Julius-Maximilians-UNIVERSITÄT WÜRZBURG

F-Praktikum Rasterkraftmikroskopie **Atomic Force Microscopy - AFM**

Andreas Sperlich

Experimentelle Physik 6 sperlich@physik.uni-wuerzburg.de

Rasterkraftmikroskopie

Oberflächen auf der Nanometerskala untersuchen

- fast beliebige Materialien
- bestenfalls atomare Auflösung \bullet
- relativ einfach handhabbar lacksquare

Grundlagen

Kategorie Rastersondenmikroskope (scanning probe microscopes)

- STM scanning tunneling microscope
- AFM atomic force
- CAFM conductive AFM
- MFM magnetic force
- SNOM scanning nearfield optical

Rasterkraftmikroskop:

Entwickelt, um das Prinzip der Rastertunnelmikroskopie (STM) auf isolierenden Proben anzuwenden \rightarrow Topographie

Funktionalisierte Sonden (englisch probes) Bildgebung über rein topographische Information hinaus (Leitfähigkeit, Fermi-Level, Magnetismus, ...)

Aufbau

Erstes AFM (Binnig, Quate, Gerber; 1986 vorgestellt): STM detektiert Höhenauslenkung eines Cantilever → sehr sensitiv (~ 1 pm), aber aufwändige Justage und anfällig gegenüber Umgebungseinflüssen

Höhenbestimmung des Cantilevers moderner AFMs: Optische Detektion, z.B. via Laserstrahl und Quadrantendetektor

Figure 2.12. Early contact AFM which allowed imaging non-conductive samples. In this scheme, a contact AFM tip was monitored using the STM tip directly above it.

```
1. AFM
```


Cantilever

- Federplättchen mit möglichst feiner Spitze
- Meist mit Spitze aus einem Stück gefertigt, lacksquare
- Material z.B. Si, SiO₂, Si₃N₄, Diamant, ...

Eigenschaften:

- Kleine Federkonstante \rightarrow kleine Kräfte
- hohe Resonanzfrequenz \rightarrow Minimierung von Störeinflüssen
- spiegeInde Oberfläche \rightarrow Optische Detektion

Spitze

Tip Sidewall Angles of Etched Silicon Probes

- Van-der-Waals-Kraft: ullet
 - Generell: anziehende, weitreichende Wechselwirkung zw. Dipolen (induziert und permanent)
 - Größter Beitrag: London'sche Dispersions-WW zwischen neutralen Atomen / Molekülen: Wechselseitige spontan induzierte elektrische Dipolmomente
 - El. Feld eines Dipols $E_{dip} \sim \frac{1}{r^3} \rightarrow V$
- Repulsive Kräfte: •
 - Bei geringem Abstand: Coulomb-Abstoßung und Austauschkraft
 - Näherung des WW-Potentials als $V_{rep} \sim \frac{1}{r^{12}}$

NW-Potential
$$V_{VdW} \sim -\frac{1}{r^6}$$

Kräfte zwischen Spitze und Probe

→ Kombination: Lennard-Jones-Potential $U_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$

Zusätzlich:

Kapillarkräfte aufgrund von Luftfeuchtigkeit, Reibung, ...

zu beachten:

ALLE Oberflächen sind IMMER mit ein paar Monolagen Wasser + adsorbierte Gase belegt.

