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An operatorformalismis developedfor an exactlysoluble model of fractional statistics,and
usedto showthat a heuristicprinciplesuggestedearlier is rigorouslyvalid in oneparticularcase.
For a classof modelhamiltonians,Laughlin’sJastrow-typewave functionsareobtainedexplicitly
from a filled Landaulevel by smoothextrapolationin quantumstatistics.The gapis shownnot to
close, which allows us to infer the incompressibilityof the final states.The analysisis further
extendedto pairedHall statesat even-denominatorfillings, which arise adiabaticallyfrom an
exactbut unnormalizablemodel of superconductivity.Finally, we generalizethe model to the
torus geometry, and show that theoremsrestricting the possibilities of quantumstatisticson
closedsurfacesare circumventedin thepresenceof a magneticfield.

1. Introduction

Recentlywe proposed[1] anapproachto understandingthefractional quantum
Hall effect[2,31by relatingit continuouslyto theintegereffect(adiabaticheuristic.)

The connectionis madeby the processof trading uniform magneticflux for flux
localizedon the particles.In this way, incompressiblemany-bodyfermionssystems
at different filling fractions are continuously connectedthrough intermediate
incompressiblemany-body anyon systems. Our earlier argument was frankly

heuristic.
In the meantimeGirvin andcollaborators[4], andothers[5,61,haveprovideda

simple recipe for constructingmodel hamiltonianswhose ground statescan be
identified exactly, and that is very well suited to implementing our adiabatic
heuristic.In this paperwe shall exploit the ideasof their constructionto give a
concreterealizationof our approachin a contextwhere it is very close to being
demonstrablycorrect. We shall also show how the discussioncanbe extendedto
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Fig. 1. The adiabaticheuristic, which is shown in this paper to apply rigorously for certainmodel
hamiltonians,connectsincompressiblegroundstatesalong lines of unit slopein the statistics—inverse
filling fraction plane.Onesuchline containsthe single filled Landau level and the Laughlin—Jastrow-
typestatesatodd-denominatorfillings v= 1/rn for fermions,togetherwith similar bosonstatesateven
denominator fillings. Another such line contains incompressiblestates with pairing correlations,
including a boson stateat filling fraction r’ = 1, a fermion stateat v = 1/2, and(as a limiting case,for

0 —~— ~r) a singularp-waveBCS superfluidin zeromagneticfield.

accommodatethe pairedHall stateat half filling [7], and to periodic boundary
conditions.

Many of our results are aptly summarizedin fig. 1. The adiabatic heuristic,

which is exactly and explicitly implementedfor the ground statesof the models
discussedin this paper, tradesuniform flux for particle statistics. It therefore
relatesstatesalong parallel linesof constantslope in the statistics-inversefilling
fraction plane. Starting from a groundstateseparatedby a gap in the spectrum,
that is an incompressiblestate,the adiabatictheoremguaranteesthatslow changes
in the hamiltonianwill evolvethis statecontinuouslyinto the ground stateof the
alteredhamiltonian,so longas the gapdoesnot close.Along theline containinga
singlefilled Landaulevel of fermionsonealso finds the Laughlin odd-denominator
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p = 1/rn statesfor fermions, similar bosoniceven-denominatorstatesincluding(as
a limiting case,for rn —* 0) the ideal Bose-condensedsuperfluid, andother anyon
fractional quantizedHall states at appropriate filling fractions. Another line

containsincompressiblestateswith pairing correlations,including a bosonstateat
filling fraction v = 1, a fermion stateat ii = 1/2, and(asa limiting case)a singular
p-wave BCS superfluidin zeromagneticfield.

Before beginning the technical discussion,it may be appropriateto mention
briefly somequasi-philosophicalpoints,which were importantin the motivationfor

this work.
There can be little doubt that the leading idea of the current theory of the

fractional quantum Hall effect, namely that it is due to the formation of an
incompressiblequantumliquid at suitable filling fractions, is essentiallycorrect.
However, in our opinion the theoreticalunderstandingof this effect leavesmuch to
be desired.The main foundationof the existingtheory is Laughlin’s inspiredguess
of a trial wave function for v = 1/rn, rn odd. Onethenarguesthat it representsan
incompressiblestate,basically as follows. First, this wave function is so beautiful,
and doessuch a good job of keepingthe particlesapartwhile treating them all

symmetrically, that it clearly is very advantageousenergetically. Second,wave
functionsof this type canonly be constructedat special,discretelydifferentfilling
fractions.Thus theliquid haspreferreddensities,andaccommodatessmalldensity
perturbationsby producing localized quasiparticleswhile keeping the favored
densityin bulk. This argumentationhasbeenbuttressedby numericalsimulations
[8], which show both that there are incompressibleground states(for realistic
interactions)at the predicted filling fraction and that thesestates have large

overlapswith the Laughlin states.
We feel that the case for incompressibilityof the i/rn states,though quite

persuasive— especiallyin the light of laboratoryand numericalexperiments— is
not entirely crisp or transparent.The situation is much worse for the other
odd-denominatorfractions.

