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I. HISTORICAL BACKGROUND

This historical overview follows the discussions in Refs. [2] and [11].

The liquefaction of helium in 1908 [1] and the subsequent improvement of cryostat design

paved the way for the exploration of physical properties of solids at very low temperatures.

In 1911 Kamerlingh Onnes studied the resistivity of pure metals and made a surprise dis-

covery. Below ∼4 K, the resistance of a sample of distilled mercury dropped rapidly below

the sensitivity limit of his measurement apparatus[2]. He named this new phenomenon “su-

perconductivity”. Subsequently, it was found that superconductivity is not rare property. It

was soon realized that many metals and alloys become superconducting below a crticical (or

transition) temperature (Tc). In 1993 Meissner and Ochsenfeld demonstrated that magnetic

flux is expelled from the interior of a superconducting sample (Meissner effect). The phase

transition between the normal state and the superconducting state is reversible. Based on

this observation, Casimir and Gorter developed a thermodynamic description of the phase

transition in 1934. By 1935, Fritz and Heinz London had established a phenomenological

theory of the electrodynamics of a superconductor (London theory) using ideas of quantum

mechanics. The theory was later extended by Pippard and independently by Ginzburg and

Landau to account for a finite coherence length. A fully microscopic theory was developed

by Bardeen, Cooper, and Schrieffer in 1957 (BCS theory). It predicts that electrons condense

into a superfluid of Cooper pairs below Tc. The pairing originates from a retarded interac-

tion between the electrons which is mediated by phonons. Bardeen, Cooper and Schrieffer

received the Nobel Prize in Physics in 1972.

II. TWO PHENOMENA OF SUPERCONDUCTIVITY

A. Critical temperature Tc

At the turn of the 20th century, the conduction mechanism in metals was still contro-

versial. Competing theories existed predicting either a freeze out of carriers (carriers are

thermally activated), a finite residual resistance at low temperature (impurity scattering), or

an eventual drop of the resistivity to zero as the temperature is lowered (thermally activated
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scattering, e.g., by phonons). Kamerlingh Onnes was a proponent of the latter theory and

thus conducted resistivity measurements on pure metals at the lowest temperatures. He felt

vindicated when the resistivity of a series of metal samples dropped dramatically below a

material-specific temperature which he called “critical temperature.” The samples became

superconducting. The critical temperature of tin is 3.722 K[2].

Residual resistance of a superconductor

Ordinary resistance measurements are not sensitive enough to determine an upper bound

for the residual resistance of a superconductor. Instead, one monitors the persistent current

in a superconducting ring. The time dependent current I(t) in a ring of inductance L is

given by

I(t) = I(0) exp

(
−R
L
t

)
.

A current I(0) is induced in the sample by cooling the superconducting loop below Tc

in a finite magnetic field. Next the field is removed and the current I(t) is determined

by measuring the trapped flux in the loop as a function of time t. The upper bound

for the time constant of decay yields an estimate for the resistance R of the loop. The

method was pioneered by Flimm[11], and Kamerlingh Onnes and Tuyn conducted a series

of experiment in 1924 [2]. Similar experiments were performed by Collins in 1956 [4] and by

Quinn and Ittner in 1962 [5]. They reported an upper bound for the specific resistivity of a

superconductor of 4× 10−23 Ω·cm.

B. Critical field Hc

When an external magnetic field H is applied to the superconductor, the magnetic flux

is expelled from the interior of the sample (Meissner effect). Screening currents flow on

the surface of the superconductor. The superconductivity persists up to a temperature-

dependent critical field Hc(T ) at which the kinetic energy of the screening currents becomes

larger than the pairing energy of the condensate. The temperature dependence was studied

by Tuyn and Kamerlingh Onnes[2, 12]. It is described well by the empirical relationship
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(Tuyn formula, see Fig. 1):

Hc(T ) = H0

[
1−

(
T

Tc

)2
]
. (1)

Considerations regarding the derivation of this formula are presented in the next section.

