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The DMRG method is applied to integrable models of antiferromagnetic spin chains for fundamental and
higher representations of SU(2), SU(3), and SU(4). From the low energy spectrum and the entanglement
entropy, we compute the central charge and the primary field scaling dimensions. These parameters allow
us to identify uniquely the Wess–Zumino–Witten models capturing the low energy sectors of the models
we consider.
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With the rise of quantum mechanics in the late 20’s of the last century [1,2], quantum magnetism emerged
as a predominant area of research in theoretical condensed matter physics. This was to a significant part
induced by the notion of the electron spin, i.e., the magnetically sensitive, internal degree of freedom of
electrons, in the early 20’s, which rendered the classical picture insufficient. In contrast to orbital angular
momentum, which is quantized in integer units of � in accordance with the spatial rotation group SO(3), the
internal spin is in accordance with the Lie group SU(2) quantized in integer units of � (the generators of both
groups are identical as SU(2) is locally isomorphic to SO(3)). Ever since the invention of the Bethe ansatz
in 1931 as a method to solve the S = 1/2 Heisenberg chain with nearest-neighbor interactions [3], spin
models in (1+1) dimension, i.e., quantum spin chains, have been a most rewarding subject of study. Bethe’s
work eventually led to the discovery of the Yang-Baxter equation in 1967 [4] and provides the foundation of
the field of integrable models. The notion of integrability rendered a plethora of models amenable to exact
and often rather explicit solution [5, 6]. Quantum spin chains possess rich and deeply complex physical
properties. For example, it took several decades until Faddeev and Takhtajan [7] discovered in 1981 that
the elementary excitations of the S = 1/2 Heisenberg chain solved by Bethe carry spin 1/2 and not, as
previously assumed, spin 1. The excitations of the spin 1/2 chain hence provide an instance of fractional
quantization, as the Hilbert space for the chain is spanned by spin flips, which carry spin 1.

Several new aspects, both phenomenological and technical, emerge when the spins transform under
higher representations of SU(2). In particular, Haldane proposed in 1983 that half-integer spin chains are
generically gapless, whereas integer spin chains possess a gap in the excitation spectrum [8–11]. This leads to
strikingly different behavior in the magnetic susceptibility at low temperatures. A gap leads to exponentially
decaying spin-spin correlations and as such to a vanishing susceptibility at temperature T = 0. In contrast,
a gapless spectrum is generically associated with correlations which decay as a power law with the distance,
and a finite susceptibility at low temperatures. Haldane’s at that time astonishing prediction was confirmed
experimentally in S = 1 chains [12–14].

Yet another generalization of quantum spin chains is to enlarge the spin symmetry group from SU(2)
to SU(N ) [15]. Among those, the group SU(3) plays a special role, as both color and flavor symmetries in
particle physics provide instances. As the electron spin transforms according to the fundamental (up/down)
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Fig. 1 (online colour at: www.ann-phys.org) a) Weight diagram of the three-dimensional spin S = 1

representation of SU(2). The SU(2) weight diagrams are one–dimensional since there is only one diagonal
generator (Sz) in the group SU(2). There is only one raising operator (S+) and one lowering operator (S−)
and, hence, there is no generator connecting the Sz = −1 and the SZ = +1 state directly. b) Weight diagram
of the three–dimensional, fundamental representation of SU(3). SU(3) weight diagrams are two–dimensional
since both J3 and J8 are diagonal generators of the group SU(3). Due to the higher dimensionality of SU(3),
each point in the weight diagram is directly connected with each other by the raising and lowering operators
I+, I−, U+, U−, V +, and V −, as illustrated in the diagram.

doublet representation of SU(2), an internal “color” degree of freedom of quarks transforms according to
the three dimensional fundamental representation of SU(3), and thus can be assigned a quantum number
taking the values blue, red, and green.