We believethe adiabatic approachsuggestedpreviously and developedhere
doesgo a long way toward providing a crisp, transparentunderstandingof some
key aspectsof thefractional quantizedHall effect for the i/rn states.It is possible
that some generalizationof thesemethodswill also help elucidatemore general
fractions. (Theadiabaticheuristicmay be used— at a heuristiclevel — to motivate

either the hierarchicalapproachto other fractions,or some constructionsusing
higher Landaulevels, in a spirit similar to Jam’s [91.However we havenot yet
managedto find a rigorousversionin the more elaboratecases.)In any case,they
have provided the impetus leading to some results of independentinterest:
quantizedHall states for anyons, smooth connectionof anyon superfluidity to
fractionalquantizedHall states,r’ = 1/2 statesfor fermionssmoothlyconnectedto
BCS theory, and newpossibilitiesfor fractional statisticson torus, aswe now shall
discuss.
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2. Exactly soluble model of fractional statistics

The analysispresentedin the following sectionsis largelybasedon a model of
fractional statistics,closely relatedto the onewhich hasbeenintroducedrecently
by Girvin andhis collaborators[4]. This model is exactly soluble for the ground
state,andsomeexcitedstatesare easily identified. In this sectionwe introducean
attractiveoperator formalism to review and extendthe relevant aspectsof that
model.

(1) Considerthe following N-particlehamiltonianin 2 + 1 dimensions:

iN
H= i— ~ [(—iV~+ eA,)2— eB

1I, (2.1)

where

B~=~XA~= —— E6
2(r

1—rj) +B (2.2)
e

and h = c = 1. It describesa gasof fractional statisticsparticles, interactingvia a
delta-function potential, in the presenceof an external magnetic field. If we
imposethe gaugeconditionV,A1 = 0, we cansolve eq.(2.2) for thevectorpotential

andobtain

U (r.—r.)X2
—~ 2 +~B(r,X2). (2.3)

7re1,~~~

The first termin (2.3) correspondsto magneticflux tubesattachedto the particles
and implementsfractional statistics with parameter9, while the secondterm
merely representsa uniform magneticbackground field, of magnitude B and
orientedin the negative2-direction.

This model canbe solvedexactlyfor the groundstate.To make it evident,we
introducethe creation-andannihilation-like operators

0
a1 = e~ +V~—~-e~”,

0z1

~ e~. (2.4)

Here z x + iy, and Sa is definedby

Sa~——ElnIzi—zjI+~eB~Izil
2. (2.5)
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Now the hamiltoniancanbe rewritten as

H=—~a~a~. (2.6)

In this form, the strongresemblanceof our problem to Landaulevel quantization
is evident.It follows immediately from (2.6) that thosestatesannihilatedby the
a,-operatorsareexacteigenstatesof zeroenergy.The vastlydegeneratemanifold
of groundstatesis thereforedescribedby

i/i~[z] =f[z] e (2.7)

where f[z] is an arbitraryentirefunction of the complexparticlepositions.These
statesare,of course,not alwaysnormalizable.

(2) It is instructiveto considerthe commutationrelationsof the fundamental
operatorsa, anda~.While theseare ratherclumsyin general,thereis onenotable
exception:

[a,, a~}= [ar, a~]= 0,

= ~ a~]=eB. (2.8)

Now we can see the precisesensein which a, and a~resemblecreation and
annihilation operators.(We have refrained from normalizing them, to avoid
problemsnearB = 0.) Using(2.8), we obtainthe higher energyeigenstates[5]

= (Lax f[z] e~”

f[z] e2~. (2.9)

with energyeigenvaluesE~= no~,where n is a nonnegativeinteger, and w~=

eB/m the cyclotronfrequency. ‘/‘~ is not the mostgeneraleigenstateof (2.1) for
generalvaluesof 0.

Let us now digressbriefly on the physical interpretationof theseexcitations.i~’~

describesa statewith all but oneof the particlesin the first Landaulevel, andone
in thesecondLandaulevel — or, to bemoreprecise,a linear combinationof all N

possiblechoicesfor this particularparticle. In other words,we cancreateexcita-
tions into higherLandaulevels, but we areunableto provide single-particlelabels
for them. This peculiarity becomesmore significant as we turn to higher-order
excitations.The state~~2’ for example,containsa large amplitudefor finding two
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particlesin the secondLandau level, but also a small amplitude for having only
oneparticleexcitedinto the third Landaulevel.

(3) As with the standardLandaulevel problem [10], it provesconvenientto
introducea secondset of fundamentaloperators,which canbe usedto classify the
vastlydegenerateenergyeigenstates.They are givenby

b~=e~h+~± eSh,
Ozi

bT=e_5h(_\~~) e~h, (2.10)

where Sb is defined

0
—— ElnIz~—z1~—~eBE z~

2. (2.11)

Sb differs from Sa only in that the sign of B is reversed;the corresponding
operatorsare thereforerelatedby

b.(0, +B) = —a~(0,—B), b~(0,+B) = —a,(0, —B). (2.12)

The commutationrelationsof the new operatorssatisfy

[b
1, b1} = [by, bfl = 0,

[b1~Eb~] = [Eb1~ bit] =eB, (2.13)

in closeanalogyto (2.8), while operatorsbelongingto different laddersobey

[a,, bJ] = [at, b11 =0,

[a,~EbJI= [Ea1~ b~J= [a~~Eb] = ~ hI] =0. (2.14)

The energyeigenstates(2.9) may now be written in termsof fundamentaloperators
only:

= (Ea~f[bt] e~. (2.15)
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(4) It is also possibleto expressthe total canonicalangularmomentum

N
L~ ~.[—ir1XV,] (2.16)

i= I

in termsof ladder-likeoperators:

1 ON(N—i)

L=____~[(bjbj+bjbfl—(a~aj+aja~)I ir 2 (2.17)

The last term reflects,in somesense,the fact thatwe considerthe canonicalrather

than the kinetical angularmomentum.Eventhoughthereis, onceagain,a strong
similarity to the familiar case of Landau level quantization, (2.17) cannot be
verified as easily as any of the other formulas stated above.However, usingthe
identities(2.12),we can rewrite(2.17) as

1 0 N(N—1)
L = —[1-1(0, —B)—H(0, B)] —N—— . (2.18)

~ 2

To concludethe proof, we only haveto substitute(2.1) and carry through a few
stepsof algebra.

