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Physics of the Mossbauer Effect

LeonNARD EvGEs

Adr Force Cambridge Research Laboratories, Office of Aerospace Research,
United States Air Force, L. G. Hanscom Field, Massachusetis

(Received 21 January 1965)

This paper considers from a simple physical point of view the Mossbauer effect, i.e., the
“recoilless emission’’ of gamma rays from a nucleus bound in a crystal lattice. It begins with a
discussion of the kinematics of gamma-ray emission from such a nucleus. The idealized case of
a massive ‘‘lattice” characterized by a single frequency and the more realistic one and three-
dimensional models are treated. We point up the fact that in the Méssbauer effect the lattice
as a whole (the lattice center of mass) always recoils after photon emission, so that the term
“recoilless emission’ is in one sense misleading. We emphasize that the essence of the Mdss-
bauer effect is not photon emission without recoil, but rather is photon emission without
transfer of energy to internal degrees of freedom of the lattice. Using the basic ideas of quantum
mechanics, namely, the rules for the manipulation of probability amplitudes (the so-called
“transformation theory”), we calculate the probability for recoil without excitation of internal
degrees of freedom, i.e., the Mdssbauer f factor, on the assumption that the individual photon
emissions, and consequent lattice recoil, are instantaneous. In Appendix A we discuss this
question of instantaneous emission in some detail, and show how it is not in contradiction with
the fact that the nuclear transition that leads to the gamma-ray emission has a finite half-width.
In Appendix B those rules of transformation theory that are used in the body of the paper are

summarized.

INTRODUCTION

HE aim of this paper is to discuss the
Mossbauer effect in a way which high-
lights the basic physical features as clearly as
possible and which, hopefully, clarifies various
misconceptions that seem to exist about it. We
assume then that the reader has some familiarity
with the general features of the effect; if not, we
refer him to any of several excellent references
and review articles.! We however set the stage
briefly by recalling that the effect has to do with
the properties of photons emitted in nuclear
transitions. Consider a free nucleus which has two
states of internal energy E; and E.. If a photon
is emitted in a transition between those states
the photon energy is not given by E,~ E,, but is
less by a small but significant amount R, called
the recoil energy. This is just the kinetic energy
which is perforce transmitted to the emitting
nucleus as a consequence of energy and momen-
tum conservation between the nucleus and

t Among other good introductory articles, one may refer
to: H. Lustig, Am. J. Phys, 29, 1 (1961); R. L. M&ssbauer,
Science 137, 731 (1962); G. K. Wertheim, The Mossbauer
Effeci (Academic Press Inc., New York and London, 1964).
An extensive list of general references is given in Resource
Letteg ME-I on the Mossbauer Effect, Am. J. Phys. 31, 1
(1963).

emitted photon. If however the nucleus is bound
in a crystal there can be a substantial probability
for emission of a photon without this recoil energy
shift. This is the ‘“Mdssbauer effect,” sometimes
also called “recoilless emission” although this
terminology is occasionally used loosely, as we
see later.

KINEMATICS OF PHOTON EMISSION

A, Free Nucleus

We begin then by analyzing energy and mo-
mentum conservation when a photon is emitted
as a result of a transition between two states E,
and E; of a nucleus, assumed of mass m. Such a
nucleus is an isolated “‘system’’ ; before emission
the system simply consists of the nucleus itself,
at rest; after emission the system consists of the
nucleus with a velocity v, plus a photon of fre-
quency » (and hence momentum %v/c). Since the
momentum and energy of the isolated system
must be the same before and after the emission
we get

Momentum:

0=hv/c+mv (1)
Energy: E:=E;+hv+1mv?/2.
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PHYSICS OF THE MOSSBAUER EFFECT

These two equations then yield
hv=E;— (hv)*/2mc% (2)

Thus the photon energy is less than E,—E; by
the recoil energy R,

R = (hv)*/ 2mct. (3)

That is, not all the energy available in the tran-
sition goes to the photon, but some appears as
kinetic energy of the nucleus.

B. Einstein ‘“Lattice”

Since the Méssbauer effect can take place
when an emitting nucleus is bound to a lattice,
we should begin by working out the kinematics
of gamma-ray emission by such a nucleus in a
lattice. This is not very difficult, but we can
make life easier for ourself and still extract the
essential result by beginning with a simpler
system.

Let us then schematize the lattice in the way
sketched in Fig. 1, by imagining that instead of
it, we have a nucleus of mass m bound to another
mass M ; this latter mass represents all the other
nuclei in the lattice and is therefore enormous;
M ~=10%m. This “lattice” is characterized by a
single frequency w; it is essentially the Einstein
model for the true lattice. Now, as before, let us
imagine that the nucleus emits a gamma ray in
the transition between the levels of energies E,
and FE,, and again apply the conservation laws
to the system. Before emission the system con-
sists of the two masses M and m at rest, with the
nucleus in energy state F.. After emission it
consists of the two masses M and m with ve-
locities, &;=v;, £2=1v,, the nucleusin state £, and
an emitted photon of frequency ». The equations
of momentum and energy balance are then,
writing the potential energy of the spring as
(g/2) (x2—x1—a)? where a is its unstretched
length,

0= Muv:+mvs+ (hv/c),
E2:E1—l-kll+ (M?)lz/Z) + (mv22/2)
+(g/2) (xe—x1—a)™

These equations become more useful when they
are expressed in terms of relative and center of
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Fi1G. 1. Schematic sketch of the Einstein model. The
Mabssbauer nucleus of mass m is bound to the “lattice” of
mass M (M>>m) by a single “spring,” i.e., with a single
characteristic frequency.

mass coordinates x and X defined by

X=x9—X1,

X = (Mxy+muxs)/ (M-+m).
A little algebra then shows that they become
O0=M,V+(hv/c), (5)
Eo=hv+ (M, V?/2)+ (u/2)0*+(q/2) (x —a)?,  (6)

where =9, X =V, and the ‘“‘total mass’ M, and
the “‘reduced mass”’ u are

Miy=M+m, w=mM/(m-+M).