The critical field H0 of tin is 306 Gauss[2].

FIG. 1: Temperature dependence of the critical magnetic field Hc.

Silsbee rule

The current flow through a conductor generates a magnetic field. Thus a large current

will cause the superconducting phase to break down. The current that generates a magentic

field of magnitude Hc is called critical current Ic. For a cylindrical wire with radius r, the

relationship[4]

Ic = 2πrHc .

holds.
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III. ELECTRODYNAMICS OF A SUPERCONDUCTOR

A. The ideal conductor

We first consider the effect of an external magnetic field ~B on the ideal conductor. The

resistance R of an ideal conductor is zero (R = 0); or alternatively, its conductance σ is

infinite (σ =∞). We start from the equation of motion of and electron

m~̇v = −e ~E ,

and the current density

~j = −ne~v ,

where m and e denote the electron’s mass and charge, and n is the electron density. Com-

bining the two equations, we have

~̇j =
ne2

m
~E .

Let us consider the dielectric displacement ~̇D � ~j and the relative magnetic permeability

µr = 1. We may simplify the Maxwell equations and obtain

curl ~B = µ0
~j curl ~E = − ~̇B ,

where µ0 is the permeability of vacuum. By substiuting one euqation into the other, we

have

λ2curl curl ~̇B = − ~̇B ,

with λ2 = m
µ0ne2

. Using basic theorems of vector analysis and the Maxwell equation div ~B =

0, we arrive at

∇2 ~̇B =
1

λ2
~̇B . (2)

Solutions of Eq. (2) for ~̇B decay exponentially in the ideal conductor as can be easily seen

for a one-dimensional geometry. Let the magnetic field ~B run parallel to the surface of a

semi-infinite slab of an ideal conductor which fills the space x > 0. We may rewrite Eq. (3)

for one dimension,
∂2Ḃ

∂x2
=

1

λ2
Ḃ ,

6



with the solution

Ḃ(x) = Ḃ(0) exp (−x/λ) ,

where B(0) is the magnetic flux density at x = 0, i.e., the surface of the slab. We find that

the change in magnetic flux decays exponentially in the ideal conductor. Far away from the

surface, x � λ, we have Ḃ ≈ 0 and thus B = const. For the ideal conductor, this means

that the magnetic flux density B in the interior of the material would not change from the

value it had when the phase transition into the ideally conducting state occured. In other

words, the phase transition would be irreversible since the final state depends on the order

in which the phase transition and the ramping of the magnetic field took place, see Fig. 2.

FIG. 2: Dependence of the final state of a sphere of ideal conductor on the sequence of
magnetic field ramping and phase transition. Figure taken from Ref. [13]

B. Meissner-Ochsenfeld effect

In 1933, Meissner and Ochsenfeld showed that a (type-I) superconductor always expells

the magnetic flux[2, 6], i.e., ~B = 0 (deep) inside the superconductor. The phenomenon

was called Meissner-Ochsenfeld effect, see Fig. 3. The final state after a superconducting

transition is independent of the history of the sample in contrast to the ideal conductor.

The superconducting transition is thermodynamically reversible.
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FIG. 3: Meissner-Ochsenfeld effect: The final state of a sphere of superconductor is
independent of the sequence of magnetic field ramping and phase transition. Figure taken
from Ref. [13].

C. London equation for the superconductor

Fritz and Heinz London suggested to add two additional equations to the Maxwell equa-

tions to describe the electrodynamics of superconductors[2]:

~B = − m

ne2
curl~j ,

and

~̇j =
ne2

m
~E .