In the not-to distant future, it might be possible to realize SU(3) spin chains in optical lattices of ultra-cold
atoms [16]. There, one important challenge of the implementation is that the system of the distinct atomic
states corresponding to blue, red, and green must be tuned in such a way that the pairwise transition weights
are equal, as the system only then correctly resembles the SU(3) spin algebra with six raising/lowering
operators I+, I−, U+, U−, V +, and V − linking the states of the fundamental representation with each
other (Fig 1b). From this perspective, it becomes immediately obvious that this is completely different from
a three-dimensional S = 1 representation of SU(2), where the raising and lowering operators S+ and S−

map the Sz = 0 state to Sz = ±1, while there is no direct transition from Sz = −1 to Sz = +1 and
vice versa (Fig. 1a). It has also been proposed that for approximately implemented SU(N ) chains of N -
component fermions, a molecular superfluid phase may appear [17]. Recently, SU(4) spin chains attracted
experimental interest in the field of transition-metal and rare earth compounds, where such models appear
to capture the physics of coupled electronic and orbital degrees of freedom [18,19].

From a field theoretical point of view, conformal field theories (CFTs) have been enormously successful in
describing the low energy behavior of critical SU(N ) spin chains [20–22]. In this framework, critical means
that the spins of the chain have a diverging correlation length related to a gapless spectrum, corresponding to
the scale or, more precisely, conformal invariance of the effective field theory describing these systems [23].
The Wess-Zumino-Witten model (WZW) plays a crucial role among those models [24,25].

Criticality is intimately related to the integrability of the SU(N ) spin chain models which we study in this
article. For the fundamental representations of SU(2), SU(3), and SU(4), as well as higher representations
of SU(2) and SU(3), we numerically investigate integrable models and their related CFTs, i.e., the SU(N )
WZW models of different levels k. The Density Matrix Renormalization Group (DMRG) method provides
us with a highly suitable numerical method to study the low energy sector of spin chains [26–29]. From
the results of our DMRG studies, we extract the central charge and scaling dimension. These parameters
specify the associated effective field theory. We thus endeavor to establish numerically the correspondence
between CFTs and SU(N ) spin chains.

This article is organized as follows. In Sect. 1, we briefly review the basic features of CFT relevant to our
considerations, i.e., the scaling dimension and the central charge. The DMRG approach to SU(N ) spin chains
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is discussed in Sect. 2. In particular, we explain the implementation of the SU(N ) spin algebra with its N2−1
generators and discuss the problem of convergence as N is increased. In Sect. 3, we introduce the integrable
models we consider. These include the nearest neighbor Heisenberg Hamiltonian for the fundamental
representations of SU(2), SU(3), and SU(4), as well as the integrable Takhtajan–Babudjan Hamiltonians
for S = 1 and S = 3/2 [30–32]. We also perform DMRG studies of the integrable SU(3) model with
spins transforming under the higher representation 6 proposed by Andrei and Johanneson [33, 34]. The
numerical results are presented in Sect. 4, and used to extract the central charge and scaling dimension
of the corresponding WZW models. In Sect. 5, we conclude that the DMRG method can be successfully
applied to study SU(N ) spin chains.

1 Conformal field theory, the central charge and scaling invariance

The SU(N ) Wess–Zumino–Witten (WZW) models have been found to capture the low energy behavior of
a family of critical quantum spin chains [20]. WZW models are conformal field theories, meaning that the
Lagrangians are invariant under conformal mappings. These are all combinations of translation, rotation,
and dilatation in two–dimensional space-time. For field theories with conformal invariance, it suffices to
specify the scaling of the fields or rather the scaling of their correlation functions to characterize the theory
completely [23]. As such, once a CFT is identified, there is no immediate need to work with the associated
Lagrangian. Our emphasis in this article will be on the relation between the universal parameters of the
CFT and numerically accessible measures, which we extract from the DMRG studies of the corresponding
spin chain models. As a general structure, a WZW model consists of a non-linear sigma model term and
k times a topological Wess-Zumino term, where k is a non-zero positive integer [23]. The SU(N ) WZW
model of level k (denoted SU(N)k WZW in the following) can be characterized by the central charge and
the scaling dimension of the primary field, both of which we will evaluate numerically in Sect. 4 below. In
the following formulas, subleading finite size contributions are neglected if they appear.