If now we put Eq. (5) into (6) we get an equation
which is the analog of Eq. (2) for emission from
a free nucleon, viz.

hv=Eo~[ (hw)?/2 M *1— Eins, (M

where we have defined the “internal energy’
Einy as

By = (u/2)V"+ (¢/2) (x—a)™. (8)

Ein is the energy of relative motion of the
system, i.e., it is that part of the energy which
depends only on the relative coordinate x.

The possibility of the Mssbauer effect begins
to emerge when one compares Egs. (2) and (7).
The crucial difference is that M; and not m
appears in the second term on the right-hand
side, that is, in the term we have previously
called the “recoil energy.” Since M, is enormous,
this term is negligible and to an extremely good
approximation,

hv = Eg— Eins. 9

Now if it were possible for E;,; to be zero, we
would have

hV%EQ, (10)

and this is just a mathematical statement of the
Mossbauer effect, i.e., it describes a transition
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between nuclear states in which the full energy
difference available is given to the photon.

C. Periodic Lattice

Before discussing the conditions under which
this possibility is realized, let us show how a
similar result applies for a real lattice. We can
then continue to use the Einstein model with
some assurance that it is not oversimplified.
Consider, for example, a one-dimensional lattice
(the extension to three dimensions is trivial), of
N nuclei of mass m, with coordinates x1, xs,* **,
xy. We can then introduce the center of mass
coordinate X, defined by

and N —1 other relative (or internal) coordinates,
i.e., linear combinations of the x; which are
functions of the coordinate differences only. For
example we can introduce the so-called Jacobi
coordinates, £ - - £y..1 defined by

En=[(e1txet - Fxn)/n] —%ny1,
n=1,2,-++, N—1.

If now we suppose a photon is emitted by one of
the nuclei, and work out the kinematics we get
an equation like (7), in which, however, the total
mass M, is now just M,= Nm, and in which Eiy
is a function, possibly complicated, of the N —1
interval variables only. Again for N large, M, is
large and we get back to an excellent approxima-
tion Eq. (9). If then Ein can be zero, or in other
language, if no internal lattice vibrations
(phonons) are excited we have the possibility of
“recoilless emission,” i.e., of the Maossbauer
effect.

Now we are in a position to comment briefly
on the term ‘‘recoilless emission.”” As has been
indicated, in a sense this is a misnomer, because
in fact the system as a whole always, and neces-
sarily, recoils upon emission of the gamma ray.
Thus the term must be understood as meaning
that in the Méssbauer effect no érnergy is trans-
mitted to internal motions, and it is only in this
sense that the transition is recoilless. Unfor-
tunately there are many statements in the litera-
ture to the effect that ‘“The Mdossbauer effect
consists in the emission (or resonant absorption)
by a nucleus in a solid of a gamma-quantum with
an energy which is precisely equal to the energy
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of the transition, because the recoil momentum
is transferred to the crystal as a whole,” This is
incorrect. Whenever a gamma ray is emitted by
a nucleus, whether or not there is a Mossbauer
effect, the recoil momentum is transferred to the
crystal as a whole, in the sense that it is taken up
by the center of mass momentum. The difference
between Méssbauer and non-Méssbauer tran-
sitions lies in whether or not the internal energy
of the crystal changes. It should also be stated
that this distinction is clearly understood and
clearly stated by Méssbauer himself.?

We return now to the Einstein model and to
the question of the circumstances under which
Ei in Eq. (9) can be zero. In classical me-
chanics it is fairly clear on intuitive grounds that
this cannot be so; i, for example, referring to
Fig. 1, the mass m suffers a sudden momentum
impulse, we would expect that classically the
internal energy will necessarily change. We
amplify this later. The point we want to make
now is that quantum mechanically, the story is
different. For in quantum mechanics the internal
energy is quantized and the allowed values are
just the oscillator eigenvalues, which are

Eoo= (n+1) .

Actually, the zero-point energy %#w which occurs
in this equation remains unchanged in a transi-
tion between two states and since we are only
interested in such transitions it plays no role in
our argument. For our purposes then we can take
the internal energy as

Eint =nhw.

If, in quantum mechanics then, for the system
initially in the ground state (#=0), there is a
finite probability for the system still to be in the
ground state after photon emission, the Moss-
bauer effect will be possible. Our next step then
is to calculate this probability, and show that it
is indeed different from zero.

(10)

THE PROBABILITY OF
“RECOILLESS EMISSION”

A, Einstein Model

Let us now investigate the probability for
recoilless emission, and begin by considering the

2R, L. Mossbauer and D. H. Sharp, Rev. Mod. Phys.
36, 410 (1964).
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“Einstein model” of Fig. 1. But before we treat
it quantum mechanically, it is useful to discuss
it classically in a little more detail, and as a pre-
requisite to that, clarify what we mean by a
classical discussion.

We are interested in what happens just after
the mass m emits a gamma ray of frequency »,
thereby imparting to the system a recoil mo-
mentum po=rhr/c. Now, in one sense, the classi-
cal limit is that in which % — 0, and in which
therefore there is no recoil momentum, and
hence no problem. This is not the limit we wish
to consider. Rather, let us continue to assume
that the gamma ray does transmit a momentum
to the system, i.e., gives it a sudden ‘‘kick.” Then
the aim of our discussion is to highlight the dif-
ference between the classical and quantum me-
chanical response of the system to this momen-
tum kick. It is worth underlining the assumption
that the effect of the photon is to transfer mo-
mentum suddenly, or instantaneously, since this
is a point that has engendered much discussion
and confusion in the literature, and which needs
some explanation. In particular, the fact that
the nuclear state has a finite lifetime has been
thought by some to preclude an instantaneous
momentum transfer. This is not correct. We,
however, defer a more complete discussion of this
assumption to an Appendix, since it is too tan-
gential to be appropriate here, and in what im-
mediately follows we simply work out some of
its consequence.