Using the same steps as in the calculation for the ideal conductor (D.I.Y.), we find that

Eq. (2) is replaced by

∇2 ~B =
1

λ2L
~B . (3)

Solutions to Eq. (3) show that both, ~̇B as well as ~B, decay exponentially in the superconduc-

tor. For the one-dimensional example of a semi-infinte slab of superconductor in a parallel

magnetic field, we have
∂2B

∂x2
=

1

λ2L
B ,

with the solution

B(x) = B(0) exp (−x/λL) .
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For large x� λL, we have B ≈ 0, i.e., the magnetic flux is expelled from the interior of the

superconductor. The magnetic flux density decays by a factor 1/e over a distance λL which

is called the London penetration depth:

λL =

√
m

µ0ne2
. (4)

Let us now use the simplified Maxwell equation curl ~B = µ0
~j and write

−∂B
∂x

= µ0jy .

We may recast the solution for B(x) into

jy =
B(0)

µ0λL
exp(−x/λL) = j(0) exp(−x/λL) . (5)

Equation 5 describes surface currents that screen the magnetic flux from the interior of

the superconductor. The screening currents flow close to the surface of the superconductor

within a distance comparable to the London penetration depth λL. In experiments, it is

often found that the penetration depth is much larger than the predicted value by London

theory[2].

D. ‘Ideal’ diamagnetism

In the following, we simplify our considerations by disregarding the finite length of the

London penetration depth, i.e., λL ≡ 0. Let us look at a superconductor in the presence of an

external magnetic field ~Ha as a body with an internal magnetic field ~Hi and a magnetization

~M . Inside the superconductor, we thus have ~Bi = 0, ~M 6= 0 and ~Hi 6= 0. Here the index i

denotes the inside of the superconductor.

For the magnetization of the sample, we have

~M = χ ~Hi ,
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where χ denotes the magnetic susceptibility. With

~Bi = µ0( ~Hi + ~M) ,

we define the magnetic permeability µr:

~Bi = µ0(1 + χ) ~Hi = µ0µr ~Hi .

Since ~Bi = 0 inside as superconductor, µr = 0, and the superconductor can be considered

an ideal diamagnet with susceptibility χ = −1.

1. Sample geometry and demagnetization factor

Next we need to find the relationship between the externally applied magnetic field Ha

and the field strength inside the superconductor Hi. For simplicity, we only consider samples

in the shape of ellipsoids of revolution with the external field aligned parallel to the principal

axis. In this case, Bi, Hi and M are all constant inside the superconductor and parallel to

Ha. Again, we may disregard the finite penetration depth which is a good approximation if

all sample dimensions are large compared to λL. We have [4]

Hi = Ha − nM , (6)

where n is the demagnetizing factor. With M = −Hi, we rewrite Eq. (6) and find

Hi =
1

1− n
Ha .

For an ellipsoid of revolution the demagnetization factor is given by [4]

n =

(
1

e2
− 1

)(
1

2e
ln

1 + e

1− e
− 1

)
, (7)

where e denotes the excentricity e =
√

(1− a2/b2), and a and b are the semimajor and

semiminor axis, respectively. In the case of a sphere, a = b, we obtain n = 1/3. In the

opposite limit of an infinitely long cylinder with the cylinder axis parallel to Ha, a� b, and
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n = 0; see Fig. 4.

FIG. 4: Magnetization curves for a sphere (a) and long cylinder (field parallel to the
cylinder axis) (b). The mixed state is indicated by the dashed line. Figure taken from
Ref. [13].

2. Mixed state

Since n = 0 for a long cylinder, Hi = Ha. Hence, if the externally applied field surpasses

the critical magnetic field Hc of the superconducting material, the sample will uniformly

transition into the normal state. We will take advantage of this in designing our experiment

by chosing a wire geometry for our sample.

For samples of general shape, n 6= 0, and the situation becomes more complicated. Let us

revisit the ellipsoids of rotation. When applying a magnetic fieldHa < Hc, the magnetization

of the sample distorts the magnetic field. At the equator, we have [2]

Hequ = Hi =
1

1− n
Ha ,

from the boundary condition for the magnetic field and at the pole

Hpole =
Bi

µ0

= 0 .