1.1 Central charge

The central charge c is defined in the framework of the Virasoro algebra of the CFT [23]. Alternatively, c
is also named conformal anomaly number. It appears in the correlation function of the energy momentum
tensor T (z) of the theory, where z denotes a complex space-time variable. This correlation has a singularity
as z → 0, with a prefactor proportional to c, 〈T (z)T (0)〉 ∼ c/2

z4 . For the SU(N)k WZW, c is given by

c =
k(N2 − 1)

k + N
. (1)

The for our purposes relevant feature of the central charge is that c appears as a universal scaling factor in
the microscopically accessible entanglement entropy [35]. Let i denote a site, L the total length of the spin
chain, i = 1, . . . , L, and ρα the reduced density matrix where all the degrees of freedom on sites i > α are
traced out, i.e., ρα = Tri>αρ. For this case, the entanglement entropy is given by

Sα,L = −Tr
[
ρα log ρα

]
. (2)

For periodic boundary conditions and central charge c, the entropy then takes the form [36]

Sα,L =
c

3
log

[(
L

π

)
sin

(πα

L

)]
+ c1, (3)

where c1 is a non-universal constant and the lattice spacing is set to unity. Thus, with L being the total
number of sites divided by unit lattice spacing, the entanglement entropy obeys the symmetry relation
Sα,L = SL−α,L and has its maximum at α = L/2. By virtue of (3), c can be extracted directly from the
entanglement entropy calculated via DMRG.
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1.2 Scaling dimension

The scaling dimension x is a property of the fields φ of the CFT [37]. Conformal invariance implies that
the two-point correlation function of the field must satisfy

〈φ(z1)φ(z2)〉 = |f ′(z1)|x|f ′(z2)|x〈φ(f(z1))φ(f(z2))〉, (4)

where we constrain the conformal mapping f(z) to a dilatation, and f ′(z) is its derivative at point z. For
the finite systems we study numerically, we can use that the low energy spectrum, and hence the energies of
the finite system, can be classified by the associated CFTs. The lowest excited states (labeled by p) above
the ground state (p = 0) belong spectrally to a conformal tower [38], with energies which obey the relation

Ep,L − E0,L =
2πv

L
xp, (5)

where xp denotes the scaling dimension of the field associated with the pth state, and v is the Fermi velocity.
The dependence on v reflects that in the low energy limit, the only relevant momentum scale of the spin
chain is provided by the linearized dispersion around the Fermi points. This allows us to extract the scaling
dimension times the Fermi velocity, xpv, as the energies in the l.h.s. of (5) are numerically accessible through
DMRG. In the following, we shall focus on the first excited state x1 ≡ x, i.e., the scaling dimension of the
primary field.

1.3 Fermi velocity parameter

In view of (3) and (5), it is clear that we need one further relation, to extract the Fermi velocity v from our
numerical studies. The required relation is

E0,L = E0,∞ − πcv

6L
, (6)

where E0,L and E0,∞ denote the ground state energies of the finite and the infinite chain, respectively.
This relation can be easily understood from the field theoretical point of view [38]: For a finite length and
temperature T = 0, L sets the inverse energy scale of the system. This scale can be rephrased in terms of a
field theory at finite temperature and no length scale, i.e., an infinite chain at temperature T = v/L.

Writing (6) in terms of the free energy density for this finite temperature field theory, we obtain the
correct specific heat linear in T , as we expect for a gapless spectrum. As we calculate E0,L directly and
extract e0,∞ = E0,L/L for L → ∞ by finite size scaling, we can obtain v from (6) once we have obtained
c from (3).

