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a b s t r a c t

Interactions in Landau levels can stabilize new phases of matter,
such as fractionally quantized Hall states. Numerical studies of
these systems mostly require compact manifolds like the sphere
or a torus. For massive dispersions, a formalism for the lowest
Landau level on the sphere was introduced by Haldane (1983).
Graphene and surfaces of 3D topological insulators, however, dis-
play massless (Dirac) dispersions, and hence require a different
description. We generalize a formalism previously developed for
Dirac electrons on the sphere in zero field to include the effect of
an external, uniform magnetic field.

© 2018 Elsevier Inc. All rights reserved.

Progress in theoretical physics has always been achieved through the interplay of obtaining
experimental data with comparing it to the predictions of the ideas, concepts, and theories suggested
to explain the data. In earlier periods, the implications of theoretical models could be explored
only through analytic calculations. During the past four decades, however, the availability of ever
more powerful computers has significantly reshaped this process. Among early highlights were the
development of the renormalization group byWilson [1], the discovery of universality in the onset of
chaos by Feigenbaum [2], and the formulation of Laughlin’swave function for fractional quantizedHall
liquids [3]. Laughlin’s discovery is particularly striking in this context as it was guided by a numerical
experiment [4]. Laughlin numerically diagonalized a system of a few electrons in the lowest Landau
level in the open plane, and observed that the canonical angular momentum of the ground state
jumped by a factor of three upon turning on a strong repulsive interaction. The experimental discovery
of the effect had inspired the numerical experiment, and the numerical experiment provided the
crucial hint to the formulation of the theory. The theory was only accepted by the community at
large after Haldane formulated it on a sphere [5], a geometry without a boundary and hence without
gapless edge modes, and showed that Laughlin’s trial state can be adiabatically connected to the

* Corresponding author.
E-mail addresses: greiter@physik.uni-wuerzburg.de (M. Greiter), rthomale@physik.uni-wuerzburg.de (R. Thomale).

https://doi.org/10.1016/j.aop.2018.04.020
0003-4916/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aop.2018.04.020
http://www.elsevier.com/locate/aop
http://www.elsevier.com/locate/aop
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aop.2018.04.020&domain=pdf
mailto:greiter@physik.uni-wuerzburg.de
mailto:rthomale@physik.uni-wuerzburg.de
https://doi.org/10.1016/j.aop.2018.04.020


34 M. Greiter, R. Thomale / Annals of Physics 394 (2018) 33–39

ground state for Coulomb interactions without closure of the energy gap [6]. A more recent example
for the importance of numerical experiments is the discovery of the topological insulator (TI) as a
consequence of band inversion by Kane and Mele [7,8], a phase which was subsequently realized in
HgTe quantum wells [9,10].

The efficient implementation of numerical experiments often requires geometries which cannot
be realized in a laboratory, such as periodic boundary conditions (PBCs). When the underlying lattice
plays no role in the effective model one wishes to study, the simplest geometry without a boundary is
the sphere. It continues to be of seminal importance in numerical studies of quantized Hall states and
other states of matter in two dimensional electron gases subject to amagnetic field.Whilemost of the
work on TIs focusses on the single particle description of topologically non-trivial band structures, the
most promising avenues to observe topologically non-trivial many body condensates in this context
may be at the surface of a 3D TI [11,12]. The single particle states on these surfaces are described by
a single Dirac cone, which would be impossible to realize on a lattice due to the fermion doubling
theorem [13]. Even as a continuum theory, coupling the electrons minimally to the electromagnetic
gauge field requires an even number of Dirac cones, or an axion term on one side of the surface [14]. In
other words, a single Dirac cone at a surface requires a termination of a topological insulator [15]. The
situation is less intricate in graphene, where a 2D lattice not embedded in a 3D topological structure
features one Dirac cones per spin and valley degree of freedom, and hence a total of four cones [16].

Regarding the numerical study of interaction effects on surfaces of 3D TIs, the only work published
so far has employed a spherical geometry [17,18]. (For PBCs, the numerics is farmore challenging, and
the studies performed so far are unpublished as of yet [19].) To formulate the single particle Hilbert
space for the single Dirac cone on the sphere, we employed a formalism introduced earlier by one of
us [20] to describe Landau levels (LLs) for massive electrons on the sphere, which in turn generalized
the spinor coordinate formalism introduced earlier by Haldane [5] for the lowest LL. The magnetic
monopole in the center of the sphere, of monopole charge 2s0 = +1 for " spins and 2s0 = �1 for #
spins, emerges from the Berry’s phase associated with rotations of the reference system for the spin.
(In our notation, spin" and# refer to spin directions normal to the surface of the sphere.)We obtained
the single particle Hamiltonian,

H = h̄v
R

✓
0 �S+

�S� 0

◆
, (1)

where the angular momentum operators S� and S+ effectively act as LL ‘‘raising’’ and ‘‘lowering’’
operators on the sphere, v is the Dirac velocity, and R the radius of the sphere. This form resembles
the single particle Hamiltonian for Dirac electrons subject to a uniform magnetic field B = �Bez in
the plane,

H = h̄v
p
2

l

✓
0 ia†

�ia 0

◆
, (2)

where a† and a are Landau level raising and lowering operators (see Refs. [21] or [22] for reviews of
the formalism), and l =

q
h̄c
eB is the magnetic length.