What is then the difference between the re-
sponse of the system of Fig. 1 considered classi-
cally and considered quantum mechanically?
The answer is, rephrasing our previous remarks,
classically, one cannot transfer an impulsive
momentum to the nucleus without changing the
internal energy of the system; quantum me-
chanically, one can. This is central to the Moss-
bauer effect, as Lipkin has clearly recognized.?
Let us see how this comes about, in the Einstein
model treated classically. We assume then that
the nucleus of mass m has suffered an impulsive
momentum “kick” upon the emission of a
photon, and we further assume for the sake of
definiteness that the gamma-ray is emitted to
the right. Then we know, that somehow the

8 H. Lipkin, Ann. Phys. (N. Y.) 18, 182 (1962).
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“system as a whole’” moves to the left. But
we must look carefully at what we mean by
“system as a whole.,” Consider the instant, call
it t=0, just after the gamma ray has been
emitted. Will the mass M have a finite velocity
at this time ? The answer, of course, is no. It takes
a finite time for the spring to transmit a force,
and only if the spring were infinitely stiff, i.e.,
only if the system (Mass m-+spring+Mass M)
comprised a rigid body would the mass M have
a finite velocity at ¢=0. On the other hand, the
nucleus of mass m does recoil instantly, so we
can say that at £=0 its momentum is just equal
in magnitude to the photon momentum. Thus the
velocities at £=0 are

#1=0, miy=muy=— (hv/c). (11)
Now the motion of the center of the mass X and
of the internal coordinate x are independent, so
the total energy of the system is just the sum of
the center-of-mass energy FEcm, and of the in-
ternal energy, Ein.. Moreover the total energy of
the system is just its value at =0, namely
tmoe?. Using these facts and Eq. (11) it is then
easy to work out that F., and Ein: are given by

Eon=3%[m¥/ (M+m) e,
Ei=3[mM/(m+ M) o

Thus if one transfers a finite momentum to the
system, making v, different from zero, the in-
ternal energy is necessarily different from zero.
One cannot transfer momentum classically
without adding to the internal energy.

Now let us turn to the quantum mechanical
discussion, where our questions must be phrased
differently. Unlike the case in classical me-
chanics, we cannot predict the unique subse-
quent motion of the system when the nucleus is
given a sudden momentum kick. All we can do is
predict the relative frequency (probability) with
which it will have different energy values
(states). The question we want to ask then is
this: What is the probability that the system of
Fig. 1 remains in the ground state, the nucleus
having emitted a photon of momentum hv/c,
and therefore having initially acquired for itself,
as in the classical discussion above, a momentum

L—(w/e]?
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Now, it is familiar that in quantum mechanics
one does not claculate probabilities directly,
but rather calculates probability amplitudes
whose squared magnitudes then give the proba-
bilities themselves. For example, in a one-
dimensional problem the ground-state wave-
function, ¥o(x) is the probability amplitude for
finding the particle between x and x-+dx since
its squared magnitude gives just that proba-
bility. Similarly ¢¢(p), the analogous momentum
space function, is the probability amplitude for
finding the momentum between p and p-+dp.
Thus probabilistic quantum theory, which works
with probability amplitudes, differs in an essen-
tial way from classical probability theory, which
adds and multiplies probabilities themselves. But
despite this difference there are also similarities.
Specifically, there is a rule in classical probability
theory for calculating the probability of an
event, whose occurrence is contingent on the
occurrence of other events. Suppose vy is an
“event'' of some kind ; for example, ¥ may be the
event which consists of getting a total of seven
when two dice are thrown. Suppose x is an event
of a similar kind, and that the probability of the
occurrence of y depends upon whether x has
occurred or not. We call the numerical value of
this contingent probability, the “probability of
(v, given x).” Then the rule is:

Probability of
Probability of y=3", /( >
z (v, given x)

(Probability)

of x

R.1)

Here the notation ¥, S/ means to sum or inte-
grate over all the possible values of x, according
as these are discrete or continuous.

There is a similar rule in quantum mechanics;
it differs from the above rule in that it deals with
probability amplitudes instead of probabilities,
and in that the events it refers to are measure-
ments, or rather the possible results (eigenvalues)
of measurements, of quantum mechanical ob-
servables. The rule is discussed in textbooks under
the name ‘‘transformation theory.” Here we
simply state it and apply it to the Mossbauer
effect, leaving a more detailed discussion to an

LEONARD EYGES

Appendix. The rule is just this:

Probability / <Probability amplitude)*

amplitude fory = ’ for (y, given x)

Probability ampli-
( ) ®a

tude for x

The asterisk (*) on the right-hand side stands for
complex conjugate; the probability amplitudes
of quantum mechanics are complex in general.
Except for this the similarity of (R.2) to the
classical rule is obvious.

Now let us apply this rule to find the proba-
bility amplitude, call it Py, for the Einstein
lattice of Fig. 1 to remain in the ground state
after emitting a photon of momentum po=hv/c,
assuming of course that it was in the ground state
to begin. It is convenient now to think of the
mass M as being infinitely heavy, so that we
don’t have to be concerned with center of mass
motion which would just obscure the issue in the
present context: as we have seen there is no
qualitative difference between M being very
large and being strictly infinite.

We apply then the rule (R.2), pointing out
the obvious, that the ground state referred to
is, or course, the oscillator ground state. We

have:
%
Probability ampli- Probability amplitude
tude for nucleus for nucleus being in
Pyy= | to be in oscillator | = Z oscillator ground
ground state 2 ! state when it has

after recoil momentum 2

Probability ampli-

tude for nucleus
X | having momen-

tum p after recoil

(R.3)

What then are the probability amplitudes that
enter the right-hand side of rule (R.3)? First,
the probability amplitude for the nucleus to be
in the ground state when it has momentum p is
simply the ground-state wavefunction ¢o(p).
Moreover, since the nucleus gets an additional
momentum p, (in addition to its zero-point
momentum), on recoiling from the photon, the
probability amplitude for having momentum p
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after recoil is just:

Probability ampli-
tude for nucleus
to have had mo-
mentum P —pe
before recoil.