At an externally applied field of Ha = (1−n)Hc, the field at the equator of the sample reaches

the critical field Hi(“equator”) = Hc. Thus the equator region will transition into the normal

state, while Hi < Hc elsewhere. In 1936 Peierls and London[2] proposed that for Ha ≥ (1−
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n)Hc normal regions with Bi = µ0Hc will form and other regions will remain superconducting

(Bi = 0). Hence—as Ha increases—larger and larger regions of the superconductor will

transition into the normal state, but the magnetic flux density remains Bi = µ0Hc at the

equator.

For (1− n)Hc ≤ Ha < Hc, the magnetization is given by

M = − 1

n
(Hc −Ha) ,

and the superconductor is in a mixed state, i.e., some regions are superconducting while

others have transitioned into the normal state minimizing the free energy of the sample for

a given applied magnetic field, see Fig. 5.

FIG. 5: Faraday effect image of the mixed state of a 7 µm thick layer of lead at an applied
magnetic field H = 0.77 Hc. Figure reproduced from Ref. [13], originally from Ref. [1].
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IV. THERMODYNAMIC CONSIDERATIONS

A. Gibbs free energy (free enthalpy)

First thermodynamic considerations regarding the superconducting state go back to Kee-

som (1924) and Rutgers and Ehrenfest (1933)[2]. However, it remained a point of debate

whether the superconducting transition was indeed (thermodynamically) reversible. Follow-

ing the experiments by Meissner and Ochsenfeld that established reversibility, Gorter and

Casimir developed a thermodynamic description of the superconducting state in 1934[2].

Let Gs(T, 0) be the Gibbs free energy of the sample in the superconducting state at

temperature T and magnetic field H = 0. The Gibbs free energy in the normal state is

denoted by Gn(T, 0) for the same parameters. Considering the ideal diamagnetism of the

superconductor, we define

Gs(T,H0) = Gs(T, 0)−
∫
V

dV ′
∫ H0

0

dHµ0M(H) ,

where the second term represents the work the applied field performs on the superconductor.

This work is done on the superconducting regions only, hence

Gs(T,Hc) = Gs(T, 0) + V
µ0H

2
c

2
. (8)

In the normal state, we have µr = 1 and χ = 0. For the Gibbs free energy, we may thus

assume Gn(T,Hc) = Gn(T, 0). Gorter and Casimir require that the Gibbs free energies are

equal when the normal and superconducting phases are in equilibrium. From this follows

the equilibrium condition at the critical magnetic field Hc,

Gs(T,Hc) = Gn(T,Hc) .

Using Eq. (8), we obtain

Gn(T, 0)−Gs(T, 0) = V
µ0H

2
c

2
(9)

for the difference in Gibbs free energy between the normal and the superconducting state.

We rewrite this equation and find for the temperature dependence of the critical magnetic
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field

Hc(T ) =

√
2

µ0V
[Gn(T, 0)−Gs(T, 0)] .

B. Entropy of the phase transition

We use the thermodynamic relation

S = −
[
∂G

∂T

]
H,p

to obtain the entropy of the system. Here the pressure p and the field H are held constant.

We have [
∂Gn(T, 0)

∂T

]
H,p

−
[
∂Gs(T, 0)

∂T

]
H,p

= V µ0Hc

[
∂Hc

∂T

]
H,p

,

or, for the difference in entropy between the normal and the superconducting state,

Sn − Ss = −V µ0Hc

[
∂Hc

∂T

]
H,p

. (10)

First, let us consider the limit T → Tc, and thus Hc → 0. In this case, the difference

in entropy Sn − Ss → 0, i.e., the entropy of the normal state and superconducting states

are equal at Tc (in the absence of an external magnetic field). In the intermediate regime,

0 ≤ T < Tc, we have Hc > 0 and ∂Hc/∂T < 0. Hence the entropy difference is negative. The

entropy of the superconducting phase is smaller than the entropy of the normal state, and

the superconducting state posseses a higher degree of order. Finally, the Nernst theorem

(“third law of thermodynamics”) dictates that the entropy vanishes at T = 0. Consequently,

(Sn − Ss)(T = 0) = 0. It is evident that the entropy difference ∆S = Sn − Ss must possess

an extremal value in the range 0 < T < Tc, see Fig. 6.