The total angularmomentumcommuteswith the hamiltonian,

[L, H] = 0, (2.19)

consequently,the angular momentum eigenvaluescan be used to classify the
degenerateenergyeigenstates(2.9), eventhoughsuch classificationprovesnatu-
rally incomplete.Note that the fiducial state,obtainedby settingf 0 in (2.7), is
an angularmomentumeigenstatewith eigenvaluezero:

L e~”=0. (2.20)

It is not possibleto provide a similar frameworkfor the angularmomentumof the
individual particles — reflecting the fact that not even the fiducial stateof the
interactingmany-particlemodel is an eigenstateof the angularmomentumopera-

tor for any individual particle.
(5) A similarsituationarisesif oneattemptsto constructa magnetictranslation

operatorfor an individual particle— suchanoperatorwould neithercommutewith
the hamiltonian,nor with its equivalentfor any other particle. However,one can
constructan operatorwhich translatesall the particlessimultaneously,

t(~) =expF~L(~bi-~bT)J. (2.21)
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It commutestrivially with the hamiltonian,

[t(~), HJ =0. (2.22)

Of course,two successivetranslationsdo not commutein general,as canbe seen
from

t(~)t(~) =t(~+ij) exp[~NeB(i~—1J~)I. (2.23)

However, if the parallelogramspannedby ~ and sj includes n/N magneticflux
quanta,i.e.

~NeB(~ — = 2irin (2.24)

wheren is aninteger, t(~)and t(ij) commute.

The proper generalizationof the model to incorporate periodic boundary
conditionsis basedon quite differentconsiderations,andis providedin sect.5.

3. The adiabatic heuristic and odd-denominator Hall states

We now construct, along the lines just sketched,models which allow the
philosophyof the adiabaticheuristicto be implementedexplicitly, so that integer

to fractionalquantizedHall statesareconnectedcontinuously.
(1) The adiabatic heuristic is as follows. Quantized Hall states — that is

incompressiblequantum liquids — are related to other quantized Hall states
throughadiabaticlocalizationof magneticflux: uniform flux is tradedfor an equal
amountof fictitious flux localizedon the particles.The latter implementsa change
in quantumstatistics,related to the changein the filling fraction by

0 1
(3.1)

IT P

Forsuitablerepulsiveinteractions,the gap in the excitationspectrumof theinitial
stateis likely to carrythroughas we evolvealongthis line in the statistics-magnetic
field plane, and new incompressiblestatesof fermions are obtained as the
statisticalparameter0 hasincreasedor decreasedby integermultiplesof 2IT.

The most fundamentalquantizedHall statesare, of course,integer fillings of
Landaulevels. They are ideal pointsof departure,not only becausetheir explicit
wave functions are known,but also becausetheir incompressibilityis established
on rigorous grounds.As explainedelsewhere[11], explicit wave functionsfor other
odd-denominatorHall statescanbe motivatedvia the heuristicprescriptionfrom
filled Landau levels, togetherwith particle—hole conjugation. In this section,
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however,we wishto focuson the simplestcaseonly. We start with a singlefilled
Landau level, and obtain, according to (3.1), incompressiblefermion statesat
p = i/rn, with m odd integer. These are, aswe shall show below, the Laughlin—

Jastrow-typestates.
(2) We now returnto the formal world of theexactsolutions.Supposethe bare

particlesarefermions,as is appropriatefor electronstates.Then the mostnatural
choicefor the characteristicfunction fEz] of the groundstate(2.7) is the Vander-
mondedeterminant

f[z]=fl(z,—z~). (3.2)
i <I

The correspondingground-statewave function is

~ (3.3)
i<j i<J I

For 0 = 0, ~i[z] describesa single filled Landau level — the initial statefor the
adiabatic process.Now as we gradually evolve the statistics from fermions to
super-fermions,andtake 0 from 0 to (rn — i)ir, we obtain stateswhich obviously
resembleLaughlin’s trial wave functions. In fact, their physicalconsequencesare
identical.The flux tubes attachedto the particles,eachof them carrying m — 1
Dirac flux quanta,areno longerof physical significance.They canbe removedby
the singulargaugetransformation

A. —*A, + V~A, for all j,

ifr[z]—*~r[z]flexp(—ieA~), (3.4)

with

— rn— ~arg(z~—z1). (3.5)

e

This gaugetransformationis calledsingular,becausesomeof the A, are ill defined
if two particlessit on top of eachother.Howevera centrifugalbarrierexcludesthis

possibility, andno restrictionsresult.
The removal of the flux tubes affects the ground stateonly by a phase,and

yields the familiar wave functions

lIJm[Z]= fl(z~—z~)
mflexp(—~jeBIz

1I
2). (3.6)

The only changeleft in the hamiltonian,after adiabaticevolution andsubsequent
gaugetransformation,is the coefficient of the 3-functionpotential — which is to



586 M. Greiter, F. Wilczek / QuantumHall states

say, no changeat all, becausethispotential is zerowhen actingon any non-singu-

lar fermion wavefunction.
Strictly to comply with theheuristic prescriptionwe haveto traderealmagnetic

flux into ficticious flux, insteadof merelyattachingthe latter to the particles.We
thereforeadjustthe magneticfield strengthaccordingto

B=(i+_)B0. (3.7)

Thenthesizeof the circulardropletdescribedby (3.3) remainsconstantduring the

evolution. This conditionwill prove essentialfor generalizationsof the analysisto
closedsurfaces.