Probability ampli-
tude for nucleus

to have momen- =
tum p after

recoil

Therefore, the probability amplitude for the
nucleus to have had momentum p —p, before
recoil is, since it was in the ground state before
recoil, just ¢o{p —po). Thus, rule (R.3) applied
to the present case is just

Poo= / 60" (D)o (p— po)dp

and the Mossbauer f factor, the probability that
the system remains in the ground state is

f=|Pyl?= I/tﬁo*(P)qﬁo(P—Po)d?iz-

This result, although simple enough, is not in
the form one usually sees. To get to this form we
introduce the ground-state space wavelunction
Yo(x), of which ¢.(p) is the Fourier transform

1
(2m)}

If we put this into the expression above for Py,
we get

puertf [ foco

X e ltnf o (x) e P—r0)zitd by’ dx.,

$o(p) = / Yolx)erelidy,

The p integration yields a § function of (x"—x)
and we have

Poo=/%*(x)eip”’ﬁ'l’o(x)dx' (12)

The f coefficient of Méssbauer is then the more
Common expression

f=l f P i@ . (13)

MOSSBAUER EFFECT
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The ground-state wavefunction yo{(x) is

Yol = (—"3;) exp (— man?/21).

i

If we evaluate Eq. (13) using this wavefunction
we get

featie, (14

where R is the recoil energy defined by Eq. (3).
We see that if R is of the same order as Aw, the
oscillator quantum energy, the probability for
the Méssbauer effect is substantial.

B. One and Three-Dimensional Lattices

The discussion of the last section was for a
rather idealized problem, in which all the 10%
degrees of freedom and 10% frequencies of the
original problem were replaced by a single degree
of freedom and a single frequency. Thus the
existence of the effect depended on the fact that
the energy of an Einstein oscillator is quantized,
and more precisely on the fact that the quan-
tized level spacing #w is of the order of R, the
recoil energy, If #w were very small we would have
had

f=eRliomgmRI0=(),

and there would have been no Méssbauer effect.
Now in an actual solid, or even in a more accu-
rate model such as the Debye model, one does
have energy eigenvalues for vibration that are
arbitrarily small. It is natural then to ask
whether in this case the effect vanishes, “‘whittled
away'’ by recoil energy loss to low-energy vibra-
tional quanta.

There are various arguments in the literature
that purport to show why this does not happen.
For example, there is a classical argument,* the
gist of which seems to be that since it is a single
nucleus which emits the gamma ray and tends
to excite the lattice by its recoil, it will mainly
excite high-lattice frequencies since such a recoil
is a sharply local disturbance demanding high
Fourier components for its description. This
statement is true, and it shows perhaps why the
low-frequency modes are not easily excited, but

¢ H. Frauenfelder, The Mossbauer Effect (W. A. Benja-
min, New York, 1962), pp. 22.
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in our mind it leaves unanswered the question
of why the Méossbauer effect is not then de-
stroyed by the loss of energy to higher frequency
phonons. In our opinion, any classical argument
which purports to explain fine features of the
effect must be specious, since we have seen that
the effect has a strong and essential quantum-
mechanical basis. We return then to this point
after we work out some details of the quantum
mechanics of the Méssbauer effect in a lattice.

Let us begin with the one-dimensional lattice;
the extension to three-dimensions is then trivial
and consists mainly of making scalars into
vectors. Consider then a lattice consisting of vV
masses (nuclei) on a line, with harmonic forces
acting between mass pairs. Let the coordinates
of these masses be x1, X9, - -, xx and let x; be the
coordinate® of the ‘“Miossbauer nucleus.” Sup-
pose now the system is in its ground state, with
a wavefunction Yo (x1, %9, + -, xx) and suppose as
before that the ‘“Mossbauer nucleus” emits a
gamma ray, thereby suffering an instantaneous
recoil momentum kick. We want to find the
probability that the system will stiil be found in
the ground state after gamma-ray emission;
in fact it is useful to generalize this a little and
find the probability that the system ends up
in a specified final state F, wavefunction
Yr(x1, %2, -, ¥y), with the ground state as a
special case. In this way we later are able to
compare the relative probabilities of multi-
phonon processes.

The argument we use is basically similar to that
for the Einstein model except that the notation
gets more complicated since we are dealing with
not one but N masses. Consider then the mo-
mentum distribution of the masses in the final
state, i.e., after recoil. It is given by the squared
magnitude of a probability amplitude, that we

call ¢r(p1,--- pn); this is of course just the mo-
mentum space wavefunction,
$r(P1- - Pw)

=1/(2W)N/2/.../¢F(xh...xN>

X gt Prart - FoNaW) oes o o dacar.

5 There is no real loss of generality in letting x; be the
coordinate of the Méssbauer nucleus, since the wave-
function satisfies periodic boundary conditions which
essentially make every nucleus equivalent to every other
one.
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Consider now the probability amplitude for the
first mass to have momentum #; after recoil, and
for the other masses to have momentum ps- « - py.
As we have argued for the Einstein model, since
the first mass gets a momentum p, by the recoil
process, the probability amplitude for its having
p1 after recoil, is the same as that for having
had p1—po before recoil, and the probability
amplitude in question is just

bo(p1—2Do, P2,v**, PN).

Now the probability amplitude for the system
to be in the state F with momenta p1,: -, Py is
just the excited state wavefunction

¢r(p,- -+, Pn).

Applying then the rule (R.2) as before, the
total probability amplitude Por that the system
end up in the final state F, is got by integrating
over all values of individual momenta, $;1- - - pu,
and is just

P0F=/"‘/¢F*(P1,P2'"PN)dJo

X (p1—po, pa* + px)dpr- - dpy.  (15)

If we introduce the space wavefunction yr de-
fined above, and ¢, defined analogously, we are
led to the usual expression for the probability
amplitude Por

P [ [orr e

Xewoelngo(xy - - xx)day- + - dxy.

(16)

The probability that the system ends up in final
state ¥r is of course just the squared magnitude
ot this quantity.

Now we discuss the evaluation of the integral
of Eq. (16). We assume, as is customary, a
lattice with periodic boundary conditions and we
recall that for such a lattice of N degrees of
freedom there are N natural frequencies wy- - - wy.
These are usually expressed by writing w=w(k)
where the quantum or wavenumber k can take
on the N different values, 0, 2x/N, 4n/N,- -,
(N—1)2x/N. We put a superscript on k to dif-
ferentiate among these NV possibilities.