Let us revisit the formula of Tuyn, Eq. (1), for a moment. A general polynomial ansatz

for the temperature dependence of Hc reads

H(T ) = H0

[
1−

N∑
n=1

an

(
T

Tc

)n]
.

Following the discussion above, it becomes clear why the coefficient a1 must be zero. If this

was not the case, Nernst theorem would be violated, see Eq. (10) for T → 0.
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FIG. 6: Gibbs free energy of normal and superconducting states and entropy difference.
Figure reproduced from Ref. [13], originally from Ref. [1].

C. Specific heat

To conclude our discussion of the thermodynamic properties of the superconductor, we

take a look at the specific heat. The specific heat is obtained using the thermodynamic

relation [4]

C = T
∂S

∂T
.

By differentiating Eq. (10) and multiplying by T (D.I.Y.), we find

Cs − Cn = TV µ0

[(
∂Hc

∂T

)2

H,p

+Hc

(
∂2Hc

∂T 2

)
H,p

]
. (11)

At T = Tc and Hc = 0 the equation simplifies to

Cs − Cn
∣∣∣
T=Tc

= TcV µ0

(
∂Hc

∂T

)2

H,p,T=Tc

. (12)

Equation 12 is known by the name Rutgers formula[1]. It predicts a jump in the specific

heat at T = Tc since Cs > Cn there, see Fig. 7. As the temperature is lowered, Cs drops

faster, and it becomes equal to Cn where the entropy difference has its maximum. In the

limit T → 0, the specific heats of both phases vanish (Cs, Cn → 0) [2].
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FIG. 7: Specific heat of the normal (closed circles, with magnetic field) and the
superconducting state(open circles). The tin sample was driven normal by an applied
magnetic field. Figure reproduced from Ref. [13], originally from Ref. [1].

V. SEMICLASSICAL THEORIES

A. Temperature dependence of the penetration depth

London theory predicts that the magnetic field penetrates into the superconductor on

the characteristic length scale of the London penetration depth

λ =

√
m

µ0ne2
.

In order to find an expression for the temperature dependence of the penetration depth,

Gorter and Casimir assumed that the density of superconducting electrons varies with tem-

perature according to [2]

n(T ) = n0W (T ) ,

where W (T ) is the order parameter of the superconducting phase and n0 is the electron

density at T = 0. For the temperature-dependence of the order parameter, Gorter and

Casimir assumed the expression [2]

W (T ) = 1−
(
T

Tc

)4

.
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Substituting this into the expression for the penetration yields

λ(T ) = λ(0)

[
1−

(
T

Tc

)4
]−1/2

, (13)

where λ(0) is given by the expression for the London penetration depth with n = n0. The

penetration depth λ(0) of tin is 51 nm [1].

The penetration depth also depends on the magnitude of the magnetic field and the

impurity scattering in the material. Pippard described these effects by modifying local

London electrodynamics to include a finite correlation length for the electron correlations.

B. Type-I and type-II superconductors, Ginzburg-Landau theory

Ginzburg and Landau developed a theory of the superconducting state based on Lan-

dau’s theory of phase transitions. The order parameter of the system is chosen to be the

macroscopic wave function of the superconducting condensate. The condensation energy

is taken into consideration by adding terms proportional to powers of the order parameter

that allow for a phenomenological description of the phase transition. Thus the theory is

valid in regimes for which the order parameter is small, i.e., in large magnetic fields or close

to Tc. In the context of the formalism, Ginzburg and Landau introduced a new characteris-

tic length scale, the Ginzburg-Landau coherence length ξGL. It describes the characteristic

distance for changes in the density of the superconducting condensate for a given strength

of the superconducting interaction. In the presence of a magnetic field, two effects com-

pete: Meissner screening increases the (kinetic) energy of the condensate, whereas creating

a normal domain in the superconductor lowers the energy of the magnetic field distribution

at the cost of losing the (negative) contribution of the condensation energy in the normal

region. The Ginzburg-Landau parameter (cp. Ref. [1]),

κ =
λ

ξGL
, (14)

thus serves as a criterion to distinguish two types of superconductors, type-I and type-II.