2 The DMRG method

In the last decade, the DMRG was successfully applied to numerous SU(2) spin models. Very recently,
the DMRG was further used to investigate the SU(3) representation 3 Heisenberg model [39]. Here we
generalize to the six–dimensional representation (2, 0) ≡ 6 of SU(3), which is formed by symmetric
combination of two fundamental representations of SU(3). We also present DMRG studies of a spin chain
with spins transforming under the fundamental representation of SU(4). Our work hence requires the explicit
implementation of the su(3) and su(4) spin algebras with its N2−1 generators, which are explicitly given in
Apps. B and C. Note that this implementation is more involved than the implementation of SU(N ) Hubbard
models, where the explicit spin algebra does not enter, and the SU(N ) symmetry enters only through the
number of different fermionic species.

An important problem with numerical studies of SU(N ) spin chains in general is the increasing di-
mensionality of the subspace of one site of the chain, due to either larger values for N or higher spin
representations (like rep 6 for SU(3)). For DMRG, of course, this dimensionality limits the system sizes we
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Fig. 2 Periodic Boundary Conditions: logarithmic plot for the energy difference of the finite size ground
state energy and the thermodynamic site limit L → ∞ versus inverse number of states m kept in the DMRG
sweeps. Shown are the lines for the nearest neighbor Heisenberg model in the fundamental representations
of SU(2), SU(3), and SU(4), as well as for the S = 1 TB model for comparison. The length of the chain
is L = 48.
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Fig. 3 Hard Wall Boundary Conditions: logarithmic plot for the energy difference of the finite size ground
state energy and the thermodynamic limit L → ∞ versus inverse number of states m kept in the DMRG
sweeps. Shown are the lines for the fundamental representations of SU(2), SU(3), and SU(4). The length of
the chain is again L = 48. As compared to the case of PBCs shown in Fig. 2, the system converges much
faster for a comparable number of states kept in the DMRG sweeps.

can access. In Fig. 2, we have plotted the convergence of the DMRG iteration as the number m of states kept
in the effective density matrix is increased. We observe that for comparable m, the convergence decreases
rapidly as we go to higher SU(N ), according for the exponential increase of the Hilbert space as the number
of states per site grows. However, as confirmed by our numerical results reported below, our DMRG code
is capable of at least handling critical spin chains up to SU(4) with reasonable convergence and accuracy.
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Fig. 4 (online colour at: www.ann-phys.org) The entanglement entropy Sα,60 as another example for
the convergence behavior of the SU(3) Heisenberg model. (a) shows the EE Sα,60. The different curves
correspond to different number of kept DMRG states (200, 300, 500, 900, 1500, 3500 states). The system
with 3500 kept DMRG states is fully converged and provides a benchmark. The truncated Hilbert space for
this converged job contains about 8 million states.

While the plots in Fig. 2 are obtained using periodic boundary conditions (PBCs), the convergence behavior
for hard wall boundary conditions (HWBCs) is shown in Fig. 3. Note that HWBCs rather than PBCs are
the natural choice for DMRG, as the number of DMRG states m we need to keep to achieve a similar level
of precision for PBCs is, according to our calculations, roughly the square of the number of states we need
to keep for HWBCs. Nonetheless, the results we present below are obtained with PBCs, as PBCs allow a
more convenient treatment of the finite size corrections for the quantities we extract. In particular, (6) is
valid only for PBCs. (There is a relation corresponding to (3) for HWBCs [36].) We have used 10 DMRG
sweeps for all the calculations we present.

As a demonstration of convergence, Fig. 4 shows the entanglement entropy for different numbers of kept
DMRG states m for the SU(3) representation 3 Heisenberg model. The result displays the Sα,L = SL−α,L

symmetry mentioned above and fits the prediction (3) to astonishing accuracy. We find, however, that this
accuracy requires a number m of states kept which is large in comparison with standard applications of the
DMRG method, and which demands large computational resources. This is partially due to the criticality
of the models we study. With a spectrum that is gapless in the thermodynamic limit, a large subspace of
the entire Hilbert space contributes to the long range correlations, which is reflected in a large number
of relevant weights in the density matrix. Nonetheless, with a sufficiently high value of states kept, very
accurate results can be extracted from the DMRG computations. Even for rather small systems consisting
of O(100) sites, we obtain highly accurate estimates for the central charges of the critical models described
in the following section. As the entanglement entropy is not directly accessible by other numerical methods,
the DMRG method is preeminent to our purposes.