B =2gl/N.
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Now for each 2 and corresponding ; there is
a normal coordinate y; so defined that classically
y; satisfies the equation of motion of a simple
harmonic oscillator. The transformation from
the coordinates x, to these normal coordinates
is given by

i »~
Xn= awyi, an=exp[ik®n] ({17
e :z;:l Y, am=explk®n] (17)

In quantum mechanics, the transformation
Eq. (17) separates the Schrédinger equation so
that the wavefunction for the lattice can be
written as the product of N harmonic oscillator
wavefunctions. Each one of these is character-
ized by its frequency » and by the usual har-
monic oscillator quantum number n. We call
these wavefunctions #,,,(v). Specifically, for
n=0and n=1

Uo,o (V) = (me/wh)te—med®/2h
21,0(y) = (L/VI)y (mw/ wh) te—mev?izh,

These wavefunctions are part of a complete set
of eigenfunctions; hence they can be assumed to
be orthonormal. In terms of them the ground
state wavefunction ¥, is the product

(18)

Yo=10,u; (V1) * " Uo,0x (¥N). (19)

The final state wavefunction is given by an
analogous function, except that one or more of
the oscillators may be in an excited state. We
consider specifically the case when, say, the
s'th oscillator is in its first excited state. In other
language: a phonon of frequency w, is excited.
For this case

Vr = 10,0, (Y1) Ho,0, (¥2) * * U0, (35) - - '}io,wz\r(yN)-
' (20)
Now we use these wavefunctions to calculate
the probabilities that the system ends up after
emission in a given final state. Consider first Py,
the probability amplitude for the system to
remain in the ground state. If we put Eq. (19)
into (16) we get for this, (the Jacobian of the
transformation from the x's to the ¥’s is unity)

Po():/’ . ./Euo""l(yﬁ' * 0,0y (YN) |2

’LP()
Xexp[ 2 Cluyz]dyr <dyn.  (21)
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This last integral is in fact the product of &
integrals, a typical one of which, say the ¢'th, is

i D021 g
{ 2 IR
/ 190,00 (Ve) | eXD!: " :Idyq
{ P02iala]2]
=exp| ——— |.
Imbos N

In the limit of N infinite this typical integral
becomes the normalization integral and is unity;
by the same token for N large but finite it
becomes unity to within terms of order 1/N.
Returning then to Eq. (21), the N-fold integral
that appears there breaks up into a product of
N terms, each unity to within terms of 1/ and
tc evaluate it we must then look carefully at the
mathematics of this in the limit of large N; we
cannot go further by intuition. We defer this
for the moment, however, to return to the ques-
tion of calculating the probability of a transition
in which one normal mode, say the s’th of fre-
quency o, is excited. We must then calculate Pyx
defined by (Eq. (16). If we insert into it the
expressions (19) and (20) for Y7 and y,, we are
led to an N-fold integral which is much like that
for Py except that the integral over y; is now

iPOGlsys
/ #1,00* (Vo) 10,057 (5) exp[- ]dys

o

h(N)*
iPOGLs‘/ 2)% . [”Poﬁldkfz:l
= —} exp| ——|.
b \N. P 2mbw, N

The other N —1 integrals lead to essentially the
same result as (21), so we can say that the
probability amplitude for exciting a given one-
phonon mode is of the order of 1/(V)? times that
for staying in the ground state, and the proba-
bility itself is of the order 1/N as large. On the
other hand, there are N such modes so the fofal
probability of one-phonon excitation, i.e., of ex-
citing one or the other of the N phonons, can be
of the same order of magnitude as that for zero-
phonon excitation, as far as factors of order N
are concerned. Of course, the exact relative
probabilities for no-phonon and one-phonon ex-
citation depends on the details of the particular
lattice and Méssbauer nucleus one is considering.
The point of the above argument is to make
clear why the total one-phonon contribution is
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not overwhelming for large N, first impressions
perhaps to the contrary.

Now let us consider the extension of these
results to three dimensional lattices. The general
outline of the results is the same except that
there are now 3N different frequencies. This is
expressed by writing w as a function of a vector
k where k ranges over 3N values in the first
Brillouin zone of the lattice. But given this dii-
ference, the introduction of normal coordinates
r; and the conversion of the integrals for Pyp
into 3N single integrals closely parallels the one-
dimensional case. We do not give the mathe-
matical details of the evaluation of Py, and Pyr.
Suffice it to say that to do these integrals one
must know the frequency spectrum w(k). This
spectrum, known in principle, is but poorly
known in practice, so what is usually done is to
assume a Debye model in which # (w) the number
of frequencies with magnitudes between « and
w+dw is given by

3Nw?/wp?,
o,

w<wp

(22)

n(w)=
wW>wp

With this approximation Py, can be evaluated
and on squaring it one gets the probability for
“‘recoilless emission,”’ usually designated by f.

f= lpoolz__.e—m/zhw . (23)

This is similar to the result with the Einstein
model. The reason is that the distribution of
Eq. (22) weights high frequencies fairly heavily,
peaking at the Debye frequency wp so that one
does not find much difference between using it
and using a single frequency. Similarly the
probability ®.r for exciting a single mode of fre-
quency o, (one-phonon process) turns out to be
smaller than f by a factor involving 1/N.

®or=| Por|2=Rf/ Nhow,. (24)

Since the frequencies are so closely spaced how-
ever, they cannot usually be distinguished ex-
perimentally, and the quantity of interest is not
Eq. (24) but the probability of exciting any of the
modes with frequencies lying between « and
w—+dw. Calling this probability ®e.(w) one gets,
on combining Eq. (24) with the Debye
distribution

Pow(w)dw = 3R fudw/hwd.
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DISCUSSION

In this section we discuss briefly several topics
which are relevant to the Mgssbauer effect, but
which have not found an appropriate place in
the preceding sections. First, we point out that
we have confined our attention to the effect at
zero temperature, since the statistical considera-
tions that nonzero temperature would bring in
are well understood and hence extraneous to our
aim of getting at the basic physics of the Moss-
bauer effect. Secondly, we have considered the
Massbauer effect to be the ‘“‘recoilless emission”
of gamma rays, but there is a certain amount of
arbitrariness here. This is, one might consider
the Méssbauer effect to be the resonant scatter-
ing phenomenon originally observed by Moss-
bauer, which scattering involves both the emis-
sion and subsequent absorption of gamma rays.
But to consider this two part process as a whole
simply confuses the basic emission process we
have tried to understand, without any com-
pensating advantages. That is, in the usual
methods for calculating this scattering process
as a whole, one finds an expression for the cross
section which involves the nuclear half-life gamma
v in a time integration,® and with this half-life
appearing so naturally in the theory it becomes
difficult to put it in proper perspective and assign
it its correct role. In particular, it is then harder
to reconcile its presence with the concept of in-
stantaneous emission. It is easier then to do as
we have done and concentrate on understanding
the one-stage process of emission, in which case
the significance of v is clearer.

