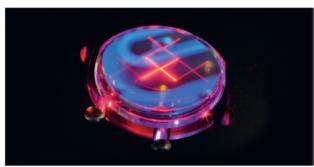

Julius-Maximilians-UNIVERSITÄT WÜRZBURG


Master- oder Bachelorarbeit an der Technischen Physik 2026

Optische Charakterisierung hochreflektierender Spiegel

Hochreflektierende Spiegel für Licht sind in der Wissenschaft allgegenwärtig und die Qualität entscheidet häufig über das gesamte Experiment. So benötigt das Laser Interferometer Gravitational-Wave Observatory (LIGO) etwa Spiegel, die mehr als 99,999985% des Lichts reflektieren [1]. Um solche Präzision zu erreichen, wird die Reflektivität bereits während der Fertigung gemessen. Dies wird mittels Cavity-Ring-Down Spectroscopy gemacht [2], ein präzises Verfahren, dass sich die vielmalige Reflexion eines Laser Strahls in einer optischen Kavität zu Nutze macht.

In diesem Projekt entwickelst du ein Messsystem auf Basis der Cavity-Ring-Down-Spektroskopie, mit dem sich selbst sehr kleine optische Verluste präzise nachweisen lassen. Du solltest Interesse an Optik und experimenteller Arbeit mitbringen; Englischkenntnisse sind hilfreich, spezielle Vorkenntnisse sind jedoch nicht erforderlich.

Deine Aufgaben:

- Einarbeitung zu Cavity-Ring-Down-Spektroskopie und moderner optischer Messtechnik
- Design und Aufbau eines Messaufbaus
- Charakterisierung hochreflektierender Spiegel
- Experimentelle Arbeit mit direktem Bezug zu aktueller Spitzenforschung

Als Bachelorarbeit wirst du nur ein ausgewähltes Teilprojekt bearbeiten.

[1] The LIGO Scientific Collaboration and Aasi et al., (2015) Advanced LIGO, Classical and Quantum Gravity, 32(7) 074001
[2] Berden, G., Peeters, R., & Meijer, G. (2000). Cavity ring-down spectroscopy: Experimental schemes and applications. International Reviews in Physical Chemistry, 19(4), 565–607.

Ansprechpartner:

Johannes Düreth

E-Mail: johannes.duereth@.uni-wuerzburg.de; Tel.: +49 931 31 84821; Raum: E071

Lehrstuhl für Technische Physik – Julius-Maximilians-Universität Würzburg