3 Integrable models of critical SU(N ) chains

The SU(N ) spin chain models we investigate numerically in this work are described by a family of Hamilto-
nians H[N,m], which are amenable to the transfer matrix method [30–34,40]. Note that some of the models
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H[N,m] were investigated by numerical and analytical solutions of the Bethe ansatz equations [41–43].
The representations [N, m] of SU(N ) are given by the totally symmetric combination of m fundamental
representations of SU(N ). The corresponding Young tableaux is

� � �︸ ︷︷ ︸
m boxes

�

For SU(2), all the representations are of this form, with m = 2S. For SU(3), the symmetric representations
include the fundamental representation 3 and the representation 6, for m = 1 and 2, respectively. The
dimensionality n of the totally symmetric representation [N, m] is in general given by

n ≡ dim[N, m] =
(

N − 1 + m

m

)
. (7)

The Hamiltonians H[N,m] contain two-site interactions only and are invariant under global SU(N ) spin
rotations, i.e., Heisenberg interaction terms to arbitrary power [30–34,40]. Note that all the models H[N,m]

are integrable, due to an infinite number of operators which commute with the Hamiltonians. In this work,
we consider the models with [N, m] = [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], and [4, 1].

The Hamiltonians for [N, 1], i.e., the fundamental representations, are just the nearest-neighbor Heisen-
berg models,

H[N,1] =
N∑

i=1

SiSi+1. (8)

In general, Si is an SU(N ) representation [N, m] spin operator at site i. Since the dimension of the Lie
algebra su(N ) is N2 − 1, the spin operator Si consists of the N2 − 1 generators,

Sα
i =

1
2

∑
σ,σ′=f1,...,fn

c†iσV α
σσ′ciσ′ , (9)

where α = 1, . . . , N2 − 1, V α
σσ′ are the SU(N ) Gell-Mann matrices, and f1, . . . , fn denote the n different

spin states [15]. Trivially, SiSi+1 ≡ ∑N2−1
α=1 Sα

i Sα
i+1.

For the fundamental representation [2, 1] of SU(2), the V ’s are just the Pauli matrices and the two spin
states can be classified by the eigenstates f1 =↑, f2 =↓ of Sz . For the fundamental representation [3, 1]
of SU(3), the V ’s are given by the eight Gell-Mann matrices. The matrices V for representations [3, 2] (
i.e., SU(3) representation 6) and [4, 1] ( i.e., SU(4) representation 4) are written out in Apps. B and C. In
our numerical implementations, we have scaled the Hamiltonians such that the pre-factor of the bilinear
Heisenberg term SiSi+1 is ±1 and we have dropped the constant term.

As we confirm numerically below, the low-energy behavior of the models H[N,1] is described by the
SU(N )1 WZW model, with topological coupling constant k = 1. With (1), we expect to find c = N −1 for
the central charge. The integrable spin S = 1 model we investigate, the Takhtajan–Babudjan model [30–32],
is given by

H[2,2] =
N∑

i=1

[
SiSi+1 − (SiSi+1)

2
]
. (10)

The low energy physics is described by the SU(2)2 WZW model. With (1), we expect to find c = 3
2 .

Note that the criticality of this integer spin model is not inconsistent with the Haldane gap, as Haldane’s
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Fig. 5 (online colour at: www.ann-phys.org) Entanglement entropy (block entropy) of the integrable SU(2)
S = 1 Hamiltonian with PBCs. The solid line corresponds to the formula (3) with the fit parameter c, the
central charge of the corresponding CFT. The uniform bond entropy, i.e., the nearest neighbor entanglement
entropy, indicates a homogeneous and translationally invariant ground state.

classification applies to generic integer spin chains, while the Takhtajan–Babudjan model (10) is tuned to
criticality.