 \rightarrow Adsorbate, contamination layer

Kräfte zwischen Spitze und Probe

Größenordnung der Kraft: 10 nN \rightarrow Entspricht der Gewichtskraft eines kleinen Staubkornes $\sim \mu m$

Druck auf die Oberfläche: 10 nN auf ca. 1-10 nm² \rightarrow 1-10 GPa

Material	E-Modul in GPa	Material	E-Modul in GPa
Metallische W	/erkstoffe bei 20 °C	Nichtmetallische	Werkstoffe bei 20 °C
Beryllium	303	PVC	1,0 3,5
Baustahl	210 ^[2]	Glas	40 90 ^[2]
V2A-Stahl	180 ^[3]	Beton	20 40 ^[2]
Gusseisen	90 145 <mark>[2]</mark>	Keramik	160 440 ^[4]
Messing	78 123 ^[5]	Holz	10 15 <mark>[2]</mark>
Kupfer	100 130 ^{[6][7]}	Polypropylen	1,3 1,8 ^[8]
Titan	110 ^[2]	Kautschuk	bis 0,05 ^[2]
Aluminium	70 ^[2]	Graphen	ca. 1000 ^[9]
Magnesium	44 ^[5]	Diamant	ca. 1000 ^[10]
Blei	19 ^[5]	Marmor	72 ^[2]
Gold	78 ^[2]	Eis (-4 °C)	10 ^[2]
Nickel	195 205 <mark>[2]</mark>	Hartgummi	5 ^[2]
Wolfram	405 ^[2]	Klinker	27 ^[2]

Detektion

Laserstrahl \rightarrow Cantilever \rightarrow Viersegment-Photodiode. Höhenänderung: Veränderung des Photostroms (A+B) – (C+D), Torsion: Veränderung des Photostroms (A+C) – (B+D).

Positionierung

mm Grobannäherung des Cantilevers: Servomotor. µm-nm Feinannäherung und Oberflächenabrasterung: Piezoröhrenscanner.

Aber:

PID-Regler: Parallelschaltung von Regelelementen

- Proportional: reagiert sofort, aber nicht ausreichend (v.A. f
 ür große Abweichung)
- Integral: reagiert träge, beseitigt Abweichungen vollständig
- Differential: reagiert (ausschließlich) auf schnelle Änderung (instabil)
 - \rightarrow wird selten genutzt

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

Betriebsmodi

Betriebsmodi

konstante Höhe \rightarrow Auslenkung des Cantilever

Aufzeichnung der Auslenkung am Photodetektor \rightarrow AFM Bild

15

Kontaktmodus:

- Detektion der statischen Verbiegung des Cantilevers
- Schnell (v.A. bei konstanter Höhe), einfacher Aufbau
- Starker Einfluss von Reibung, Adhäsions- und Kapillarkräften Zerstörung weicher Proben

konstante Kraft erfordert aktive Z-Nachregelung

Aufzeichnung der Z-Piezo Ansteuerung \rightarrow AFM Bild

Nicht-Kontaktmodus über der Ofl.

- Nicht-Kontaktmodus:
 - Cantilever schwingt nahe Resonanzfrequenz — → WW beeinflusst Schwingungsamplitude /-Phase
 - Geringe Krafteinwirkung auf Oberfläche
 - Stärker beeinflusst durch Adsorbate —
 - Geringere laterale Auflösung —

Tapping Modus berührt die Ofl.

- Messsonde •
 - AFM-Bild = Faltung aus Spitzengeometrie und Oberfläche
 - Features erscheinen verbreitert / verschmälert? \rightarrow Spitzenradius sollte deutlich kleiner als abzubildende Struktur sein!
 - Senkrechte Flanken erscheinen abgeschrägt → Spitze mit geringem Öffnungswinkel zur Abbildung tiefer Strukturen?
 - Asymmetrie / merkwürdig geformte Strukturen \rightarrow Spitze kaputt?
 - Plötzliche Veränderung der Struktur _ \rightarrow Dreck aufgesammelt?

- Piezoscanner
 - Asymmetrische Seitenflanken \rightarrow Spitze steht senkrecht zur Oberfläche? —
 - Bild verzerrt \rightarrow xy-Scanner linear und kalibriert? —
 - Fehlerhafte Höhenwiedergabe \rightarrow z-Scanner linear und kalibriert? ____
 - Untergrund schief / gebogen \rightarrow Großer xy-Offset? Untergrundkorrektur?