In this paper, we first provide a more detailed derivation of (1) than space allowed in Ref. [17],
and second, show that (1) also holds in the presence of an external, radial magnetic field B = Ber
supplementing the Berry flux. We assume a field strength B = 2b0�0/4⇡R2, where �0 = 2⇡ h̄c/e
with e > 0 is the Dirac flux quantum, such that the total number of Dirac flux quanta through the
surface is 2b0. The only change due to the field is that the " and # spin components of the spinor  �

nm,

H �
nm = En �

nm,  �
nm =

✓
�"
nm

��#
nm

◆
, (3)

are given by (massive) LL wave functions [20] corresponding to total magnetic flux � = (2b0 ± 1)�0
rather than just ±�0 through the surface of the sphere, and the energies for states in (Dirac) LL n are
given by

En = �
h̄v
R

p
(2b0 + n)n (4)
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rather than En = � h̄v
R n. � = ±1 distinguishes positive fromnegative energy solutions. (Note that since

the level n = 0 does not exist for the zero field case, n is shifted by one as compared to the discussion
in Ref. [17].)

Let us now turn to the details of the derivation. We consider the Dirac Hamiltonian

H = h̄vn̂
h⇣

�ir � e
c
A
⌘

⇥ �
i
, (5)

where n̂ is the surface normal, and A the vector potential generating the external magnetic field. Note
that the scalar product with the surface normal ensures a rotationally symmetric form of the 2D Dirac
(surface) Hamiltonian. For the surface states of a 3D TI, � = (�x, �y, �z) is twice the physical electron
spin vector. For graphene (n̂ = ẑ), the Pauli matrices act on the two-dimensional space spanned by
the two sites contained in the unit cell of the hexagonal lattice, usually denoted as sublattice A and
B. In the case of the TI, the external magnetic field will also couple to the electron spin via a Zeeman
term, but since this will not give rise to any conceptual difficulties, wewill only address it briefly after
the derivation. In the following, we set h̄ = c = 1.

In the absence of the external magnetic field, Imura et al. [23] used the example of a 3D TI to show
that on a sphere with radius R, (5) becomes

H0 = v

R

�
�x⇤✓ + �y⇤�

�
, (6)

where

⇤ = �i

e'@✓ � e✓

1
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✓
@' � i

2
�z cos ✓

◆�
(7)

is the dynamical angular momentum of an electron in the presence of a magnetic monopole with
strength 2⇡�z, and (r, ✓ ,') are spherical coordinates. The monopole strength or Berry flux through
the sphere is hence±2⇡ for " spins and # spins respectively (i.e., spins pointing in the±er direction).
The origin of this Berry phase is easily understood. Since the coordinate system for our spins (towhich
our Pauli matrices �x, �y, �z refer to) is spanned by e✓ , e', er, it will rotate as the electron is taken
around the sphere. For general trajectories, the Berry phase generated by this rotation is given by ± 1

2
times the solid angle subtended by the trajectory. Formally, this phase is generated by a monopole
with strength ±2⇡ at the origin for " and # spins, respectively. Substitution of (7) into (6) yields

H = v

R
h, h =

✓
0 h+
h� 0

◆
, (8)

with

h± = h±
0 = ⌥

✓
@✓ + 1

2
cot ✓

◆
+ i@'

sin ✓
. (9)

Even though Imura et al. [23] derived (8) with (9) discussing the surface termination of a 3D TI, it is
by no means specific to this setting, as the Berry phase is a general property of the Dirac Hamiltonian on
a curved surface. To illustrate this point, we will derive (8) with (9) now directly from (5) with A = 0.

On a sphere with fixed radius R, the nabla operator in spherical coordinates reads

r = 1
R

✓
e✓ @✓ + e'

@'

sin ✓

◆
. (10)

This form, however, is not suited for direct substitution into (5), since �ir has to be hermitian, while

(@✓ )† = �(@✓ + cot ✓ ), (@')† = �@' . (11)

(The solid angle measure d⌦ = d✓d� sin ✓ gives rise to the cot ✓ term when we go from  ⇤
a @✓ b

to �(@✓ ⇤
a ) b via partial integration.) If we then substitute the hermitian combination 1

2

�
(�ir)

+ (�ir)†
�
and � = e✓�x + e'�y + er�z into (5), we obtain (8) with (9).