Type-II superconductors are characterized by a negative surface energy, i.e., the supercon-

ductor can lower the free energy by admitting flux into the bulk of the sample and creating
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normal state domains. As a consequence, type-II supercondcutors exhibit full Meissner

screening only up to the critical field Hc1 < Hc. Beyond this value, flux penetrates into the

sample, and the magnetization reduces, see Fig. 8. The magnetization remains finite up to

the upper critical field Hc2 > Hc. Here Hc denotes the thermodynamic critical field, cp.

Eq. (8). In the limit κ� 1, the critical fields can be expressed in terms of Hc [2]:

Hc1 =
1√
2κ

(lnκ+ 0.08)Hc ,

and

Hc2 =
√

2κHc .

We may distinguish the two types of superconductors by requiring Hc2 ≥ Hc for the type-II

superconductor[1]. We define

type− I superconductor : κ < 1/
√

2 ,

type− II superconductor : κ > 1/
√

2 .

Tin is a type-I superconductor.

FIG. 8: Magnetization curves of a type-I (dashed line) and a type-II superconductor (solid
line). Figure reproduced from Ref. [13].
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1. Isotope effect

First studies of the effect of the atomic mass on superconductivity were attempted by

Kamerlingh Onnes in 1922[1], but his experiments lacked the resolution to find a correlation.

In 1950, Maxwell[2, 8], and independently Reynolds et al.[2, 8, 9] observed that the critical

temperature Tc of mercury isotopes varies with isotope mass M according to the relation

TcM
α = const.

where α ≈ 1/2.

The critical temperature decreases with increasing isotope mass, and for non-transition

metals, α ≈ 1/2 holds. However, exceptions exist. E.g., a measurement of Finnemore and

Mapother[2, 10] showed α < 0.05 for ruthenium isotopes. An opposite extreme is the heavy

element uranium with α = −2.2 [1]. For uranium Tc increases with isotope mass.

As the critical magnetic field Hc depends on the transition temperature, cp. Eq. (1), it is

reasonable to assume a dependence of Hc on the isotope mass. In 1951 Lock et al.[2] found

that the critical field of tin is described by the approximation

Hc(T ) = H0

[
1− 1.0720

(
T

Tc

)2

− 0.0944

(
T

Tc

)4

+ 0.3325

(
T

Tc

)6

− 0.1660

(
T

Tc

)8
]
.

The discovery of the isotope effect was an important step towards a theoretical description

of superconductivity. Before 1950, only properties of the electronic system were considered.

The observation of an isotope effect suggests that lattice vibrations play a role since the

isotope mass only influences the phonon spectrum. Bardeen and Frölich independently

realized that phonons can mediate a retarded, attractive interaction between electrons. This

ideas became the foundation of a microscopic description of superconductivity.

VI. SOME COMMENTS ON BCS THEORY

In 1956/57, John Bardeen, Leon Cooper, and Robert Schrieffer developed a microscopic

theory of superconductivity which is best-known by the three letter acronym ‘BCS’ theory.