Driving signal

- Piezoscanner
 - Asymmetrische Seitenflanken \rightarrow Spitze steht senkrecht zur Oberfläche?
 - Bild verzerrt \rightarrow xy-Scanner linear und kalibriert? ____
 - Fehlerhafte Höhenwiedergabe \rightarrow z-Scanner linear und kalibriert?
 - Untergrund schief / gebogen \rightarrow Großer xy-Offset? Untergrundkorrektur?

Hysterese von Dieelektrika wie z.B. Piezo-Keramiken

Analog wie bei magnetischem H-Feld und Magnetisierung von Para- und Ferromagneten.

- Piezoscanner ullet
 - Überschwingen an Stufenkanten (Edge-Overshoot) \rightarrow Inkorrekte Einstellung / Übersteuerung des PI-Reglers?! \rightarrow (Die Spitze taucht gar nicht in die Oberfläche ein)
- - Verzerrung am Anfang des Scans
 - \rightarrow Piezo driftet ("creep")?
 - Winkelverzerrung
 - → Crosstalk zwischen x,y und/oder z-Bewegung des Piezoscanners?

Nicht die tatsächliche Topographie, sondern Spannungen der Piezo Ansteuerung werden aufgezeichnet \rightarrow AFM Bild

- Vibrationen ullet
 - Gebäudeschwingung (typ. ~5 Hz)
 - → Entkopplung zum Boden? Skaliert Störsignal mit Scangeschwindigkeit?
 - Akustische Vibrationen \rightarrow Lautes Geräusch / Gespräch / ... ? —
 - Luftzug \rightarrow Tür wurde geöffnet? Viel Bewegung im Raum?

verrauscht

rauscharm

- Bildverarbeitung •
 - Stufe im Hintergrund zwischen Strukturen → Fehlerhaftes Levelling (line-by-line vs. Ebene)?
 - Verzerrte Stufenform
 - → Verzerrung durch Tiefpassfilter? Generell: Daten nur so viel glätten/filtern wie nötig!

 \rightarrow Ofl. steht schräg \rightarrow vertiefte Linien

Optische Datenträger

Daten codiert als Vertiefungen (pits) und Erhöhungen (Lands) verschiedener ulletLänge, die spiralförmig von innen nach außen angeordnet sind

Optische Datenträger

- Auslesen erfolgt via Laser (CD 780 nm, DVD 650 nm, BD 405 nm)
- Höhenunterschied zwischen pits und lands (λ/4) erzeugt destruktive Interferenz im Bereich der Stufen
 → Modulation der reflektierten Lichtintensität
- Stufenwechsel entspricht 1, kein Stufenwechsel entspricht 0
 → Pit und Land sind informationstechnisch identisch

Datendichte

- Spurbreite
 - Annähernd perfekt fokussierter Laserstrahl, Strahldurchmesser resultiert aus Beugung an Linsenapertur (Airy-Scheibchen)
 - Spurbreite etwas größer als theoretisch möglich
 → Auslesen weniger Fehleranfällig

Datendichte

- Spurlänge
 - Beispiel CD: 1.6 µm Spurbreite, Datenbereich 25-58 mm Radius \rightarrow ~21k Spuren mit Gesamtlänge von ~5.4 km
- Kodierung einer CD •
 - Pits und lands stellen nicht direkt die Datenbits dar, stattdessen wird die "eight-tofourteen modulation" verwendet: jedes 8-bit Datenbyte wird durch 14 bit ausgedrückt (auf eine 1 folgen mindestens zwei und höchstens zehn Oer) + 3 merge bits
 - Kleinstmögliche Länge für pit+land (2x833 nm) entspricht demnach 1,0,0,1,0,0 (6 bits)
 - $1 \text{ B} = 17 \text{ bit}, 6 \text{ bit} = 1666 \text{ nm} \rightarrow ~1.1 \text{ GB pro CD}$
 - zusätzliche Fehlerkorrektur: 9 bit für je 24 bit Daten + weitere Korrekturen
 - DVD und BluRay verwendet weiterentwickelte + andere Kodierungen