(3) The object of the exerciseis of coursenot so much to provide an elegant
path to Laughlin’swave functions,as to supplyan argumentfor their incompress-
ibility. The constructionis robust, if the gap in the excitation spectrumof the
initial state— then a consequenceof Landau-levelquantization— carriesthrough
aswe travelalong in the statistics-magneticfield plane.For then — andonly then —

will the adiabatictheoremof quantummechanics[121guaranteethat the initial
groundstatewill indeedevolveinto the final one.

This is not at all a formality. Indeedthe model hamiltonian we have been

consideringso far basically collapsesto the hamiltonian for free fermions in a
magneticfield at fractional filling fractions,and that problem certainly doesnot
havean isolatedincompressiblegroundstate.

The energygap in our model will persistonly if we refine the constructionin
two respects.One of the problemsis essentiallytrivial: thereis no gap associated
with quasiholeexcitations,andnot eventhe initial state is strictly incompressible.
This is of no realphysicalsignificancehowever:we shouldreally considerwhether

thereis a gap for creationof quasi-particle—quasi-holeparis. (In a moreproper
treatment, where we paid more attention to boundaryconditions, the single
quasiholestatewould be in a different Hilbert space.This emergesclearly if the
problemis formulatedon a closedsurface.)We cancure the formal problemwith
quasi-holesby addinga pressureor chemicalpotential,or,evensimpler, an energy
term proportionalto the total angularmomentum.Thesemethodsall produce,at
leastfor the initial state,the desiredcusp in the energyversusthe filling fraction.

More work is required to remove the other inadequacy,which really does
concernessentialphysics.The repulsiveinteractionsessentialto producinga gap
in the fractional quantizedHall stateshavenot beenincluded.A vast degeneracy
emergesfor the final states(and also for intermediateones; seebelow). The
challengeis thereforeto find a local interactionpotential, which singlesout the
wavefunction (3.3) asthe exactanduniquegroundstatefor eachvalueof 0 during

the evolution.
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Forthe Laughlin i/rn states,the standardprescription[13] is as follows. Since
thesewave functionsvanishlike z, — z3 I as two particlesapproachoneanother,
theyare manifestlyannihilatedby the potential

V(m)[z] a ~ (V2)(m ‘~
262(z—z~), (3.8)

i ~j

and of course also by all other potentialsof this form with the Laplace operator
taken to any smaller non-negativepower. (The 3-function is meantto be taken
over real and imaginary part separately.)Thus the wave function is an exact
eigenstateof the hamiltonianwith short-rangeinterparticlerepulsionsof this form
andthe usualkinetic term for chargedparticlesin an externalmagneticfield. Note
that the expectationvalue of the potential energy is positive for the sign corre-
sponding to repulsion. While a pure 6-function repulsion is negligible for any
non-singularfermion wave function due to the antisymmetryof the wave function
(for spinlessfermions, as we considerhere exclusively), the vanishing of these
derivative interactions is a highly non-trivial property of the Laughlin wave
functions. In fact it is easyto see that the polynomial factor in the 1/rn wave
function is the polynomial of least degreethat is annihilated by Vim). Modulo
subtletiesof the kind alluded to above,which could be removedby addingto the
hamiltonian a piece proportional to the total angularmomentum,this makes it
quite plausiblethat the Laughlin wave function is incompressible.The only thing
that keepsit short of a full proof is the difficulty of verifying that the energygap
remainsfinite in the thermodynamiclimit. (Though this is not implausible, given
that the basicunderlyinginteractionsand correlationsare short ranged.)

The relevant uniquenessproperty of the states(3.3) during the adiabatic
evolution is clearlythat they vanish like

— 1±O/~z, z
1

asparticlesapproacheachother. This featuresuggests,as a first thought, that in
interpolating betweenthe stateswe ought to considerfractional powers of the
derivative operatorsin interactionpotentialsof the generalform (3.8). However
fractional derivativesare non-localoperators,and a hamiltonian including them
could well be consideredunphysical.

On reflection, one comesto realizethat a much bettersolution is possible.To
appreciatethis — oneof our major points in the presentpaper— let usstepbacka
momentto takea broaderview of the problem.

In the courseof our adiabaticprocedure,we might move,for example,between

fermions at filling fractions v = 1 and v = 1/3 through intermediateanyons at
intermediatefilling fractions.At the start, thereis a natural isolatedstate — the
full Landaulevel. At the end,we havearrived for all intentsandpurposesbackat
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the same(kinetic) hamiltonian,but as a result of the change in filling fraction
there is no longer a natural isolated state. As we have seen, the “natural”
continuationof the full Landaulevel, according to (3.2) and (3.3), leadsto the
Laughlin state.Where do the additionalstates,degeneratewith it, comefrom?

In fact they are not difficult to trace.They comefrom holomorphic functions

f(z) in (2.7) that include inversepowers of difference z, — z1. Although at the
startingpoint theseare excluded,becausethey led to non-normalizablestates,as
soon as we depart from this point they must be included. The normalization
integral

Jd
2z~ I z I 2O/~

IzI

is finite for any positive0, thoughvery largefor small 0. Startingafter 0/IT = 2 we
must also include inversethird powers, and so forth. All thesestatesare exact
eigenstatesof themodel hamiltonian(2.1).

The distinguishingcharacteristicof the additional states is to havevery large
amplitudesat small particle separations.Thus we may suppressthem with a
repulsive potential emphasizingshort distances— which we obtain by adequate
generalizationof (3.8).