It should be emphasized once again that the
Méssbauer effect is essentially a quantum me-
chanical phenomenon. There are derivations of
the effect which look upon it as the emission of
an electromagnetic wave by a nucleus which
vibrates with the lattice, and which therefore in
a sense frequency modulates the wave. But these
derivations simply assume that the emission of
the wave leaves the lattice unperturbed, and so
take as a mere assumption the basic physical
process which is at the heart of the Mossbauer
effect, without throwing any real light on it. In
this sense these derivations must be considered
unsatisfactory. We have discussed the Mass-

6 Reference 4, p. 195, Eq. (2).
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bauer effect using the harmonic model of the
lattice. Some authors have questioned the effect
of introducing the anharmonic forces which
certainly exist. If anharmonic forces are intro-
duced the phonons cease to be true eigenstates
of the system; in a way of speaking they “have
a lifetime.” Will this fact of the phonon lifetime
spoil the Mossbauer effect? It can be seen im-
mediately that this will not be so. For although
from one point of view the anharmonic forces do
endow the phonon with a lifetime, from another
point of view we need not be concerned with this
at all. For we simply observe that whatever the
anharmonic forces may be, there is, in principle,
an exact set of wavefunctions for them. When
these wavefunctions are used in the expression
(16) they certainly give a finite f factor, although
this may be quite different in magnitude from
that with purely harmonic forces. Thus nothing
in principle is changed by the phonon lifetime.

APPENDIX A

On Instantaneous Momentum Transfer

As has been previously mentioned, the assumption we
have adopted, of instantaneous momentum transfer in the
recoil process, has generated some controversy in the litera-
ture. The point at issue is this. The nuclear state has a
lifetime 7, which happens to be long compared to the time
of lattice oscillations. Some authors then insist that this
implies that momentum is not transferred instantaneously,
but only over a time of the order of the nuclear lifetime,
thereby providing “‘sufficient time for the recoil momentum
to be transferred to the lattice via the binding forces during
the scattering process.” Qur point of view is, of course, the
opposite. We hold that = has nothing to do with the time
needed for momentum transfer, which can be taken to be
instantaneous. Now, the case for instantaneous emission
has been made strongly and at length by Lipkin,3 so we do
not repeat his arguments here but rather concentrate on
trying to reconcile the difference of opinion that appears to
exist.

We hold that the difference of opinion comes about
because of a confusion between the two different time-scales
that may pertain to the statistics of a large number of
events. These are:

The time that characterizes the statistical distribution.

The time that characterizes each event.

Since it is essential that the distinction between these two
times be clear, let us separate it from the mystique of quan-
tum mechanics, and illustrate it by a homely example.
Suppose we consider as events the automobile collisions
that take place in a city between, say, noon and midnight.
These are statistically distributed as a function of time,
with a peak perhaps at five o’clock and with, for the sake
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of argument, a certain half-width 7" around this time. In
addition to the halfwidth there is a time which character-
izes the “duration of an individual collision,” call it the
mean collision time fo; it is clearly much shorter than 7,
and for our purpose we can idealize it as being instantane-
ous. We have then a statistical distribution (half-width T)
of instantaneous events. It is our claim that we have just
this in the quantum mechanics of the Mossbauer effect,
viz., a statistical distribution of events (y-ray emission)
characterized by a mean life 7, but with instantaneous
individual events. That is, = refers to the distribution and
there is no sense in which it characterizes an individual
event,

That is the statement of the conflict of opinion. In order
to understand it better, however, let us follow some of the
arguments that have led up to it. Those authors that look
dubiously on the assumption of instantaneous recoil
usually start with a question which the different authors
formulate somewhat differently but whose essence can be
paraphrased and summarized something like this: If the
Méssbauer nucleus recoils instantaneously, the disturbance
that it creates will propagate through the lattice with ve-
locity of sound so that it will take a long time (many times
the nuclear mean life 7) before the sound wave samples the
edge of the crystal. On the other hand, the photon pre-
sumably is well defined from the moment of its assumed
instantaneous emission; that is, it either has at that
moment the full energy of the nuclear transition (zero-
phonon process) or an energy corresponding to a one-
phonon, two-phonon process, etc. These photon energies
are characteristic of the phonons, which is to say they are
characteristic of the details of the whole crystal structure.
How then can the photon know instantly the details of the
distant part of the crystal, long before these parts have
been ‘‘sampled,” so to speak, by the sound wave created
by the initial recoil?

As soon as the question is phrased in this way we should
be put on a certain alert. For it implies that we are looking
at this quantum mechanical process in considerable space—
time detail and, of course, in quantum mechanics this is
frequently not permissible. Also, the argument overlooks
one essential point, which in our mind resolves the diffi-
culty. The point is that the Méssbauer nucleus does not
recoil from rest, but is characterized at the moment of recoil
by the momentum distribution of the crystal in which it
finds itself. This distribution is given by the ground state
wavefunction of the crystal, which wavefunction is deter-
mined by the crystal as a whole. Thus the photon “knows
that it is in a crystal” because it is emitted from a nucleus
that “knows it is in a crystal.”’ The paradox about having
to wait for the sound wave to travel to the edge of the
crystal disappears.