The next higher dimensional integrable SU(2) model from the Takhtajan–Babudjan series is given by
the spin 3/2 Hamiltonian

H[2,3] =
N∑

i=1

[
−SiSi+1 +

8
27

(SiSi+1)
2 +

16
27

(SiSi+1)
3

]
. (11)

The corresponding CFT is the SU(2)3 WZW model, which implies that the central charge is c = 9
5 .

Finally, the Andrei–Johannesson [33, 34] model consists of SU(3) spins transforming under the six–
dimensional representation 6, and is given by

H[3,2] =
N∑

i=1

[
SiSi+1 − 3

5
(SiSi+1)

2

]
. (12)

The corresponding CFT is the SU(3)2 WZW model, which implies c = 16
5 . We now turn to our numerical

results for these models.

4 Numerical results

4.1 Central charge

As noted above, the entanglement entropy is provided quite naturally in DMRG, as in each sweep we really
calculate reduced density matrices, from which we easily obtain the entanglement entropy via (2). From
the plots of the entanglement entropy vs. the site index, we obtain a numerical value for the central charge
via (3). In Fig. 5, we show the entanglement entropy (also called block entropy) for the integrable S = 1
Hamiltonian, the Takhtajan–Babudjan model, as an illustrative example. The fit yields a central charge of
c = 1.50717 ± 0.0003, where the error corresponds to the fitting error shown in Table 1. The result is in
excellent agreement with the value c = 3

2 predicted by CFT. We have also plotted the bond entropy, which
is the entanglement entropy of two neighboring sites α and α + 1 with the remainder of the system. In
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Table 1 Theoretical predictions and numerical results for the central charge for the Hamiltonians we con-
sidered. The error quoted are due to inaccuracies when fitting the data for entanglement entropy obtained
numerically to (3). An additional systematic error, which we have not estimated separately, arises from the
states discarded within the DMRG.

Hamiltonian [N, m] N k c cDMRG

[2, 1] 2 1 1 1.0001± 0.0012

[2, 2] 2 2 3
2 1.5072± 0.0003

[2, 3] 2 3 9
5 1.8002± 0.0211

[3, 1] 3 1 2 2.0001± 0.0102

[3, 2] 3 2 16
5 3.2214± 0.0437

[4, 1] 4 1 3 2.9527± 0.0237
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Fig. 6 (online colour at: www.ann-phys.org) Entanglement entropy (block entropy) of the SU(4) nearest
neighbor Heisenberg model with PBCs. The solid line constitutes a fit of the data using (3), yielding a central
charge close to the predicted value c = 3 (for details see Table 1).

general, a bond entropy which is not site independent indicates a spontaneous breakdown of translational
invariance (like e.g. dimerization) in the ground state. Despite being a quantity of its own interest to extract
information from finite systems [44], we attach no significance to the bond entropy beyond the confirmation
of translational invariance. Other quantities, e.g. the ground state stiffness [45], could in principle be studied
within DMRG to supplement the ground state studies, but are not our point of consideration in this work.

The discrepancy between the data and the fit to (3) is most visible at the maximum of the entanglement
entropy, i.e., for half of the sites traced out, as this discrepancy is due to entropy we have discarded by
discarding states. While there is no difference visible in Fig. 5, a discrepancy can be discerned in Fig. 6, where
we have plotted the entanglement entropy of the SU(4) Heisenberg model in the fundamental representation.
This small discrepancy is present even though we keep 8000 DMRG states for the sweep iterations which
results in a truncated Hilbert space containing 22 million states. Note that the DMRG calculation for the
ground state of this model with 8000 kept states has taken 68 hours of computer time (4 CPU cores) with
ca. 20 gigabyte of memory, while the same calculation with 5500 kept states has taken 28 hours (4 CPU cores)
with ca. 9 gigabyte of memory. Here we only exploited the abelian quantum numbers of SU(N ). By using
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the square of the total spin S2 as additional quantum number and representing the states according to the
Wigner–Eckhardt theorem, one should be able to reduce the required Hilbert space significantly. However,
already for SU(2), the Clebsch–Gordon coefficients make the implementation cumbersome [46], and for
SU(3) and SU(4) the corresponding Clebsch–Gordon coefficients are more complicated. Therefore we
decided not to implement them. Note that the use of non–abelian quantum numbers does not automatically
lead to better performance, e.g. in SU(2) it helps for small S sectors only, since otherwise the sum over
reduced states gets too involved.