Let us first recall the precise role of the Laplace operators in V(m). Its
significancebecomestransparentonly whenwe integratein position space,as we
do to evaluatematrix elements:eachlaplacian peelsoff a factor I z,— z

1 2 from
the wave function, through integrationby parts.The wave function is annihilated
by the potential,if thereis at leastonepowerof I z, — z~I left onceall derivatives
are stripped off the 6-function. Similarly, we can peel off a fractional power

i z,— z1 from the wave functionif we replacethe laplacianin a generalpotential
(3.8) by the operator

Izj_zjI2~(~2)~), (3.9)

where p is an integersuch that 2p — E ~ 0. We are thereforeled to consider

V[z]a LIzj_zjI
2~O~(~2)~’62(zj_zj). (3.10)

i :�J

A local interactionpotential of this form — in conjunctionwith a suitableenergy

term proportionalto the totalangularmomentum,as explainedabove— singlesout
the wave functions (3.3) as unique and exact ground statesduring the entire
evolution.
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It is worth noting that the desiredresult may also be accomplishedwith the
inversepowerpotential

i °“~7.

V’[z] a ~ — 62(z~—z
1) (3.11)

,<~ z, z~

insteadof V[z]. Of coursethe productof an inversepowerwith a 6-functionis not
an entirely reputablemathematicalobject.However, this difficulty canbe circum-
ventedby a suitablelimiting procedure.For example,we may replacethe 6-func-
tion in (3.11) with one of its standardrealizations,

1 1
6

2(z)=lim—exp ——1z12
e-.OITE �

and multiply it by a factor �~, to regulatethe singularityat the origin. (Since
the importantvaluesof z inside the gaussianrepresentingthe 6-function are of
order I z ~ this regulatordoesnot significantly distort it.)

(4) Thus we haveexplainedhow to derivethe final wave function, andshown
why we expectthem to be incompressible.It is our believe that the existenceand

incompressibilityof fractionalquantizedHall statesfor screenedCoulomb interac-
tions, as they appearin realisticsamples,canbe understoodalongexactlythis line
of reasoning.The analysis presentedhere providesevidencethat the adiabatic
localizationof flux onto particles(the adiabaticheuristic)canin fact be regarded

as theunderlyingphysicalprinciple of the fractional quantumHall effect. It traces
the incompressibilityof the fractionalstatesto theincompressibilityof a singlefull
Landau level in an explicit and elementaryway, using the adiabatictheoremof

quantum mechanics.As a bonus, it predicts the existence of a line of anyon
quantizedHall states,with the statisticalparameterof the anyonsrelated to the
filling fraction accordingto (3.1).

4. Paired Hall statesat even denominator fillings

Additional applicationsof the adiabaticheuristic arise in connectionwith a
genericallynewphaseof matter, the pairedHall state,as we shall discussnow.

(1) Assumethat the bare particlesdescribedby the ground state (2.7) of the
Girvin model are bosons. Then the most obvious choice for the characteristic
function would be fEz] 1. Unfortunately, no new statesareobtainedby starting
there:as we evolve into the statistics-magneticfield plane, we just reproducethe
line of Laughlin—Jastrowstatesdiscussedabove. It is of some interest to note,
however,that this constructionrelatesthe full Landaulevel of fermions, andother
quantizedHall statesin a magneticfield, to the very simplestsuperfluid: the Bose
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condensedgroundstate in zeromagneticfield, with all particlesat zeromomen-
tum.

Another interestingchoice,which gives somethingessentiallynew, is to start
oncemorewith exactlyonefilled Landaulevel. Forbosons,this is implementedby
taking f[z] a productof a pfaffian anda Vandermondedeterminant,

f[z]=Pf IJ(z,—z~), (4.1)

z~—z~,<~

where

1 1
Pf ~d fl . (4.2)

ieven Z~
1Z~

The operatord indicatesantisymmetrizationover all (N — 1)!! different possible

choicesof breakingan evennumberof particlesN up into pairs. fEz] is aproduct
of two antisymmetricentities,andthussymmetric,as requiredfor bosonstatistics.
Note also that it is an entire function of the complexparticle positions z,. The
filling factor in the thermodynamic(large N) limit is insensitiveto the pfaffian, as
canbe seenfrom a simple angularmomentumargument.

The analysisbelow is verysimilar to the onepresentedin sect. 3. The full wave
function during the adiabaticevolution is givenby

i )fl(zi_zj)fl Iz1-z1I°~flexp(-~eBIz~I
2),(4.3)

z, z
1 ~ ~

where the externalmagneticfield is adjustedsuchthat the total amountof flux per
unit area(i.e. the sumof realandficticious magneticflux) remainsconstant,

0
B= 1+— B0. (4.4)

IT

The focusof our attentionbelow is on thosefinal pointswhere Fermi statisticsis
recovered,at 0 = (2n — 1)IT, with n integer(n ~ 0 since B ~ 0).

(2) The most peculiar of thesefermion statesis the very first one: n = 0, or

0 = — ii-. It is obtainedfrom the initial state(the Landaulevel filled with bosons)
by evolving backwardsin statistics— all the way until the pointwhere the entire
magneticfield is convertedinto fictitious flux tubes.The latter are removedvia a
singulargaugetransformation,in close analogyto (3.4). The new groundstate is
describedby the pfaffian factor alone,

= (4.5)
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It is an exactzeroenergyeigenstateof the transformedhamiltonian

H~~=~— ~(—iV~)2— ~ (4.6)

In fact, we haveobtained an exact model of BCS pairing (which may not look
familiar, though, becauseit is formulated in position rather than momentum
space). The pfaffian ground state can be obtained from a BCS product wave
function by projectingout a definite numberof particles,as pointed out by Dyson
[14] a long time ago.Note that the interaction is now attractive, and that the
6-function in position spacecorrespondsto a constantpotential in momentum
space.