Prozentsatz von Nutzdaten an den Rohdaten: CD = 28,6%; DVD = 42,3%; BluRay = 57%

Datendichte

Bit-Folge	CD		
101			
1001			
10001	0.83		
100001	1.038		
1000001	1.245		
10000001	1.453		

Tabelle 1: Theoretische Pit-/Land-Länge für ver-
schiedene Bit Folgen und Speichermedi-
en. Die Angabe der Länge erfolgt in μm .

DVD	Blu-ray	
	0.149	
0.4	0.224	
0.534	0.298	
0.667	0.373	
0.800	0.447	
0.933	0.522	

Darstellung der Ergebnisse

Zusammengesetzte Bilder

 \rightarrow Nicht einfach Rohdaten abbilden, sondern diese aufarbeiten um sie leicht verständlich zu machen.

Darstellung der Ergebnisse

- Bildausschnitte der gleichen Stelle auf der Probenoberfläche
- Linien entlang der Scanrichtung des AFM

Vertikal versetzte Höhenlinien erleichtern die Unterscheidung.

Darstellung der Ergebnisse

Es kann auch alle Information in ein Bild gepackt werden und dabei trotzdem übersichtlich bleiben.

Auswertung. Rohdaten vs. 1. Ableitung

Auswertung: Tiefe der Pits?

Einzeln anfitten

Statistik der Höhe aller Bildpunkte

 \rightarrow simpel und objektiv

Auswertung: übersichtliches Aufarbeiten der Rohdaten

Auswertung: Verarbeitete Daten nutzen

FFT einer DVD Oberfläche zeigt Track Spacing

- Rauschen entfernt
- 1. Ableitung
- Sinnvoll gedreht
- Hilslinien für weitere Auswertung

Auswertung: FFT um Rauschen zu entfernen

hochfrequentes Rauschen filtern

C)

Eine Störfrequenz entfernen (Netzbrummen) a) -320 144 -120 -160--100 [nm⁻¹] **80** [a.u.] 0 60 40 160-20 320 0 -160 -320 **160** 320 0 [nm⁻¹] b) 10 7 8 [a.u.] 6 [a.u 4 2 2 -0 _ 100 nm 0

Auswertung: Probleme mit dem Untergrund

Auswertung: Probleme mit dem Untergrund

Veranschaulichung einer polynomiellen Untergrund-Subtraktion.

- Darstellung der QDs a)
- b) polynomieller Fit (3.Ordnung horizontal; 1. Ordnung vertikal) der Daten aus a), →Darstellung des Probenuntergrundes.
- Darstellung der Daten aus a) nach Subtraktion des Untergrundes aus b) **C**)
- d) \rightarrow zusätzliche FFT Filterung würde noch Sinn machen ;-)

Auswertung: Darstellung von Quantenpunkten

Automatisch markierte QP rot hinterlegt

(c) Correlation of QD area and height

Mögliche statistische Auswertungungen der QP Probe

"Dos and Don'ts" im Protokoll

- Nicht einfach Rohdaten, sondern verarbeitete / bearbeitete Daten zeigen.
- Nicht alle aufgenommenen Bilder zeigen.
- Nachvollziehbare Auswertung / Bildbearbeitung in Text+Bild
- Gut lesbare Beschriftungen in Abbildungen (Achsen, Legenden, Hilfslinien,...)
- Hilfslinien einzeichnen, beschriften, erklären

WSxM

http://wsxm.es (win)

(a)

Gwyddion

http://gwyddion.net (win/mac/linux)

19		- 1	- 45
			ж
ant s	s Shik	1.11	W7
or			
ule?			
h.	L	0	
-		11.0	
		-	-
	Prof Prof	Ve 1 Ve 2 Ve 3	
Į.			
			-