To include the external magnetic field, we choose the latitudinal gauge

A = �e'
b0
eR

cot ✓ . (12)
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The singularities of B = r ⇥ A at the poles are without physical significance. They describe infinitely
thin solenoids admitting flux b0�0 each, exist for the Berry connection aswell, and reflect our inability
to formulate true magnetic monopoles.

Substitution of (12) into (5) yields (8) with

h± = h±
0 + b0 cot ✓

= ⌥ @✓ +
✓
b0 ⌥ 1

2

◆
cot ✓ + i@'

sin ✓
. (13)

As in the zero field case, (8) with (13) describes a ‘‘Dirac Hamiltonian’’ in the sense that
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✓
h+h� 0
0 h�h+

◆
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is diagonal. Apart from an overall numerical factor,

⇤2
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sin ✓
@✓ (sin ✓ @✓ ) � 1
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�
@' � is0 cos ✓

�2 (15)

is the Hamiltonian of a massive electron moving on a sphere with a monopole of strength 4⇡s0 in
the center [5]. The LLs for massive electrons on the sphere are spanned by two mutually commuting
SU(2) algebras [20], one for the cyclotron momentum (S) and one for the guiding center momentum
(L). The Casimir of both is given by L2 = S2 = s(s + 1), where s = |s0| + n and n = 0, 1, . . . is the LL
index for massive electrons.

With ⇤2 = L2 � s20, we obtain

⇤2
s0 ± s0

��
s0=b0± 1

2
=
⇢
(2b0 + n" + 1)(n" + 1),
(2b0 + n#)n#,

(16)

for the diagonal elements of " and # spins in (14). The " spin components �"
nm are hence described by

massive LL wave functions in level n" = n� 1 if the # spin components �#
nm are described by massive

LL wave functions in level n# = n, with s = b0 + n � 1
2 for both. The eigenvalues of h2 are given by

"2n = (2b0 + n)n.
In terms of the spinor coordinates
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✓

2
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'
2 , v = sin

✓

2
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introduced by Haldane [5], and their complex conjugates ū, v̄,

Sx + iSy = S+ = u@v̄ � v@ū,

Sx � iSy = S� = v̄@u � ū@v, (18)

Sz = 1
2
(u@u + v@v � ū@ū � v̄@v̄),

Lx + iLy = L+ = u@v � v̄@ū,

Lx � iLy = L� = v@u � ū@v̄ , (19)

Lz = 1
2
(u@u � v@v � ū@ū + v̄@v̄).

The physical Hilbert space is restricted to states with Sz eigenvalue s0 [20]. For our spin component
wave functions, this restriction reads

Sz�"
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The greatly simplifying observation is now that for massive LL wave functions subject to (20),

h+�#
nm = �S+�#

nm, h��"
nm = �S��"

nm, (21)

and hence that

h =
✓
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◆
. (22)

We now verify the first equation in (21) by explicit evaluation of h+�#
nm. �

#
nm has to take the form

of a massive Landau level wave function [20]
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with q = 0, . . . , s � m. Rewriting (13) as
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we easily find

h+�#
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2
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which is equal to �S+�#
q . The second equation in (21) is shown along the same lines.

TheDirac property of h, the eigenvalues of h2, themassive LL formof the componentwave functions
of the Dirac spinor, and finally (22) imply

h �
nm = �

p
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nm,  �
nm =

✓
�"
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��#
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◆
, (23)

where � = ±1 distinguishes positive and negative energy solutions, andm is the eigenvalue of Lz. The
(only relatively normalized) component wave functions are given by

�"
nm = p

n (L�)s�m v̄n�1u2s+1�n, (24)

�#
nm = �

p
2b0 + n (L�)s�m v̄nu2s�n, (25)

where s = b0 + n � 1
2 and m = �s, �s + 1, . . . , s. The degeneracy in each Dirac LL is hence

2s + 1 = 2(b0 + n). The level n = 0 with dimensionless energy "0 = 0 is completely spin polarized,
with the spins aligned in the direction of �B as �"

0m = 0; this level does not exist for the zero field
case elaborated in Ref. [17]. In all other levels, the single particle states have equal amplitudes for "
and # spins.

To gain further insight into the single particlewave functions, consider the fully normalized spinors
for m = s, i.e., for states localized at the north pole of the sphere,

 �
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We see that for n 6= 0, the spins are aligned with the magnetic field at the pole, and then turn in
the �x, �z plane spanned by e✓ and er until they point in the direction opposing the magnetic field far
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away from the pole. Almost all the amplitude is contained in narrow rings, which have their maximal
amplitudes at

✓
tan

✓

2

◆4

= n(n � 1)
(2b0 + n)(2b0 + n � 1)

. (27)

This concludes our derivation of LL quantization for Dirac fermions on the sphere as applicable to
graphene.

