, only, through
(—1)" exp(iK) = ™1,

(=1 exp(iKt) exp(2miZ,) = ¢'¢2, (5.23)
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and that it is B, rather than B which enters the quasiperiodicity relation (5.4) for
Wl z]. The conventional boundary conditions for Laughlin’s 1/m states, as stated
above, may of course by recovered at those fillings by removing the flux tubes via a
singular gauge transformation.

The second case (the paired Hall state) is much more interesting, because it
requires the pfaffian to be adapted to periodic boundary conditions. This is most
elegantly done by the replacement

1 9, 5(2;~2;17)

where 9, ,(z, — z;| ) is any one of the three even theta functions, i.e. @ and b may
take the values 0 and 0, % and 0, or 0 and % These different choices yield linearly
independent states — which is to say, the pairing causes an additional three-fold
degeneracy. Explicitly, we obtain for the characteristic functions describing paired
Hall states

fasl2]=exp(iKZ)O, (Z—-Z,17)

X Pf

[19,(z:— 2z 17) [ Texp(+3eBz?), (5.24)

where K, Z,, a and b are subject to the boundary conditions
(DN (=1)* 7" exp(iK) = ',
(DN (=1)*""" exp(iKt) exp(2miZ,) = ei¥2. (5.25)

Note that (5.25) reduces to (5.23) in the (illegitimate) case a = b = 3.

The factor three in the degeneracy is quite unusual. It may be an indication of
non-abelian statistics [19] for the quasiparticles in this state. We hope to have more
to say on this subject soon.

(4) Our constructions supply us with anyon fractional quantized Hall states for
arbitrary statistics on a torus. Learned readers may find this troubling, because
there are general theorems [20,21] claiming to forbid the existence of anyons on a
torus, except for statistics 8 = 7/m. '

However there is no contradiction, when one carefully examines the premises of
these theorems. For they all apply in the absence of a magnetic field.

To appreciate the difference a magnetic field can make, consider the simpler
case of N anyons with statistical parameter 6 on a sphere. If we transport one of
these around the equator, the wave function must acquire a phase e'2*", where n is
the number of particles in the northern hemisphere, since that many anyons are
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enclosed by the loop. On the other hand it must also acquire a phase e ~2%V-"~D
counting particles in the southern hemisphere. For consistency, we evidently must
require

ei26n — o —i26(N=n—1) (5.26)

or

6
- (5.27)

where k is an integer.

When there is a magnetic field present, however, the condition is changed. The
two hemispheric integrals differ by a multiplicative factor ¢‘®, where @ is the
magnetic flux through the sphere. Thus the consistency condition is modified to
read

0 k+P/2xw
—_= (5.28)
T N-1

Clearly (5.28), as opposed to (5.27), allows arbitrary values of the statistics.

By the way, (5.28) indicates that in applying the adiabatic heuristic on a sphere
containing few particles one should supply slightly less external flux as one changes
the statistics (by a factor N /(N — 1)). This can be interpreted as a manifestation of
a spin-statistics connection (!). Indeed, because of the curvature of the sphere, in
general the parallel transport of a particle around the equator will also involve a
purely geometrical phase factor ¢ 275 with phase proportional to the (two-dimen-
sional) spin s. If the change in statistics involves a simultaneous change in spin —
as one expects from the spin-statistics connection — then (5.28) is modified to read

ei20n _ o —i20(N—n—1) o —idms oi® (5.29)
or

206(N—-1)+4ws=® mod 27. (5.30)

Thus if s changes by 6 /2w as 0 varies, a modified but basically straightforward
version of the heuristic principle applies.

Similar arguments apply on a torus. Since the torus is geometrically flat, there
should be absolutely no discrepancy with the heuristic principle. In fact there is
not. Although the argument leading to (5.28) would suggest an N — 1 where N
should appear, that argument was not fully general. It did not allow for extra
phases in addition to those associated with particles and with external magnetic
field, that arise instead from more complicated multi-particle correlations in the
wave function. Now we can understand on a profound level why special points, the
center-of-mass zeroes, had to be introduced. They represent complicated many-



600 M. Greiter, F. Wilczek / Quantum Hall states

particle correlations, reflecting charge density oscillations at some essentially
arbitrary fixed in space. Passage around these special points generates additional
phases, and (it can be shown) modifies (5.28) to agree exactly with the heuristic
principle.
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