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Introduction.—The fractionalization of quantum num-
bers, in which the excitations of a strongly correlated
system carry only a fraction of the quantum numbers of
the constituents, is currently of great interest in condensed
matter physics and a significant body of recent work has
focused on finding solvable theoretical models in which the
phenomenon occurs [1–5]. In addition to its intrinsic in-
terest, the phenomenon of fractionalization may well have
a bearing on one of the most vexing problems in condensed
matter theory, should the long-standing suggestion of a link
between fractionalization and high-TC superconductivity
[6,7] be established; recently, it has been shown [8] that the
topological degeneracy in these systems might be used to
protect quantum bits and be applicable to the emerging
field of quantum computing.

Fractional statistics, as a generalization of the idea of
quantum statistics based on Berry’s phase [9], is a sensible
idea only in one or two dimensions, where one can define a
winding number. In 1D, the behavior is known to occur in
spin-1=2 antiferromagnets [10,11], where exactly solvable
models exhibiting this behavior exist [12–16]. Frac-
tionalization of statistics is also known to occur in 2D in
the presence of a magnetic field that violates the discrete
symmetries of parity (P) and time reversal (T); this situ-
ation is realized in the fractional quantum Hall effect [17–
22] (FQHE). Very recently, the fractional statistics of the
quasiparticle excitations in the FQHE has been observed
experimentally [21,22]. In contrast to the one-dimensional
case, however, there has been no definite evidence as to
whether fractional statistics occurs in the absence of an
external field breaking these symmetries.

In this Letter, we present a spin Hamiltonian for which
the chiral spin liquid [23,24] (CSL) is the exact ground
state. The CSL, one of the paradigmatic systems to intro-
duce the concept of fractional statistics in 2D spin systems,
is constructed to spontaneously violate the symmetries P
and T; this violation is generally associated with fractional
statistics. The excitations of the liquid—spinons, which
carry spin 1=2 but no charge, and holons, which carry
charge but no spin—obey fractional statistics. In addition,
the spinons exhibit quantum-number fractionalization and
carry only half the spin of the excitations in conventional

magnetically ordered systems, which are spin-1. In many
respects, the Hamiltonian we present is a generalization of
the Haldane-Shastry model [12,13] (HSM) to 2D, and it
provides an exact spin model in which fractional quantiza-
tion can be studied. A spin Hamiltonian for a 2D system
where the ground state is a chiral spin state, but not a liquid,
has been discoverd by Wen et al. [25]. These authors
additionally argue for the plausibility of a CSL ground
state in a Heisenberg-like model including six-site inter-
actions; the model presented in this Letter is precisely of
that form.

The proof presented below shows that the model has an
exact twofold topologically degenerate ground state for
any number of lattice sites N. This is in contrast to models,
such as the Rokhsar-Kivelson dimer model [7] (RKM),
where the topological degeneracy is only realized in the
thermodynamic limit [26]. The exact topological degener-
acy supports the view that the model will increase the
accessibility of studying aspects of fractional statistics in
2D on an analytical and exact footing. At present, we have
numerically verified the results in this Letter by exact
diagonalization of the Hamiltonian on a 4� 4 lattice.
The numerical work confirms that the Hamiltonian has
two zero-energy ground states and that these are the two
topologically degenerate CSL ground states introduced
below. A detailed discussion of the numerics will be pre-
sented elsewhere [27]. In the following, we briefly review
the CSL ground state, present the exact parent-Hamil-
tonian for the state, and show analytically that our positive
semidefinite Hamiltonian annihilates the CSL ground
states.

Ground state.—The CSL was originally conceived by
D. H. Lee as a spin liquid constructed by condensing the
bosonic spin flip operators on a 2D lattice into a FQH
liquid at Landau level filling factor � � 1=2. The ground
state wave function for a circular droplet with open bound-
ary conditions, on a square lattice with lattice constant of
length one, is given by [23,24]

 hz1 � � � zMj i �
YM
j<k

�zj � zk�
2
YM
j�1

G�zj�e
���=2�jzjj2 ; (1)

where j i is always referred to as the CSL state. The z’s in
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the above expression are the complex positions of the up-
spins on the lattice: z � x� iy, with x and y integer.
G�z� � ��1��x�1��y�1� is a gauge factor, which ensures
that (1) is a spin singlet. Lattice sites not occupied by z’s
correspond to down-spins.