We can elaborate on this, and also give ourselves the
opportunity of disagreeing with some of the literature if
we consider briefly the possibility of the Mossbauer effect
in a different system from a lattice. Consider then not a
Mdssbauer nucleus bound in a lattice, but a Mdssbauer
nucleus in a “billiard-ball gas” of other nuclei. Now,
various opinions in the literature to the contrary, it seems
to us that a gas shows a Mdssbauer effect in principle, i.e.,
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it has a finite f factor although if the gas is very dilute this
may be impractically small from the experimental point
of view. The argument is simple; the f factor is given by the
integral Eq. (16) and there is no reason for this to be
identically zero. In fact, one knows experimentally that
there can be a Méssbauer effect in a liquid; and one would
not expect qualitative differences between liquids, gases,
and dilute gases. To our mind the difference is quantita-
tive, in that the f factor for a gas undoubtedly is small,
depending on its dilution, but there is no reason for it to be
identically zero.

Consider then a billiard-ball gas of nuclei in which there
is a Mossbauer nucleus that emits a gamma ray and
recoils. Suppose there is some mean collision time fo, for
collisions between two nuclei. If we assume, as we have
done, that the emission is instantaneous then it is hard to
see (if we fall in the trap of thinking too classically) how
a Mossbauer effect is possible. For the Mossbauer effect
can only exist, as we have seen, if the photon recoil mo-
mentum is transferred via collisions to the system as a
whole. But how can the photon from the Maossbauer
nucleus know that the nucleus collides with other nuclei,
if the photon is emitted in a time much less than the col-
lision time? The dilemma here is essentially identical to that
for the lattice, and is resolved in much the same way. The
single nucleus is not like a free nucleus. Rather, it is char-
acterized by the momentum distribution of a nucleus in a
gas. Thus, one doesn’t have to allow time for the Mgss-
bauer recoil nucleus to collide with the next and that with
the next, in order for it to “know’ that it is in a billiard-
ball gas. It knows that instantaneously, because of its
built-in momentum distribution, which is characteristic of
that gas, and nothing else. Thus one need not make the
attempt, doomed to failure, of following the path of the
transfer of energy and momentum through the crystal.

The question of the instantaneous emission has also been
phrased in terms of a Gedanken experiment. Suppose one
tries to measure the Méssbauer effect in a crystal, using an
apparatus that can determine the emission time of the
photon, within very short time intervals, say 1072 sec.
Will there still be a Mossbauer effect? According to those
authors who hold that momentum is not transferred in-
stantaneously, the effect is necessarily destroyed since
there is not enough time for the momentum of the recoil
nucleus to be transferred to the lattice. Our point of view
is somewhat more complicated: The Mé&ssbauer effect is
in one sense destroyed, in another not. Now a convincing
exposition of this viewpoint presupposes an understanding
of the so-called energy-time uncertainty relations, and as
the recent work of Aharonov and Bohm? shows, this has
been rather widely misunderstood. What we do then is
divorce the energy-time uncertainty principle from the
Maéssbauer effect for the moment, and discuss it separately.
Then we are in a position to apply it to the effect.

We want to discuss the measurement of energy in a
short-time interval. Suppose then that we have an assem-
blage of nuclei, which nuclei we assume are infinitely
heavy, to do away with problems of recoil. Let these nuclei

7Y, Ahoronov and D. Bohm, Phys. Rev. 122, 1649 (1961).
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emit gamma rays with an energy spectrum characterized
by a width 4 at half-maximum. Suppose we measure this
spectrum first using an apparatus which simply determines
the energy distribution of the photons, but tells nothing
about the time of their emission. Then we get the usual
intensity distribution? I(w) in photon frequency
v hosdes

27 (@ —wo)+ir?
Next, suppose that we have an apparatus which not only
can detect photons, but also can tell us how many decay
in an interval T, i.e., an apparatus which sorts out the
number of decays between times zero and T, between T
and 27, between 2T and 37T, etc. Then the intensity dis-
tribution I'(w) is not given by the above formula but is
proportional to?

14e=1" —2e= 172 cos(w—wo) T
(0 —w0)?+1v?

Why is there a difference in these two cases, reflected in
the difference between (A.1) and (A.2)? It comes about,
we hold, because we are dealing in these two cases with two
different quantum mechanical systems and hence with two
different Hamiltonians, That is, we must consider that the
Hamiltonian of the system is the Hamiltonian of the
nucleus plus that of the radiation field plus that of the
apparatus, with appropriate interactions among all these
partial Hamiltonians. Now the apparatus which can
measure decays to within a time interval T clearly works
differently from one that cannot, so we must assume its
Hamiltonian is also different. Then it is not surprising that
some properties of the total system (e.g., the gamma-ray
spectrum) are also different from these two cases. This
situation is thus different from the case one frequently en-
counters in quantum mechanics where the measuring
apparatus acts impulsively, and a more obvious distinction
between system and apparatus can be made. Here the
measurement is not made impulsively, and one must con-
sider that what one is tempted to call the apparatus must
in fact be considered as part of the total system, and that
the “cut’”’ between system and apparatus must be made at
some stage closer to the observer.

Now we come back to the original question. Will the
Méssbauer effect take place if one measures the time dis-
tribution of the photons to within very short time inter-
vals? As we have indicated, the answer is yes or no, de-
pending on what one means by Maéssbauer effect. If one
means by it the emission of a photon by a nuclear gamma
ray, with no excitation of internal energy of the lattice
then there will be no difference in principle between the two
systems with the two different apparatuses. In each case
we have instantaneous emission of photons, (although of
course the time spectra and energy distributions are dif-
ferent for the two systems) and the possibility of “recoilless
emission,” i.e., the possibility of emission without excita-
tion of phonons. Practically, of course, this distribution
may be so altered for the second case, depending on the

I(w)dew= (A.1)

(A.2)

sC. S. Wu, Y. K. Lee, N. Bencer-Koller, and P. Sims, Phys. Rev.
Letters 9, 432 (1960).
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value of T, that the characteristic macroscopic features of
the effect may well disappear; for example, the lines in
emission and absorption may be so broadened that they
overlap; the characteristic Doppler velocities are altered,
etc., etc. In this sense the Mossbauer effect is quite differ-
ent, and if conditions are extreme might be said to be de-
stroyed, but the basic microscopic processes which underlie
it, and which might well be called the M&ssbauer effect,
persist.

APPENDIX B

Transformation Theory: The Relations of
Probability Amplitudes

In this Appendix, a brief review of the so-called trans-
formation theory of quantum mechanics is presented. It
is obviously not meant to be complete, but goes into only
enough detail to enable the reader to understand the de-
velopment of the text.