The value we obtain for the central charge, c = 2.95268± 0.02368, however, is reasonably close to the
predicted value c = 3. In addition to the fitting error we quote in Table 1, there is a systematic error due to
the entropy we have discarded by discarding states in DMRG. As all the contributions to the entanglement
entropy are positive definite, this systematic error leads to a slight underestimate for the numerically obtained
central charge. Our results for the models introduced in Sect. 3 are presented in Table 1. In general, we find
excellent agreement between analytical values and numerical data.

4.2 Scaling dimension of critical models

From the spectrum we numerically calculate via DMRG, it takes two steps to obtain an estimate for the
scaling dimension of the primary field. First, with the central charge obtained through the entanglement
entropy, we use (6) to arrive at an estimate for the Fermi velocity v. Second, we use (5) to obtain an
approximate value for the scaling dimension x. The values we obtain for some of the models we study are
listed in Table 2.

Both steps require only linear fits, which are easily accomplished. For the fundamental representations
of SU(2) and SU(3), these fits are shown in Figs. 7 and 8. In the process, however, we omit significant finite
size corrections. To begin with, in (6), marginal sub-leading contributions of the order of O( 1

L(log L)3 ) are
omitted [47]. As we consider spin chains with of the order of 100 sites, these corrections are at the order of
1% and thus for our purposes negligible. In (5), however, the error due to omitting marginal contributions is
of order O( 1

L log L ), and hence significantly larger. This error is essentially responsible for the discrepancy
between the analytical results and the numerical findings in Table 2. For these reasons, our numerical results
for the scaling dimension are not nearly as accurate as for the central charges, where finite size corrections
did not enter. By use of non-Abelian bosonization [38], the logarithmic correction can be calculated in
principle. For the case S = 1 of SU(2), this has been carried out by Hijii and Nomura [48]. For our
purposes, however, such an analysis is not required. The fits to leading order for the cases S = 1/2 and
S = 1 of SU(2) as well as the fundamental representation 3 of SU(3) are sufficiently conclusive to identify
the scaling dimension of the primary fields of the corresponding WZW model. For a more refined spectral
analysis or calculation of the various scaling dimensions of the descendants of the primary fields, however,
it would be indispensable to include the marginal contributions into the fits as well.

Table 2 Theoretical predictions and numerical results for the scaling dimension of the primary fields for
SU(2) and SU(3) Hamiltonians. The deviations from the analytical values are higher than the deviations for
central charges discussed above. The errors quoted again refer to inaccuracies of the fits only.

Hamiltonian [N, m] N k x xDMRG

[2, 1] 2 1 1
2 0.443± 0.0020

[2, 2] 2 2 3
8 0.338± 0.0006

[3, 1] 3 1 2
3 0.638± 0.0010
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Fig. 7 Scaling dimension for the spin 1/2 Heisenberg model. According to Eq. (6) the Fermi velocity is
fitted in the main picture (v ∼ π

2
), which is used as a parameter for the fit of the scaling dimension done

in the inset. In the inset, E1,L − E0,L is plotted vs. 1/L and according to Eq. (5) we have fitted the scaling
dimension x = 0.443 ± 0.0020. The data points correspond to chains (PBCs) from 20 to 320 sites.
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Fig. 8 Scaling dimension for the SU(3) representation 3 Heisenberg model. Less data points have been
computed compared to S = 1/2 SU(2) in Fig. 7, but yields a similar numerical fit precision. The Fermi
velocity is fitted to v ∼ π

3
. In the inset the energy difference E1,L − E0,L is plotted vs. 1/L and according

to Eq. (5) we have fitted the scaling dimension x = 0.638 ± 0.0010. The data points correspond to chains
(PBCs) with 30, 60, 90, and 120 sites.
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5 Conclusion