For our purposes, it is propitious to choose periodic
boundary conditions (PBCs) with equal periods L1 �
L2 � L, L even and with N � L2 sites. Following
Haldane and Rezayi [28], the wave function for the CSL
then takes the form

 

hz1 � � � zMj i �
Y2

��1

#1

�
�
L
�Z� Z�	

�YM
j<k

#1

�
�
L
�zj � zk	

�
2

�
YM
j�1

G�zj�e
��=2��z2

j�jzjj
2�; (2)

where M � N=2 and #1�w� � �#1��w� 
 #1�wje
��� is

the odd Jacobi theta function [29]. The zeros for the center-
of-mass coordinate Z �

P
jzj must lie in the principal

region 0 � Re �Z1�<L, 0 � Im �Z1�<L and satisfy
Z1 � Z2 � L� iL; the freedom to choose Z1 reflects the
topological degeneracy and yields two linearly indepen-
dent ground states for the CSL. These states are spin
singlets, are invariant under lattice translations, and are
strictly periodic with regard to the PBCs.

Hamiltonian.—The Hamiltonian for which the CSL is
the exact ground state is defined in terms of vector opera-
tors �j as

 H �
X
hiji

��i ��j�
y � ��i ��j�; (3)

where the sum extends over all nearest-neighbor pairs on
the square lattice. The vector operators contain one-
through-three-site interactions and, in terms of two sets
of coefficients Kijk and Uij, are defined as

 

�j �
X0

i;k�j

Kijk

�
1

2i
�Sj � Sk� �

4

5
�Sj � Sk�Si

�
1

5
�Sk � Si�Sj �

1

5
�Si � Sj�Sk

�
�
X
i�j

UijSi; (4)

where the prime on the sum indicates i � k. The coeffi-
cients Kijk � K�zk � zj; zi � zj� in the first term of (4) are
given by

 K�x; y� � lim
R!1

X
0�jz0�xj�R

1

x� z0

P�x� z0; y�
N=2� 1

; (5)

where the sum over all full lattice translations z0 � �‘�
im�L guarantees periodicity in the first argument of K. The
function P�x; y� is given by

 P�x; y� �
X

0�jz0�yj�R

Co ��2L �z0 � y	�

Co ��2L �x� �y� z0�	�

e���=L
2�jz0�yj2

n�y�
;

(6)

where Co �x� � cosx� coshx and where n�y� is a normal-
ization factor:

 n�y� � lim
R!1

X
0�jz0�yj�R

e���=L
2�jz0�yj; (7)

chosen such that P�0; y� � 1. The sums in (6) and (7)
enforce the periodicity of K in its second argument.

The coefficients in the second term of (4) are given by
Uij �

�
L U�

�
L �zj � zi	�, where

 

�
L
U
�
�
L
z
�
�
�
L
W
�
�
L
z
�
�

1

N � 2

�

�
d
dx
P�x;�z�j0 � lim

R!1

X
0<jz0j�R

P�z0;�z�
z0

�
:

(8)

In this expression, the function W�z� is the periodic exten-
sion of 1=z to the torus:

 

�
L
W
�
�
L
z
�
� lim

R!1

X
0�jz0j�R

1

z� z0
: (9)

The Hamiltonian (3) is constructed to be positive semi-
definite. Therefore, if �i ��j annihilates the CSL states
(2), these states will be zero-energy ground states of (3).

Proof.—In order to prove that the vector operator �i �

�j annihilates the CSL ground state, we first demonstrate
that the related tensor operator !i �!j annihilates it.
Here, !i is a reducible tensor, i.e., a composition of tensor
components of different ranks that may be decomposed
into irreducible spherical first-rank (vector) and third-rank
tensors; the operator �i is the vector component of!i. The
operator !i � !�i �!