For the surfaces of 3D TIs, the spin in (5) is the physical electron spin, which also couples to the
magnetic field via a Zeeman term,

HB = �1
2
gsµBB�z, (28)

where µB is the Bohr magneton, and gs the Landé g-factor. Even though it is only a small correction in
actual TI surface states, we briefly address it here. For n = 0, the Dirac LL is completely spin polarized
and  �

nm with (24) and (25) is an eigenstate of (28). The energy is given by

E0 = �1
2
gsµBB. (29)

For n 6= 0, let the spinor (↵,�)T refer to a combination of positive and negative energy solutions as
given by (23) with (24) and (25), ↵ +

nm + � �
nm. In this two-dimensional space, the total Hamiltonian

including (28) is given by

H̃ = h̄v
R
"n�z � 1

2
gsµBB�x, (30)

where "n = p
(2b0 + n)n is the absolute value of the dimensionless energy in the absence of the

Zeeman field. This is again a ‘‘Dirac Hamiltonian’’ in the sense that the square is diagonal, which allows
us to read off the energies
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where � = ±1 again distinguishes positive and negative energy solutions. The eigenstates of (30) are
given by

 ̃+
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 �
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The Zeeman term hence yields only a small mixing of the positive and negative energy solution of the
Dirac LLs (23) with (24) and (25).

In conclusion, we have presented a formalism for Landau level quantization of Dirac electrons in
the spherical geometry. The formalism is largely identical to the formalism we introduced for Dirac
electrons without an external magnetic field in Ref. [17], where the issue of Landau level quantization
arose due to the Berry connection associated with the coupling of the Dirac spinor to the curvature
of the sphere. Since the formalism is not limited to either zero field nor to surface states of 3D TIs,
but applies to any other 2D system with Dirac cones such as graphene, the importance of it goes way
beyond the immediate applications studied in Ref. [17].

Acknowledgments

This work was supported by the DFG through SFB 1170 ToCoTronics and the European Research
Council through the grant TOPOLECTRICS (ERC-StG-Thomale-336012).



M. Greiter, R. Thomale / Annals of Physics 394 (2018) 33–39 39

References

[1] K.G. Wilson, Rev. Mod. Phys. 47 (1975) 773.
[2] M.J. Feigenbaum, J .Stat. Phys. 19 (1978) 25–52.
[3] R.B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395.
[4] R.B. Laughlin, The Quantum Hall Effect, Springer, New York, 1990, pp. 233–301.
[5] F.D.M. Haldane, Phys. Rev. Lett. 51 (1983) 605.
[6] F.D.M. Haldane, The Quantum Hall Effect, Springer, New York, 1990, pp. 303–352.
[7] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95 (2005) 146802.
[8] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95 (2005) 226801.
[9] B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314 (2006) 1757.

[10] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Science 318 (2007) 766.
[11] A. Vishwanath, T. Senthil, Phys. Rev. X 3 (2013) 011016.
[12] M.A. Metlitski, C.L. Kane, M.P.A. Fisher, Phys. Rev. B 92 (2015) 125111.
[13] A.J. Niemi, G.W. Semenoff, Phys. Rev. Lett. 51 (1983) 2077.
[14] A.N. Redlich, Phys. Rev. Lett. 52 (1984) 18.
[15] X.-L. Qi, T.L. Hughes, S.-C. Zhang, Phys. Rev. B 78 (2008) 195424.
[16] A.H. Castr. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81 (2009) 109.
[17] T. Neupert, S. Rachel, R. Thomale, M. Greiter, Phys. Rev. Lett. 115 (2015) 017001.
[18] A.C. Durst, Phys. Rev. B 93 (2016) 245424.
[19] F.D.M. Haldane, private communication.
[20] M. Greiter, Phys. Rev. B 83 (2011) 115129.
[21] D.P. Arovas, Ph.D. thesis, University of California, Santa Barbara, 1986.
[22] M. Greiter, Mapping of Parent Hamiltonians, in: Springer Tracts in Modern Physics, vol. 244, Springer, Berlin/Heidelberg,

2011. arXiv:1109.6104.
[23] K.-I. Imura, Y. Yoshimura, Y. Takane, T. Fukui, Phys. Rev. B 86 (2012) 235119.

http://refhub.elsevier.com/S0003-4916(18)30107-6/sb1
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb2
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb3
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb4
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb5
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb6
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb7
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb8
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb9
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb10
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb11
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb12
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb13
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb14
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb15
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb16
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb17
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb18
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb20
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb22
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb22
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb22
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://arxiv.org/abs/1109.6104
http://refhub.elsevier.com/S0003-4916(18)30107-6/sb23

	Landau level quantization of Dirac electrons on the sphere
	Acknowledgments
	References