The exactnessof the solution may also beverified directly with the identity

1 62(z)
=

z z

(whichis to be interpretedasa prescriptionfor integratingsmoothfunctionswhich
vanish at the origin, slightly generalizingthe usualdefinition of distributions).

Unfortunately, ~ is not normalizableand thereforewithout evident physical
meaningby itself. Formally, it attemptsto describea BCS superconductorwith a
short-rangepairing potential so strong that the potential energy gainedis large
enoughto compensateentirely for the total kinetic energyof the system.

(3) The realvirtue of this solution is its heuristic connectionwith pairedHall
statesat filling fractions ii = i/2n, into which it can be continuouslydeformed.
We obtainsuchstatesfor 0 = (2n — 1)IT, onefor eachpositivevalueof the integer

~Jfl[z]=Pf(1)fl(zj_zj)2nflexp(_+eBIzjI2). (4.7)

They are exacteigenstatesof

H~= i— E ( —iV~— eA
1)

2+ (2n— l)IT >62(r
1 — r1) (4.8)

with

A,= ~B(r,X2).

Physically, thesewave functions describeLaughlin statesmodulatedby a strong
attractive pairing correlation — which is to say, the very strong anti-correlation
implicit in Laughlin’s statesarepartially ameliorated.
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Pairing is conventionally associatedwith an attractive interaction. Our exact
solution, however,makesit very clear that this associationis not inevitable.As we
travel throughstatistics-magneticfield space,the coefficientof the delta-function
potential in the hamiltonianchangescontinuouslywith 0. It is attractive for the
unnormalizablesuperconductor,vanishesas we passthroughbosonstatistics,and
remainsrepulsive as we reach the Hall states.The pairing in the Hall states
evidentlydoesnot requirean attractiveinteraction;rather,it arisesindirectly as a
necessaryaccessoryof Jastrow—Laughlincorrelationsat even-denominatorfilling
fractions.

(4) Just as in the caseof the 1/rn statesdiscussedin sect.3, the construction
here is robust only if a gap in the excitation spectrumis maintainedduring the
adiabaticevolution.This is accomplishedby adding anenergytermproportionalto
the total angular momentum in conjunction with a suitable local interaction

potential.
The uniquenesspropertywe shall exploit in constructingthe latter is as follows:

the amplitudesfor the pairedHall statesat v = i/2n vanishat least like

2n 2n—t
I z~—z1I .

or like

2n—l

I z1—z11 . IzzI
as two arbitrary particles (we label them j and k) approacha third particle
(labeledby i). Thuswave functionsare annihilatedby the three-bodypotential

V~’°[z]a ~ (V2)
2”t(62(z. —z~)62(z,—zk)), (4.9)

triples

andof coursealso by all other potentialsof this form with the Laplaceoperator
takento any smallernon-negativepower.In fact, this potentialmay be considered
as a generalizationof (3.8), for it is equallyeffectivein isolatingan incompressible
groundstatefrom the remainingpartsof the spectrum.

It is now rather straightforwardto generalizeV~[z] to the intermediateanyon
states— following the prescriptiondevelopedin sect. 3. For non-negativevaluesof
0, the pairedHall states(4.3) aresingledout uniquely by

V[z] a ~ I(z, — z~)(z, — zk) I P_O/~T(v2)P(62(z. — z
1)3

2(z~— zk)), (4.10)
triples

where p is an integer such that 2p — 0/IT ~ 0 during the entire evolution. (No

additional interactionis requiredfor negativevaluesof 0.)
(5) Thus the constructionis robusteverywhereexceptat the point 0 = — IT (the

superconductor),when the ground state (4.3) ceasesto be normalizable. The
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questionof what happensnear this particular point can be addressedfrom a
different point of view: onestartswith a free gasof fermions, andtreatsthe onset
of the adiabaticprocessas a perturbation.Carefulanalysisof the residualinterac-

tions revealsthen that they do indeedtrigger a p-wavepairing instability, andthat
the strengthof the pairing increaseswith the inducedchangein quantumstatistics

~9.

5. Generalization to periodic boundary conditions

Finally, we will generalizethe exactlysolubleanyonmodel andthe applications
discussedin sects.3 and 4 to the torus geometry(relatedstudieshavebeencarried
out by Iengo andLechner[15]).

(1) The startingpoint for our discussionis the constructionof Laughlin—Jastrow
stateson the torus, as first obtainedby HaldaneandRezayi [16]. For the sakeof
consistencywith the previous sections,we use symmetric rather then Landau
gauge:

A(r) =+B(rXi). (5.1)

The standardformalism for Landau-levelquantization,as we employ it in this
number, is containedin the moregeneralformalism developedin sect. 2 for the

exact model: it is the special case when no flux is attached to the particles,
obtainedby setting 0 0. The operatorsa, and a~,and b, and b~now obeythe
proper commutationrelationsfor independentcreationand annihilationopera-

tors.
Periodicboundaryconditionsare imposedby

tj(~a) i~i[z] = e’
4’~i[z] for all i; a = 1, 2, (5.2)

where ~ and ~2 are two nonparalleldisplacementsin the complexplane, & and

42 areboundaryphases,and t/~) is the magnetictranslationoperatorfor the ith
particle,

t,(~)=exp1W(~bi_~bflI. (5.3)

Note that t~(~)commutestrivially with the hamiltonian. The periodic boundary
conditionsrequire further that t~(~

1)and t,(~2)commute,i.e. the parallelogram
spannedby ~ and ~2 must contain an integernumberof magneticflux quanta,
which we call N4.
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The wave functions subject to (5.2) are, because of the magnetic field, not
strictly periodic, butonly quasiperiodic,

(5.4)

For convenience, we set the principal displacements ~ 1 and ~2 T, with

Irn(T)> 0, and call the area bounded by the four points z = ~(±1 ±i-) the
principal region. The magnetic field strength is now given by

2 ITN
4

eB= . (5.5)
Im(T)

Note that N4 is also equalto the numberof statesin the first Landaulevel.