�
i , where !�i are related by a �

rotation about the x axis, will be discussed in detail below
after constructing the portion of the proof that does not
depend on its precise form; it is later defined as !�i �
Ti � Vi with the two operators Ti and Vi given in (13) and
(14) below. The Wigner-Eckart theorem, in conjunction
with the fact that the ground state defined in (2) is a spin
singlet, guarantees that if!i �!j is a destruction operator
for the state, then each of its irreducible tensor components
are also destruction operators. Therefore, given that the
operator !i �!j destroys the ground state, it follows that
the vector operator �i ��j does as well.

In order to show that the operator !i �!j is a destruc-
tion operator for the ground state, we first demonstrate the
following property:

 

hz1 � � � zMj!jj i

hz1 � � � zMj i
� f�Z�: (10)
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The fact that the function on the right-hand side of (10) is
independent of the site-index j ensures that the difference
of any two operators !i �!j is a destruction operator. We
consider only nearest-neighbor pairs of operators in con-
structing the Hamiltonian in (3), as this is the simplest and
most local operator that is also translationally invariant.
Other choices, however, are possible.

The reducible tensor operators !j can be decomposed
into two operators as !j � !�j �!

�
j , where !�j and !�j

are related to each other through a � rotation about the x
axis that maps Sz and Sy into �Sz and �Sy. The operator
!�j will be further decomposed as !�j � Tj � Vj with the
explicit forms for these operators given in (13) and (14)
below. In order to prove (10), we will first demonstrate that

 

hz1 � � � zMj!
�
j j i

hz1 � � � zMj i
� f�Z�

�
1 zj 2 fz1 � � � zMg
0 otherwise;

(11)

where f�Z� is an odd, periodic function of the center-of-
mass coordinate Z. Using the relation between !�j and the
invariance of the CSL ground state under such a rotation,
one can show, without specific knowledge of the function
f�Z�, that

 

hz1 � � � zMj!�j j i

hz1 � � � zMj i
� f�W �

�
0 zj 2 fz1 � � � zMg
1 otherwise:

(12)

In the above expression, W �
P
wi is the center of mass

of the down-spins on the lattice, such that fwig is the
complement of fzig. It is straightforward to show, regard-
less of the chosen origin, that the sum of the two center of
mass terms is a full lattice translation: Z�W � �‘�
im�L. This means that f�W � � �f�Z� and, given the
definition of !j above, (10) follows from (11).

Having developed the remainder of the argument, it
remains only to demonstrate (11) for the operator !�j to
prove that (3) is the exact parent Hamiltonian for the CSL;
this last step is the heart of the proof. The operator !�j is
defined in terms of off-diagonal and diagonal contributions
as !�j � Tj � Vj where

 Tj �
1
2

X
i;k�j

KijkS
�
j S
�
k �

1
2� S

z
i � (13)

 Vj �
X0

i�j

Uij�
1
2� S

z
i ��

1
2� S

z
j�; (14)

with the coefficients defined in terms of the functions in
(5), (7), and (8) above. Considering first the off-diagonal
term, its action on the CSL ground state may be expressed
as

 hz1 � � � zMjTjj i �
1
2

X
i;k�j

Kijkhz1 � � � zMjS�j S
�
k �

1
2� S

z
i �j i:

(15)

This is clearly zero if zj =2 fz1 � � � zN g giving half of the
equality in (11). Otherwise, acting onto the bra with the
operator removes the site zj and replaces it with the site zk.
In addition, the matrix element vanishes if zi =2
fz1 � � � zN g. Dividing by the wave function yields

 

hz1 � � � zMjTjj i

hz1 � � � zMj i
�

1

2

X
i;k�j

Kijk
hz1 � � � zi � � � zk � � � zMj i
hz1 � � � zi � � � zj � � � zMj i

:

(16)