To begin, consider for simplicity a one-dimensional
system, which can exist in different energy states E, with
corresponding eigenfunctions ¢.(x). Since the index =
labels an energy eigenstate this eigenfunction implicitly
refers to an energy and explicitly to position. Now in what
follows, it is important to have as simple and general a
notation as possible ; moreover, we are interested in general
properties of this wavefunction which hold for any energy
state. The index # then is superfluous for our purposes, and
it is more convenient to bring out explicitly the fact that
this is an energy eigenfunction. Thus, we might simply call
the wavefunction ¢ (E,x). But even the ¢ can be done away
with if, for example, we agree to write angular brackets
{ ) to mean a wavefunction, and simply denote a general
wavefunction like {,(x) by (E|x)

We recall that this wavefunction has the meaning that its
absolute magnitude squared is the probability that the
particle is between x and x-+dx.

(Probabiiity of particle being
between x and x-+dx

)= 1B

Thus since (E|x) is something whose squared magnitude
gives a probability, it is called a probability amplitude.

Take another well-known example, the momentum space
wavefunction for the #’th energy eigenstate; call it ¢.(#).
For this case also it is convenient to have a notation that
emphasizes the fact that this refers simultaneously to mo-
mentum and to any energy eigenstate. Accordingly, we
write

éa(p) — (E|p).

Here (E|p) can also properly be called a probability ampli-
tude since its interpretation is

Probability of particle having)
momentum between p = [{E|p) |2
and p+dp
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Consider one final example, a particle with a known
momentum p. Its wavefunction is simply a plane wave,

1 eivzlh

(2m)i

This wavefunction refers to both $ and x simultaneously,
and in line with the discussion above we make this explicit
by designating it by (p|x}

etoslh

ol
Again {p|x) can be called a probability amplitude since its
physical interpretation is:?

Relative probability of particle]
being in dx when in
momentum eigenstate p

= | (p]x)%

The three probability amplitudes given above have this
in common: they all involve two quantum mechanical
quantities which do not commute and which therefore
cannot have simultaneous eigenvalues, but they all enable
us to calculate the probability distribution of eigenvalues
of the second observable, if we know the first observable
is in a given eigenstate.

Now, in the set p, E, x there are in fact six ordered pairs
of two variables that we can form. There are the three we
have already discussed, {E |x), {E}p), {p|x). But there are
in addition three others we might have considered, namely,
{(x|E), {p|E), {x|p). 1t is natural then to ask whether these
latter pairs have probability amplitudes associated with
them. The answer is yes; moreover their meaning is similar
in that the first variable again refers to the eigenvalue of
one observable, and the second to the probability distribu-
tion of a second. For example, the probability amplitude
{x|E) is that for finding the distribution of energy eigen-
values if one knows the particle is at x.

The examples above are only special cases of the general
kind of probability amplitude that quantum mechanics
deals with. More generally then, suppose one has two quan-
tum mechanical observables; call them « and 8. Suppose
that

Observable o has eigenvalues a1, a9, ¢3- - -,
Observable 8 has eigenvalues by, b, by« - -.

We then ask: if a is known to have a definite eigenvalue
(i.e., to be in a definite eigenstate) what is the relative
probability of getting the results b1, bs, bg++ by~ for B.
The answer is given by the squared magnitude of a proba-
bility amplitude which we can call {«|8)

{ Probability of getting one of
eigenvalues of 8 when
| system is an eigenvalue of o

= [{a]B) ]2

Two further questions now arise naturally, How does
one find these probability amplitudes in general? Are there
relations among the different probability amplitudes so

? Since this wavefunction is not normalizable it can only be inter-
preted in terms of relative probability.
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that if one is known others can be found from it? We
summarize the answers to these questions.

As is well known, one can find these probability
amplitudes by solving eigenvalue equations; for example,
Ya(x)=(E|x) is found by solving the Schrédinger equation

H, operator‘pn (x) = EnK[/ﬂ (x) .

The momentum space wavefunction e/t is found by
solving

Poperatordy (x) = —iha/axkl/ (x) =pop ().

However, once one has found two of these probability
amplitudes a third can be found by a basic rule of quantum
mechanics: given the probability amplitude, say («|£) for
two quantum mechanical observables, and given also the
probability amplitude, say (£8) for £ and some other
variable 8, then the joint probability amplitude {(«|8) for
a and 8 is

(alg)= ? (ale)y 1), (B.1)

or if £ takes on continuous values
(o= [ alpraiel0).

This is the basic rule referred to in the text, in the deriva-
tion of the Mdssbauer f factor. As we have noted, it is
similar, in a sense, to the classical rule, stated in the text
as rule (R.2) for calculating dependent probabilities,

(Probability of x) = Z, f [Probability of
¥

(x, given v)]- (Probability of y).

The crucial difference between (B.1) and the classical rule
is, of course, that in the quantum mechanical case one
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multiplies not probabilities but probability amplitudes,
and it is this that gives rise to the characteristic quantum
mechanical “interference’ effects.

A final important characteristic of the probability ampli-
tudes is that,

(a]By={8la)*
or, in terms of probabilities
[{alg)]2=[(Bla)[2

As an example of the rule (B.1), we note that thecommon
expression for the wavefunction in momentum space

(B.2)

1 ipx.
50l0)= 3 f Un(@)eirelid

is-just a special case of it. That is, this equation can be
written in our new notation as

(E|p)= f (E |x)da (s | p).

As an example of the rule (B.2) we may point out that
[¢n(x) |2 not only gives the probability of a particle being
at x if one knows the energy is E,, but also gives the
probability that it will have energy E, if one knows the
particle is at x. To make this even more concrete suppose
we have a particle in a box, l.e., confined to 0 <x <L. Then

1 . nwx
¢n(x)=(—L)—ésm—Z—n=1, 2,3,

The relative probabilities then that upon measurement the
particle will have energy eigenvalues Ei, E;, Es,- - if one
knows it is at, say x =x, are:

(Relative probabili’gy of finding eigenvalue E,)
= |sin (nwxe/L) |2