Following ref. [16], we obtain for Laughlin’s i/rn statesfor N particles(with
N4 = rnN)

~m[zf[z]fl~p(~IziI
2) (5.6)

with

f[z]=exp(i~) fl~(Z—Z~IT)fl~(z~—zJIT)mflexp(++eBz7),
1<) i=1

(5.7)

where l~H(zIT) is the odd Jacobi theta function [17]. The theta functions are
defined in generalby

z I T) = ~ e~”±a)2~e2~~t”+a)(z +b) (5.8)

and satisfy the quasiperiodicity relations

+ 1 IT) = e2~”i~Jab( z IT),

+ TI r) = e~’T e~ 1~ab(zIT). (5.9)

Z denotesthe center-of-masscoordinateZ~Ez,.



M Greiter, F. Wilczek/ QuantumHall states 595

All the center-of-mass zeros Z~arelocatedin the principal region.The sumof the

center-of-masszeros and the real parameterK are subject to the boundary
conditions

(_l)t’~bexp(iK) =e’4’,

N,~, . I . i’I’
(—1) exp(IKT) exP~2ITzEz~) =e 2 (5.10)

V

For fixed valuesof the boundaryphases,the equations(5.10)possessa total of rn2
solutions for K and ~Z~ no further restrictionsfor the allowed choicesof the
individual Z~result. However, all thesedistinct solutions yield only rn linearly
independentstates,ascan be seenfrom a very generalargument.

Indeed,the abstractpropertieswe require of the center-of-masspart F(Z) of
the wavefunction,viz, the productof the first two factorsin (5.7), is that it is entire
andthat it has exactlyrn zeroesin theprincipal region. Givenonesuchsolution F,
its ratio F/F with any othersolution F is a meromorphictruly periodicfunction
on the torus,with at mostsimplepolesat rn prescribedpoints (namely thezeroes
of F). It is a standard theoremin complexfunction theory — a very specialcaseof
the Riemann—Rochtheorem— that the spaceof suchfunctions is rn dimensional,
including the constantfunction (see e.g. ref. [18]). Consequently,a Laughlin 1/rn
statesubjectto periodicboundaryconditionsis rn-fold degenerate.

We have gone into some detail regarding this apparentlyesoteric subjectof
degeneracies,bothbecauseit is important in the higher theoryof the Hall states,
and becausesome specialfeaturesof the adiabaticprocedureand the v = 1/2
stateare tied up with it, as we shall soonsee.

(2) The generalizationof the exactmodel to thetorus geometryis basedon the
observationthat a wave functionwith the key propertiesof the Laughlin 1/rn state
maybe obtainedon any geometry,including the torus,from the wave function of a
filled Landaulevel by raising the latter to the rnth power,

~m[z]~i[z1)m. (5.11)

Indeed,this wave function is entire,satisfiesthe appropriateboundaryconditions,
andhaszeroesof order rn asparticlesapproach.This methoddoesnot displaythe
full scopeof possiblechoicesfor the center-of-masszeroes,andconsequentlydoes
not reveal the degeneracyof the statesobtained.Nevertheless,it leads to fully
consistentwave functions.The boundaryphasesaremappedaccordingto

4)asrn&,. (5.12)

Note also that the magneticfield for ~/m is m timesstrongerthen for ~

An observationsimilar to (5.11) can also be made for the exact model: the
groundstatefor arbitraryvaluesof the statisticalparameter0 is obtainedby taking
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the productof thefiducial state(the statefor 0 = 0) with the absolutevalueof the
wavefunction for a singlefilled Landaulevel raisedto a fractionalpower:

~/i[z] = ~/i~=~[z] ‘ I ~/i~[z] I 0/iT (5.13)

Again, this relation is not specific to any geometry.Of course,any generalization
following this method requiresknowledgeof how to generalizethe fiducial state

i/i~...~[z]=f[z]flexp(—~eB0Iz~I
2) (5.14)

(or morepreciselythecharacteristicfunction f) to thedesiredgeometry,herethe
torus.Note that the boundaryconditionsof ~t, as specifiedby the quasiperiodicity
relation(5.4), are identical to thoseof ~

With thesesimple observations,it becomesconceptually straightforwardto

obtain the generalizedhamiltonianfor the anyon model. From (5.13), the torus
groundstate~/i retainsthe generalform

t~f[z] =f[z] e~”, (5.15)

but 5a is now consistentwith periodicboundaryconditions,

= - —ln I ~~[z] I +~eB
0~I z~I2

IT

= —~(lnI +(Z—ZoIT)I+ElnI~(zi—zJIT)I) +~eB~Iz~I
2,(5.16)

where

2(IT+0)N 0
eB = __________ = 1 + — B

0. (5.17)
Im(T) IT

From S~,we obtainthe operators

0
a, = e~ +v~—— ~

Oz,

a~=e~(%/~I~)e~. (5.18)
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andthusthe hamiltonian

~ (5.19)
rn,

Note that a, and a~do not obeythe commutationrelations(2.8) any more. It is
instructiveto rewrite (5.19) in the physically more transparentform

H=—E[(_iVj+eAj)2_eBj], (5.20)
2rn

where

20 +~

B1=V~XA~=—— ~ (62(Z_Z+fl+rnT)
e n,m=—~

+ ~62(zj_zJ+n+rnT))+B. (5.21)
jiLt

The hamiltonianon the torus is thereforealmostwhat onewould haveanticipated
naively from (2.1). The only peculiarityis its explicit dependenceon the center-of-
masszeroZ0. On reflection,however,onecomesto realizethat this dependenceis
inevitable.For otherwisethe ground-statedegeneracywould vary with 0, andone
could interpolatecontinuouslybetweenstateshaving different degeneracies,which
is absurd.