To summarize, we have investigated critical spin models of higher representations of SU(2), SU(3) and
SU(4) by DMRG, extracting the central charge as well as the scaling dimension of the primary field from
our numerical results. These results agree accurately with the predictions of the associated conformal field
theories, the SU(N )k WZW models. We have thus shown that the study of block entropies within DMRG is a
suitable numerical tool to investigate SU(N ) spin chains including higher representations. It thus represents
a fruitful method to complement analytical approaches to these models and perspectively provide important
information on models where analytical methods may not be practicable or even applicable.
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A Gell–Mann matrices for the fundamental representation 3 of SU(3)

The algebra su(3) has two diagonal generators V 3 and V 8. The SU(3) Gell-Mann matrices for the funda-
mental representation are given by [15]

V 1 =

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎠ , V 2 =

⎛
⎜⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎟⎠ , V 3 =

⎛
⎜⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎟⎠ ,

V 4 =

⎛
⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎠ , V 5 =

⎛
⎜⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎟⎠ , V 6 =

⎛
⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠ ,

V 7 =

⎛
⎜⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎟⎠ , V 8 =

1√
3

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎠ .

They are normalized as tr
(
V aV b

)
= 2δab and satisfy the commutation relations

[
V a, V b

]
= 2fabcV c.

The structure constants fabc are totally antisymmetric and obey Jacobi’s identity

fabcf cde + f bdcf cae + fdacf cbe = 0.

Explicitly, the non-vanishing structure constants are given by f123 = i, f147 = f246 = f257 = f345 =
−f156 = −f367 = i/2, f458 = f678 = i

√
3/2, and 45 others obtained by permutations of the indices.

B Matrices for the representation 6 of SU(3)

For completeness, we write out the matrix representation of the SU(3) generators for representation 6,
as those are rarely given explicitly in the literature. As illustrated in Fig 1b (or also from the Gell–Mann
matrices above), su(3) possesses two diagonal generators J3 and J8 and 6 ladder operators, where always
pairs like I+, I− are adjoint counterparts or hermitian conjugates of each other. In the notation of Eq. (9),
J3

rep.6 corresponds to S3 and likewise J8
rep.6 ≡ S8. The ladder operators are connected to the spin operators
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by S1 ± iS2 = I±, S4 ± iS5 = U±, and S6 ± iS7 = V ±. In the following, dots denote zeroes:

J3
rep.6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · · ·
· · · · · ·
· · −1 · · ·
· · · 1

2 · ·
· · · · −1

2 ·
· · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J8
rep.6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

· · · · ·
· 1√

3
· · · ·

· · 1√
3

· · ·
· · · −1

2
√

3
· ·

· · · · −1
2
√

3
·

· · · · · −2√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

I+
rep.6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· √
2 · · · ·

· · √
2 · · ·

· · · · · ·
· · · · 1 ·
· · · · · ·
· · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V +
rep.6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · √
2 · ·

· · · · 1 ·
· · · · · ·
· · · · · √

2

· · · · · ·
· · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U+
rep.6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · ·
· · · 1 · ·
· · · · √

2 ·
· · · · · ·
· · · · · √

2

· · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

C Matrices for the fundamental representation 4 of SU(4)

su(4) has three diagonal generators V 3, V 8, and V 15. The matrices for the fundamental representation of
SU(4) are given by:

V 1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , V 2 =

⎛
⎜⎜⎜⎜⎝

0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , V 3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

V 4 =

⎛
⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , V 5 =

⎛
⎜⎜⎜⎜⎝

0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , V 6 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,
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V 7 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , V 8 =

1√
3

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , V 9 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

V 10 =

⎛
⎜⎜⎜⎜⎝

0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0

⎞
⎟⎟⎟⎟⎠ , V 11 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎠ , V 12 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0

⎞
⎟⎟⎟⎟⎠ ,

V 13 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ , V 14 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

⎞
⎟⎟⎟⎟⎠ , V 15 =

1√
6

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

⎞
⎟⎟⎟⎟⎠ .
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