Using the definition in (5) above, this may be written as

 

hz1 � � � zMjTjj i

hz1 � � � zMj i
�

1

N � 2

X
i�j

X
z�0

lim
R!1

X
0�jz0�zj<R

P�z� z0; zi � zj�

z� z0

hz1 � � � zi � � � zj � z � � � zMj i

hz1 � � � zi � � � zj � � � zMj i
; (17)

where the sum over k has been replaced by a sum over z �
zk � zj. As the wave function is periodic in all of its M
coordinates, the sums on z0 and z may be replaced with a
sum on x � z� z0 that runs over the entire complex plane.
Additionally, the ratio of wave function coefficients ap-
pearing in (16) has the form

 

hz1 � � � zi � � � zj � x � � � zMj i

hz1 � � � zi � � � zj � � � zMj i
� �G�x�F�x�e���=2�jxj2

(18)

 F�x� � e��zj�z

j �xe��x

2=2
Y2

i�1

#1�
�
L �Z� Zi � x	�

#1�
�
L �Z� Zi	�

�
YM
k�i

#2
1 �
�
L �zj � zk � x	�

#2
1 �
�
L �zj � zk	�

; (19)

where F�x� is an analytic function of x. Being careful to
pick up the points excluded by the sum in (17) and using
the above definition of F�x�, the action of Tj on the CSL
ground state may be written as
 

hz1 � � � zMjTjj i

hz1 � � � zMj i
� �

1

N � 2

X
i�j

�X
x�0

P�x; zi � zj�

x

� F�x�G�x�e���=2�jxj2

�
X

0<z0

P�z0; zi � zj�

z0

�
: (20)

This is the major step in the proof since the first term may
be evaluated with the singlet sum-rule [30]. This sum
meets the requirements for convergence [31] that were
not satisfied in the original work, due to the exponential
falloff of P�x; y� with increasing x. This gives
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X
x�0

P�x; zi � zj�

x
F�x�G�x�e���=2�jxj2

� �
d
dx

�P�x; zi � zj�
x

F�x�
���������x�0

: (21)

Combining this with the second term in Eq. (20) gives

 

hz1 � � � zMjTjj i

hz1 � � � zMj i
� f�Z� �

X
i�j

�
L
U
�
�
L
�zj � zi	

�
; (22)

where the function of the center-of-mass coordinate f�Z�,
which first appears in (10), may now be written down
explicitly:

 f�Z� � �
X2

i�1

�
2L
W
�
�
L
�Z� Zi	

�
: (23)

The U function appearing in (22) is the one introduced in
(8) when defining the Hamiltonian. The equality here is a
result of the fact that the W function, introduced in (9), is
related to the logarithmic derivative of the odd Jacobi theta
functions:

 W�z� �
d
dz

ln#1�z� �
z� z

�
: (24)

The operator Vj introduced in (14), which only gener-
ates diagonal terms, is chosen to exactly cancel the second
term in (22). This proves the identity in (11) and from here,
the arguments at the beginning of the section may be traced
backwards to show that �i ��j annihilates the CSL state
(2), and hence that the CSL is an exact ground state of (3).
The fact that the topological degeneracy is exact for any
number of lattice sitesN in this model is due to the fact that
!i �!j destroys the state regardless of the choice of the
location of the center-of-mass zeros Zi.

Conclusion.—We have constructed a Hamiltonian that
singles out the chiral spin liquid state as the exact and,
apart from the topological twofold degeneracy for PBCs,
unique zero-energy ground state. The proof has been nu-
merically verified on a 4� 4 lattice. In analogy to the HSM
in one dimension, this model provides a framework to
study spinon excitations and their interactions in a two-
dimensional spin liquid. For example, one may investigate
whether the spinons in this model are similarly free in the
sense that they only interact through their fractional statis-
tics, and, if so, whether the many spinon states can be
classified in similar terms [16]. In any event, we have
promoted the CSL from an intriguing trial wave function
to the exact ground state of a spin Hamiltonian, and we
have hence accomplished something analogous to the pro-
motion of Gutzwiller’s wave function [32] to an exact
solution by Haldane and Shastry [12,13].
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