(3) Now let us reconsidertheparticularapplicationselaboratedin the previous
two sections— the linesof theLaughlin—Jastrow-typestatesandof the pairedHall
states,for the toroidal geometry.By virtue of the formalism just developed,the
problem of generalizingthem to the torus geometryreducesto the problem of
adaptingthe correspondingfiducial states.

This is trivial in thefirst of the two cases, for the initial statethereisjust a filled
Landaulevel. The intermediateanyonstatesare thereforegiven by (5.15) with

~ (5.22)
1<3 1

Note that the boundaryphasescba arespecifiedby K and Z1 only, through

(_1)N exp(iK) =e’
4’,

(_
1)N exp(iKT) exp(2ITiZ1)=e1

42, (5.23)
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and that it is B0 ratherthan B which enters the quasiperiodicity relation (5.4) for
~/i[z]. The conventional boundary conditions for Laughlin’s 1/rn states, as stated
above,may of courseby recoveredat thosefillings by removingthe flux tubesvia a

singulargaugetransformation.
The second case (the paired Hall state) is much more interesting, because it

requires the pfaffian to be adapted to periodic boundary conditions. This is most
elegantly done by the replacement

1 ~a,b(zizjIT)

zj~zj

where ~a,b~i — z1 I ~-) is any one of the three even theta functions, i.e. a andb may
take the values 0 and 0, ~ and 0, or 0 and ~. These different choices yield linearly
independent states — which is to say, the pairing causes an additional three-fold
degeneracy. Explicitly, we obtain for the characteristic functions describing paired
Hall states

fa,b[z] = exp(iKZ)i9~(Z—Z1IT)

xpf(;b(hJU)n,~(zi_zjIT)nexp(+~eBzi2), (5.24)
— z11 T) 1<3 1

where K, Z1, a and b are subject to the boundary conditions

(_ 1)N( — 1)2a1 exp(iK) = el
4,

(_l)N(_l)2~~1 exp(iKT) exp(2ITiZ
1) =e1

42. (5.25)

Note that (5.25) reduces to (5.23) in the (illegitimate) case a = b =

The factor threein the degeneracyis quite unusual.It may be an indication of
non-abelian statistics [19]for the quasiparticles in this state.Wehopeto havemore

to say on this subject soon.
(4) Our constructions supply us with anyonfractional quantizedHall statesfor

arbitrary statistics on a torus. Learnedreadersmay find this troubling, because
there are general theorems [20,21]claiming to forbid the existence of anyons on a
torus, exceptfor statistics 0 = IT/rn.

However there is no contradiction, when one carefully examines the premises of

these theorems. For they all apply in the absence of a rnagnetic field.
To appreciate the difference a magneticfield can make, considerthe simpler

case of N anyons with statistical parameter 0 on a sphere. If we transport one of
these around the equator, the wave function must acquire a phase et2Ohi,where n is
the number of particles in the northern hemisphere, since that many anyonsare
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enclosed by the loop. On the other hand it must also acquirea phasee21O(~~D,
counting particles in the southern hemisphere. For consistency, we evidently must
require

e~20~= e2Ot1~) (5.26)

or

0 k
— = (5.27)
IT N—i

where k is an integer.
Whenthereis a magneticfield present,however,the condition is changed.The

two hemisphericintegralsdiffer by a multiplicative factor e”~,where CI, is the
magneticflux through the sphere. Thus the consistencycondition is modified to

read

0 k+~/2~
— = . (5.28)
IT N-i

Clearly (5.28), as opposed to (5.27), allows arbitrary values of the statistics.
By the way, (5.28) indicates that in applying the adiabatic heuristic on a sphere

containing few particles one should supply slightly less external flux as one changes
the statistics (by a factor N/(N — 1)). This can be interpreted as a manifestation of
a spin-statistics connection (!). Indeed, because of the curvature of the sphere, in

general the parallel transport of a particle around the equator will also involve a
purely geometricalphasefactor e±t2ii-s, with phaseproportionalto the (two-dimen-
sional) spin s. If the changein statisticsinvolves a simultaneouschangein spin —

as oneexpectsfrom the spin-statisticsconnection— then (5.28) is modified to read

e120’~= e 20 —n—I) e’4~e”” (5.29)

or

20(N— 1) +4ITs=CI mod 2IT. (5.30)

Thus if s changesby O/2IT as 0 varies, a modified but basically straightforward
versionof the heuristicprinciple applies.

Similar argumentsapply on a torus. Since the torus is geometricallyflat, there
shouldbe absolutely no discrepancywith the heuristicprinciple. In fact thereis
not. Although the argumentleading to (5.28) would suggestan N— 1 whereN
should appear, that argumentwas not fully general. It did not allow for extra
phasesin addition to those associatedwith particlesandwith externalmagnetic
field, that arise instead from more complicatedmulti-particle correlationsin the
wave function. Now we can understand on a profoundlevel why specialpoints,the
center-of-mass zeroes, had to be introduced. They represent complicated many-
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particle correlations, reflecting charge density oscillations at some essentially
arbitrary fixed in space.Passagearoundthesespecialpoints generatesadditional
phases,and (it can be shown) modifies (5.28) to agreeexactly with the heuristic
principle.
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