BCS theory is based on the idea that lattice atoms mediate a retarded interaction between

the electrons: Electrons that move through the lattice polarize it locally, i.e., they move
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FIG. 9: Isotope effect for tin. Figure reproduced from Ref. [13], originally from Ref. [1].

the positively charged atoms away from their equilibrium positions in the lattice and thus

cause lattice vibrations. When another electron travels through the lattice, it feels the

finite polarization. The interaction is retarded, i.e., the interacting electrons are not in

the same place. This avoids the problem of Coulomb repulsion since both electrons carry

negative charge. Cooper calculated that the Fermi sea is unstable in the presence of a small,

attractive interaction between the electrons. The electronic system can lower its total energy

by forming Cooper pairs of electrons with opposite momentum and spin {p ↑,−p ↓}. All

pairs are in a single, coherent quantum-mechanical state. In an electric field, all pairs acquire

the same velocity and have the same kinetic energy. As a consequence, no individual pair

interacts with the lattice. The pairs form a superfluid, and electric transport is frictionless

(zero resistance). However, there are limits to the stability of Cooper pairs. For instance, if

a large electric field is applied, the kinetic energy of the electrons becomes larger than the

pairing energy. The Cooper pairs break up, and a transition into the normal state occurs.

Selected properties of the Cooper pairs:

• All Cooper pairs populate a single, coherent quantum state.

• There is an energy gap in the spectrum, i.e., we need to supply a finite energy 2∆ to

break up a Cooper pair and create a (quasi-particle) excitation. Here, ∆ denotes the

pairing potential which relates to the condensation energy of the Cooper pair. The en-

ergy gap is observed in the exponential decrease of the specific heat with temperature,
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in microwave absorption and ultrasonic attenuation experiments, and in tunneling

conductance measurements.

• The characteristic distance ξ between the electrons that form a Cooper pair (BCS

coherence length, correlation length) is ξ ∼ 0.1− 1µm.

• Only a fraction ∆/EF ∼ 1/1000 of the electrons form Cooper pairs, where EF is the

Fermi energy.

• There are 106 − 107 Cooper pairs in a volume ∼ ξ3.

VII. CRYOGENICS

The superconducting transition temperature of tin is below 4.2 K, the boiling point of

liquid helium at ambient pressure. The student needs to familiarize themselves with stan-

dard methods of cooling and low temperature physics: Liquefaction of gases and properties

of cryogens, evaporative cooling (pumping on liquid helium), and thermometry at low tem-

peratures (esp. helium thermometer, ITS-90, secondary thermometers). Below we address

a selection of aspects relevant for our experiment.

A. Cryostat

Liquid helium has a small latent heat. It is essential to thermally isolate the helium bath

from the warm environment. For this purpose, we use a cryostat. The cryostat is designed

to suppress heat transport (i.e., thermal conduction, convection, and radiation). This is

achieved by an alternating sequence of vacuum isolation spaces and cryogenic baths. A

schematic of a modern cryostat is shown in Fig. 10. The vacuum chambers are made from

a material of low thermal conductivity (steel, glass, etc.). Instead of additional cryogenic

baths, some modern cryostats use thin plastic foils with reflective coatings (‘superinsulation’)

to reduce heat input from thermal radiation.
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B. Variable temperature insert

Some cryostats are fitted with a variable temperature insert (VTI), similar to a flow-

through cryostat. It comprises a separate vacuum-isolated space, a needle valve mechanism

for introducing a well-defined, steady flow of liquid helium from the helium bath of the

cryostat, and a heater. The VTI is connected to a helium pumping system to extract the

helium vapor. The temperature of the VTI sample space is set by adjusting the helium flow,

heater power and the pumping speed. For operation above 4.2 K, the He liquid is evaporated

and the sample is cooled by the He vapor.

In the experiment, we use a ‘home-made’ VTI that integrates the sample stick (which

holds the sample and a carbon resistor thermometer) in the mechanism for the needle valve.

The VTI is placed inside a copper coil that is used to apply a magnetic field to the sample.

Detailed information about the design and operation of the VTI will be provided in a short

introduction at the beginning of the lab section.

FIG. 10: Cryostat used in the experiment: (a) Sketch of the cryostat, (b) image of the VTI
insert and mount including the copper coil, (c) needle valve mechanism and flow path of
the liquid helium (red arrows) and sample position in the VTI.
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